Skip to main content

Alzheimer’s Disease Model System Using Drosophila

  • Chapter
  • First Online:
Drosophila Models for Human Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1076))

Abstract

Alzheimer’s disease (AD) is the most epidemic neuronal dysfunctions among elderly people. It is accompanied by neuronal disorders along with learning and memory defects, as well as massive neurodegeneration phenotype. The presence of intracellular neurofibrillary tangles (NFTs) and extracellular amyloid plaques, called senile plaques (SPs), and brain atrophy are typically observed in the brains of AD patients. It has been over 20 years since the discovery that small peptide, called beta-amyloid (Aβ), has pivotal role for the disease formation. Since then, a variety of drugs have been developed to cure AD; however, there is currently no effective drug for the disorder. This therapeutic void reflects lacks of ideal model system, which can evaluate the progression of AD in a short period. Recently, large numbers of AD model system have been established using Drosophila melanogaster by overproducing Aβ molecules in the brain. These systems successfully reflect some of the symptoms along with AD. In this review, we would like to point out “pros and cons” of Drosophila AD models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acerra N, Kad NM, Griffith DA, Ott S, Crowther DC, Mason JM. Retro-inversal of intracellular selected β-amyloid-interacting peptides: implications for a novel Alzheimer’s disease treatment. Biochemistry. 2014;53:2101–11.

    Article  CAS  PubMed  Google Scholar 

  • Aisen PS, Gauthier S, Ferris SH, et al. Tramiprosate in mild-to-moderate Alzheimer’s disease-a randomized, double-blind, placebo-controlled, multi-Centre study (the Alphase Study). Arch Med Sci. 2011;7:102–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allan K, Perez KA, Bamham KJ, Camakaris J, Burke R. A commonly used Drosophila model of Alzheimer’s disease generates an aberrant species of amyloid-β with an additional N-terminal glutamine residue. FEBS Lett. 2014;588:3739–43.

    Article  CAS  PubMed  Google Scholar 

  • Allen MJ, Godenschwege TA, Tanouye MA, Phelan P. Making an escape: development and function of the Drosophila giant fiber system. Semin Cell Dev Biol. 2006;17:31–41.

    Article  CAS  PubMed  Google Scholar 

  • Alsen PS, Saumier D, Briand R, Laurin J, Gervais F, Tremblay P, Garceau D. A phase II study targeting amyloid-beta with 3APS in mild-to-moderate Alzheimer disease. Neurology. 2006;67:1757–63.

    Article  CAS  Google Scholar 

  • Arquie N, Geminard C, Bourouis M, Jarretou G, Honegger B, Paix A, Leopold P. Drosophila ALS regulates growth and metabolism through functional interaction with insulin-like peptides. Cell Metab. 2008;7:333–8.

    Article  CAS  Google Scholar 

  • Bachmeier CJ, Beaulieu-Abdelahad D, Mullan MJ, Paris D. Epitope-dependent effects of Beta-amyloid antibodies on Beta-amyloid clearance in an in vitro model of the blood-brain barrier. Microcirculation. 2011;18:373–9.

    Article  CAS  PubMed  Google Scholar 

  • Benilova I, Karran E, De Strooper B. The toxic Aβ oligomer and Alzheimer’s disease: an emperor in need of clothes. Nat Neurosci. 2012;15:349–57.

    Article  CAS  PubMed  Google Scholar 

  • Bhan U, Nichols CD. Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Phamacol Rev. 2011;63:411–36.

    Google Scholar 

  • Burns J, Pennock CA, Stoward PJ. The specificity of the staining of amyloid deposits with thioflavin T. J Pathol Bacteriol. 1967;94:337–44.

