Skip to main content

Drosophila As a Cancer Model

  • Chapter
  • First Online:
Drosophila Models for Human Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1076))

Abstract

Over the last few decades, Drosophila cancer models have made great contributions to our understanding toward fundamental cancer processes. Particularly, the development of genetic mosaic technique in Drosophila has enabled us to recapitulate basic aspects of human cancers, including clonal evolution, tumor microenvironment, cancer cachexia, and anticancer drug resistance. The mosaic technique has also led to the discovery of important tumor-suppressor pathways such as the Hippo pathway and the elucidation of the mechanisms underlying tumor growth and metastasis via regulation of cell polarity, cell-cell cooperation, and cell competition. Recent approaches toward identification of novel therapeutics using fly cancer models have further proved Drosophila as a robust system with great potentials for cancer research as well as anti-cancer therapy.

Enomoto M. and Siow C. are equally contributed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bangi E, Murgia C, Teague AGS, Sansom OJ, Cagan RL. Functional exploration of colorectal cancer genomes using Drosophila. Nat Commun. 2016;7:13615.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bilder D, Li M, Perrimon N. Cooperative regulation of cell polarity and growth by Drosophila tumor suppressors. Science. 2000;289(5476):113–6.

    Article  PubMed  CAS  Google Scholar 

  • Bissell MJ, Hines WC. Why don’t we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat Med. 2011;17(3):320–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boveri T. The origin of malignant tumors. Baltimore: Williams & Wilkins; 1929. p. 62–3.

    Google Scholar 

  • Brumby AM, Richardson HE. Scribble mutants cooperate with oncogenic Ras or notch to cause neoplastic overgrowth in Drosophila. EMBO J. 2003;22(21):5769–79.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cairns J. Mutation selection and the natural history of cancer. Nature. 1975;255:197–200.

    Article  PubMed  CAS  Google Scholar 

  • Chabu C, Xu T. Oncogenic Ras stimulates Eiger/TNF exocytosis to promote growth. Development. 2014;141(24):4729–39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chi C, Zhu H, Han M, Zhuang Y, Wu X, Xu T. Disruption of lysosome function promotes tumor growth and metastasis in Drosophila. J Biol Chem. 2010;285(28):21817–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Classen A-K, Bunker BD, Harvey KF, Vaccari T, Bilder D. A tumor suppressive activity of Drosophila Polycomb genes mediated by JAK/STAT signaling. Nat Genet. 2009;41(10):1150–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Coppé J-P, Desprez P-Y, Krtolica A, Campisi J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol. 2010;5(1):99–118.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cordero JB, Macagno JP, Stefanatos RK, Strathdee KE, Cagan RL, Vidal M. Oncogenic Ras diverts a host TNF tumor suppressor activity into tumor promoter. Dev Cell. 2010;18(6):999–1011.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dar AC, Das TK, Shokat KM, Cagan RL. Chemical genetic discovery of targets and anti-targets for cancer polypharmacology. Nature. 2012;486:80–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de la Cova C, Abril M, Bellosta P, Gallant P, Johnston LA. Drosophila Myc regulates organ size by inducing cell competition. Cell. 2004;117(1):107–16.

    Article  PubMed  Google Scholar 

  • Doggett K, Grusche F, Richardson H, Brumby A. Loss of the Drosophila cell polarity regulator scribbled promotes epithelial tissue overgrowth and cooperation with oncogenic Ras-Raf through impaired Hippo pathway signaling. BMC Dev Biol. 2011;11(1):57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Egeblad M, Nakasone ES, Werb Z. Tumors as organs: complex tissues that Interface with the entire organism. Dev Cell. 2010;18(6):884–901.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eichenlaub T, Cohen SM, Herranz H. Cell competition drives the formation of metastatic tumors in a Drosophila model of epithelial tumor formation. Curr Biol. 2016;26(4):419–27.

    Article  PubMed  CAS  Google Scholar 

  • Enomoto M, Igaki T. Src controls tumorigenesis via JNK-dependent regulation of the Hippo pathway in Drosophila. EMBO Rep. 2013;14(1):65–72.

    Article  PubMed  CAS  Google Scholar 

  • Enomoto M, Kizawa D, Ohsawa S, Igaki T. JNK signaling is converted from anti- to pro-tumor pathway by Ras-mediated switch of Warts activity. Dev Biol. 2015a;403(2):162–71.

    Article  PubMed  CAS  Google Scholar 

  • Enomoto M, Vaughen J, Igaki T. Non-autonomous overgrowth by oncogenic niche cells: cellular cooperation and competition in tumorigenesis. Cancer Sci. 2015b;106(12):1651–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fearon K, Arends J, Baracos V. Understanding the mechanisms and treatment options in cancer cachexia. Nat Rev Clin Oncol. 2012;10:90–9.

    Article  PubMed  CAS  Google Scholar 

  • Figueroa-Clarevega A, Bilder D. Malignant Drosophila tumors interrupt insulin signaling to induce Cachexia-like wasting. Dev Cell. 2015;33(1):47–55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gao X, Pan D. TSC1 and TSC2 tumor suppressors antagonize insulin signaling in cell growth. Genes Dev. 2001;15(11):1383–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gao G, Chen L, Huang C. Anti-cancer drug discovery: update and comparisons in yeast, Drosophila, and zebrafish. Curr Mol Pharmacol. 2014;7(1):44–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gateff E. Malignant neoplasms of genetic origin in Drosophila melanogaster. Science. 1978;200(4349):1448–59.

    Article  PubMed  CAS  Google Scholar 

  • Gateff E, Schneiderman HA. Developmental studies of new mutant of Drosophila melanogaster: lethal malignant brain tumor. Am Zool