    Article  CAS  PubMed  Google Scholar 

  • Cao W, Song HJ, Gangi T, Kelkar A, Antani I, Garza D, Konsolaki M. Identification of novel genes that modify phenotypes induced by Alzheimer’s ß-Amyloid overexpression in Drosophila. Genetics. 2008;178:1457–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carvalho GB, Kapahi P, Benzer S. Compensatory ingestion upon dietary restriction in Drosophila melanogaster. Nat Methods. 2005;2:813–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casas-Tinto S, Zhang Y, Sanchez-Garcia J, Gomez-Velazquez M, Ricon-Limas DE, Fernandez-Funez P. The ER stress factor XBP1s prevents amyloid-beta neurotoxicity. Hum Mol Genet. 2011a;20:2144–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casas-Tinto S, Zhang Y, Sanchez-Garcia J, Gomez-Velazquez M, Rincon-Limas DE, Fernandez-Funez P. The ER stress factor XBP1s prevents amyloid-ß neurotoxicity. Hum Mol Genet. 2011b;20:2144–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cescato R, Dumermuth E, Spiess M, Paganetti PA. Increased generation of alternatively cleaved beta-amyloid peptides in cells expressing mutants of the amyloid precursor protein defective in endocytosis. J Neurochem. 2000;74:1131–9.

    Article  CAS  PubMed  Google Scholar 

  • Chabrier MA, Cheng D, Castello NA, Green KN, LaFerla FM. Synergistic effects of amyloid-beta and wild-type human tau on dendritic spine loss in a floxed double transgenic model of Alzheimer’s disease. Neurobiol Dis. 2014;64:107–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chalraborty R, Vepuri V, Mhatre SD, Paddock BE, Miller S, et al. Characterization of a Drosophila Alzheimer’s disease model: pharmacological rescue of cognitive defects. PLoS One. 2011;6:e20799.

    Article  CAS  Google Scholar 

  • Chen G, Chen KS, Knox J, Inglis J, Bernard A, Martin SJ, Justice A, McConlogue L, Games D, Freeman SB, Morris RG. A learning deficit related to age and ß-amyloid plaques in a mouse model of Alzheimer’s disease. Nature. 2000;408:975–9.

    Article  CAS  PubMed  Google Scholar 

  • Colley NJ. Retinal degeneration in the fly. Adv Exp Med Biol. 2012;723:407–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crowther DC, Kinghom KJ, Miranda E, Page R, Curry JA, Duthle FA, Gubb DC, Lomas DA. Intraneuronal Abeta, non-amyloid aggregates and neurodegeneration in a Drosophila model of Alzheimer’s disease. Neuroscience. 2005;132:123–35.

    Article  CAS  PubMed  Google Scholar 

  • Davis RL. Olfactory memory formation in Drosophila: from molecular to systems neuroscience. Annu Rev Neurosci. 2005;28:275–302.

    Article  CAS  PubMed  Google Scholar 

  • De Strooper B. Lesson from a failed g-secretase Alzheimer trial. Cell. 2014;159:721–6.

    Article  CAS  PubMed  Google Scholar 

  • DeArmond SJ. Alzheimer’s disease and Creutzfeldt-Jakob disease: overlap of pathogenic mechanism. Curr Opin Neurol. 1993;6:872–81.

    Article  CAS  PubMed  Google Scholar 

  • Esler WP, Stimson ER, Ghilardi JR, Felix AM, Lu YA, et al. A beta deposition inhibitor screen using synthetic amyloid. Nat Biotechnol. 1997;15:258–63.

    Article  CAS  PubMed  Google Scholar 

  • Feany MB, Bender WW. A drosophila model of Parkinson’s disease. Nature. 2000;404:394–8.

    Article  CAS  PubMed  Google Scholar 

  • Fossgreen A, Bruckner B, Czech C, Masters CL, Beyreuther K, Paro R. Transgenic Drosophila expressing human amyloid precursor protein show gamma-secretase activity and a blistered-wing phenotype. Proc Natl Acad Sci U S A. 1998;95:13703–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Games D, Adams D, Alessandrini R, Barbour R, Berthelette P, et al. Alzheimer-type neuropathology in transgenic mice overexpressing V717F beta-amyloid precursor protein. Nature. 1995;373:523–7.

    Article  CAS  PubMed  Google Scholar 

  • Gerstner JR, Lenz O, Vanderheyden WM, Chan MT, Pfeiffenberger C, Pack AI. Amyloid-β induces sleep fragmentation that is rescued by fatty acid binding proteins in Drosophila. J Neurosci Res. 2017;95:1548–64.

    Article  CAS  PubMed  Google Scholar 

  • Ghosh AK, Brindisi M, Tang J. Developing β-secretase inhibitors for treatment of Alzheimer’s disease. J Neurochem. 2012;120(Suppl):71–83.

    Article  CAS  PubMed  Google Scholar 

  • Guarente L. UASs and enhancers: common mechanism of transcriptional activation in yeast and mammals. Cell. 1988;52:303–5.

    Article  CAS  PubMed  Google Scholar 

  • Haass C, Selkoe DJ. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid [beta]-peptide. Nat Rev Mol Cell Biol. 2007;8:101–12.

    Article  CAS  PubMed  Google Scholar 

  • Hoffman T, Meyer A, Heiser U, Kurat S, Bohme L, et al. J Pharmacol Exp Ther. 2017;362:119–30.

    Article  Google Scholar 

  • Huang JK, Ma JI, JI SY, Zhao XL, Tan JX, Sun XJ, Huang FD. Age-dependent alterations in the presynaptic active zone in a Drosophila model of Alzheimer’s disease. Neurobiol Dis. 2013;51:161–7.

    Article  CAS  PubMed  Google Scholar 

  • Iijima K, Liu HP, Chiang AS, Heam SA, Konsolaki M, Zhong Y. Dissecting the pathological effects of human Abeta40 and Abeta42 in Drosophila: a potential model for Alzheimer’s disease. Proc Natl Acad Sci U S A. 2004;101:6623–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iijima-Ando K, Hearn SA, Granger L, Shenton C, Gatt A, Chaing HC, Hakker I, Zhong Y, Iijima K. Overexpression of neprilysin reduces alzheimer amyloid-beta42 (Abeta42)-induced neuron loss and intraneuronal Abeta42 deposits but causes a reduction in cAMP-responsive element-binding protein-mediated transcription, age-dependent axon pathology, and premature death in Drosophila. J Biol Chem. 2008;283:19066–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ittner LM, Gotz J. Amyloid-β and tau—a toxic pas de deux in Alzheimer’s disease. Nat Rev Neurosci. 2011;12:65–72.

    Article  CAS  PubMed  Google Scholar 

  • Iwata N, Tsubuki S, Takaki Y, Watanabe K, Sekiguchi M, Hosoki E, Kawashima-Morishima M, Lee HJ, Hama E, Sekine-Aizawa Y, Saido TC. Identification of the major Abeta1-42-degrading catabolic pathway in brain parenchyma: suppression leads to biochemical and pathological deposition. Nat Med. 2000;6:143–50.

    Article  CAS  PubMed  Google Scholar 

  • Ja WW, Carvalho GB, Mak EM, de la Rosa NN, Fang AY, Liong JC, Brummel T, Benzer S. Prandiology of Drosophila and the CAFE assay. Proc Natl Acad Sci U S A. 2007;104:8253–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson GR, Salecker I, Dong X, Yao X, Arnheim N, Faber PW, MacDonald ME, Zipursky SL. Polyglutamine-expanded human huntingtin transgenes induce degeneration of Drosophila photoreceptor neurons. Neuron. 1998;21:633–42.

    Article  CAS  PubMed  Google Scholar 

  • Jawhar S, Wirths O, Schilling S, Graubner S, Demuth HU, Bayer TA. Overexpression of glutaminyl cyclase, the enzyme responsible for pyroglutamate A{beta} formation, induces behavioral deficits, and glutaminyl cyclase knock-out rescues the behavioral phenotype in 5XFAD mice. J Biol Chem. 2010;286:4454–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnston M. A model fungal gene regulatory mechanism: the GAL genes of Saccharomyces cerevisiae. Microbiol Rev. 1987;51:458–76.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Kent BA, Mistlberger RE. Sleep and hippocampal neurogenesis: implications for Alzheimer’s disease. Front Neuroendocrinol. 2017;45:35–52.

    Article  PubMed  Google Scholar 

  • Kiu CF, Lee JH, Kim YM, Lee S, Hong YK, et al. In vivo screening of traditional medicinal plants for Neuroprotective activity against Aβ42 cytotoxicity by using Drosophila models of Alzheimer’s disease. Bio Pharm Bull. 2015;38:1891–901.

    Article  Google Scholar 

  • Lanz TA, Himes CS, Pallante G, Adams L, Yamazaki S, Amore B, Merchant KM. The gamma-secretase inhibitor N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester reduces A beta levels in vivo in plasma and cerebrospinal fluid in young (plaque-free) and aged (plaque-bearing) Tg2576 mice. J Pharmacol Exp Ther. 2003;305:864–71.

    Article  CAS  PubMed  Google Scholar 

  • Lee HG, Zhu X, O’Neill MJ, Webber K, Casadesus G, Marlatt M, Raina AK, Perry G, Smith MA. The role of metabotropic glutamate receptors in Alzheimer’s disease. Acta Neurobiol Exp. 2004;64:89–98.

    Google Scholar 

  • Liberman MC. Noise-induced and age-related hearing loss: new perspectives and potential therapies. F1000Res. 2017;6:927.

    Article  PubMed  PubMed Central  Google Scholar 

  • List of Statistical Surveys conducted by Ministry of Health, Labour and welfare Japan. Report on public health administration and services. 2012.

    Google Scholar 

  • Mejia M, Heghinian MD, Mari F, Godenschwage TA. New tools for targeted disruption of cholinergic synaptic transmission in Drosophila melanogaster. PLoS One. 2013;8:e64685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merck pulls plug on phase 2/3 BACE inhibitor trial. ALZFORUM, 15 Feb 2017.

    Google Scholar 

  • Mori H, Takio K, Ogawara M, Selkoe DJ. Mass spectrometry of purified amyloi ß protein in Alzheimer’s disease. J Biol Chem. 1992;267:17082–6.

    PubMed  CAS  Google Scholar 

  • Nixon RA. Amyloid precursor protein and endosomal-lysosomal dysfunction in Alzheimer’s disease: inseparable partners in a multifactorial disease. FASEB J. 2017;31:2729–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, Metherate R, Mattson MP, Akbari Y, LaFerla FM. Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron. 2003;39:409–21.

    Article  CAS  PubMed  Google Scholar 

  • Omata Y, Lim YM, Akao Y, Tsuda L. Age-induced reduction of autophagy-related gene expression is associated with onset of Alzheimer’s disease. Am J Neurodegener Dis. 2014;3:134–42.

    PubMed  PubMed Central  Google Scholar 

  • Omata Y, Tharasegaran S, Lim YM, Yamasaki Y, Ishigaki Y, Tatsuno T, Maruyama M, Tsuda L. Expression of amyloid-β in mouse cochlear hair cells causes an early-onset auditory defect in high-frequency sound perception. Aging. 2016;8:427–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palutke M, KuKuruga D, Wolfe D, Roher A. Flow cytometric purification of Alzheimer’s disease amyloid plaque core protein using thioflavin T. Cytometry. 1987;8:494–9.

    Article  CAS  PubMed  Google Scholar 

  • Phelps CB, Brand AH. Ectopic gene expression in Drosophila using GAL4 system. Methods. 1998;14:367–79.

    Article  CAS  PubMed  Google Scholar 

  • Qi W, Yang Z, Lin Z, Park JY, Suh GSB, Wang L. Quantitative feeding assay in adult Drosophila reveals rapid modulation of food ingestion by its nutritional value. Mol Brain. 2017;8:87.

    Article  CAS  Google Scholar 

  • Rhodenizer D, Martin I, Bhandari P, Pletcher SD, Grotewiel M. Genetic and environmental factors impact age-related impairment of negative geotaxis in Drosophila by altering age-dependent climbing speed. Exp Gerontol. 2008;43:739–48.

    Article  PubMed  PubMed Central  Google Scholar 

  • Runbin GM, Yankell MD, Wortman JR, Gabor Miklos GL, Nelson CR, et al. Comparative genomics of the eukaryotes. Science. 2000;287:2204–15.

    Article  Google Scholar 

  • Saido TC, Iwatsubo T, Mann DM, et al. Dominant and differential deposition of distinct beta-amyloid peptide species, Abeta N3(pE), in senile plaques. Neuron. 1995;14:457–66.

    Article  CAS  PubMed  Google Scholar 

  • Saito T, Matsuba Y, Mihira N, et al. Single APP knock-in mouse models of Alzheimer’s disease. Nat Neurosci. 2014;17:661–3.

    Article  CAS  PubMed  Google Scholar 

  • Schiling S, Hoffmann T, Manhart S, Hoffmenn M, Demuth HU. Glutaminyl cyclases unfold glutamyl cyclase activity under mild acid condition. FEBS Lett. 2004;563:191–6.

    Article  CAS  Google Scholar 

  • Schiling S, Lauber T, Schaupp M, et al. On the seeding and oligomerization of pGlu-amyloid peptides (in vitro). Biochemistry. 2006;45:12393–9.

    Article  CAS  Google Scholar 

  • Sevigny J, Chiao P, Bussiere T, Weinreb PH, Williams L, et al. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature. 2016;537:50–6.

    Article  CAS  PubMed  Google Scholar 

  • Shulman JM, Chipendo P, Chibnik LB, Aubin C, Tran D, Keenan BT, Kramer PL, Schneider JA, Bennett DA, Feany MB, De Jager PL. Functional screening of Alzheimer pathology genome-wide association signals in Drosophila. Am J Hum Genet. 2011;88:232–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sivak JM. The aging eye: common degenerative mechanisms between the Alzheimer’s brain and retinal disease. Invest Ophthalmol Vis Sci. 2013;54:871–80.

    Article  CAS  PubMed  Google Scholar 

  • Snyder EM, Nong Y, Almeida CG, Paul S, Moran T, Choi EY, Nairn AC, Salter MW, Lombroso PJ, Gouras GK, Greengard P. Regulation of NMDA receptor trafficking by amyloid-beta. Nat Neurosci. 2005;8:1051–8.

    Article  CAS  PubMed  Google Scholar 

  • Speretta E, Jahn TR, Tartaglia GG, Favrin G, Barros TP, Imarisio S, Lomas DA, Luheshi LM, Crowther DC, Dobson CM. Expression in drosophila of tandem amyloid β peptides provides insights into links between aggregation and neurotoxicity. J Biol Chem. 2012;287:20748–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suster ML, Seugnet L, Bate M, Sokolowski MB. Refining GAL4-driven transgene expression in Drosophila with a GAL80 enhancer-trap. Genesis. 2004;39:240–5.

    Article  CAS  PubMed  Google Scholar 

  • Tabuchi M, Lone SR, Liu S, Liu Q, Zhang J, Spira AP, Wu MN. Sleep interacts with Aβ to modulate intrinsic neuronal excitability. Curr Biol. 2015;25:702–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terry RD, Davies P. Dementia of the Alzheimer type. Ann Rev Neurosci. 1980;3:77–95.

    Article  CAS  PubMed  Google Scholar 

  • Thomas JE, Rylett CM, Carhan A, Bland ND, Bingham RJ, Shirras AD, Turner AJ, Isaac RE. Drosophila melanogaster NEP2 is a new soluble member of the neprilysin family of endopeptidases with implications for reproduction and renal function. Biochem J. 2005;386:357–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torroja L, Chu H, Kotovsky I, White K. Neuronal overexpression of APPL, the Drosophila homologue of the amyloid precursor protein (APP), disrupts axonal transport. Curr Biol. 1999;9:489–92.

    Article  CAS  PubMed  Google Scholar 

  • Travis M, Paukin MG. Predation and the origin of neurones. Brain Behav Evol. 2014;84:246–61.

    Article  Google Scholar 

  • Vandenberghe R, Rinne JO, Boada M, Katayama S, Scheltens P, et al. Bapineuzumab for mild to moderate Alzheimer’s disease in two global, randomized, phase 3 trials. Alzheimers Res Ther. 2016;8:18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Chiang HC, Wu W, Liang B, Xie Z, et al. Epidermal growth factor receptor is a preferred target for treating amyloid-β-induced memory loss. Proc Natl Acad Sci U S A. 2012;109:16743–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang L, Kounatidis I, Ligoxygakis P. Drosophila as a model to study the role of blood cells in inflammation, innate immunity and cancer. Front Cell Infect Microbiol. 2013;3:113.

    Google Scholar 

  • Waring SC, Rosenberg RN. Genome-wide association studies in Alzheimer disease. Arch Neurol. 2008;65:329–34.

    Article  PubMed  Google Scholar 

  • Wasco W, Bupp K, Magendantz M, Gusella JF, Tanzi RE, Solomon F. Identification of a mouse brain cDNA that encodes a protein related to the Alzheimer disease-associated amyloid beta protein precursor. Proc Natl Acad Sci U S A. 1992;89:10758–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe TK, Anderson WW. Selection for geotaxis in Drosophila melanogaster: heritability, degree of dominance, and correlated responses to selection. Behav Genet. 1976;6:71–86.

    Article  CAS  PubMed  Google Scholar 

  • Webster SJ, Bachstetter AD, Nelson PT, Schmitt FA, Van Eldik LJ. Using mice to model Alzheimer’s dementia: an overview of the clinical disease and the preclinical behavioral changes in 10 mouse models. Front Genet. 2014; 5, Article 88: 1–23.

  • Wilson RS, Schneider JA, Aenold SE, et al. Olfactory identification and incidence of mild cognitive impairment in older age. Arch Gen Psychiatry. 2007;64:802–8.

    Article  PubMed  Google Scholar 

  • Wirths O, Breyhan H, Cynis H, Schiling S, Demuth HU, Bayer TA. Intraneuronal pyroglutamate-Abeta3-42 triggers neurodegeneration and lethal neurological deficits in a transgenic mouse model. Acta Neuropathol. 2009;118:487–96.

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiang L, Nakamura Y, Lim YM, Yamasaki Y, Kurokawa-Nose Y, et al. Tetrahydrocurcumin extends life span and inhibits the oxidative stress response by regulating the FOXO forkhead transcription factor. Aging (Albany NY). 2011;3:1098–109.

    Article  CAS  Google Scholar 

  • Zhao XL, Wang WA, Tan JX, Huang JK, Zhang X, et al. Expression of ß-amyloid induced age-dependent presynaptic and axonal changes in Drosophila. J Neurosci. 2010;30:1512–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng Y, Fan S, Liao W, Fang W, Xiao S, Liu J. Hearing impairment and risk of Alzheimer’s disease: a meta-analysis of prospective cohort studies. Neurol Sci. 2017;38:233–9.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

We would like to thank all the member of our laboratory, Laboratory of Animal Models of Aging, National Center for Geriatrics and Gerontology, Japan. L.T. and YM. L. are supported by a Grant-in-Aid from the Ministry of Education and Scientific Research for Priority Areas, Japan, grant number [15K07092].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leo Tsuda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tsuda, L., Lim, YM. (2018). Alzheimer’s Disease Model System Using Drosophila . In: Yamaguchi, M. (eds) Drosophila Models for Human Diseases. Advances in Experimental Medicine and Biology, vol 1076. Springer, Singapore. https://doi.org/10.1007/978-981-13-0529-0_3

Download citation

Publish with us

Policies and ethics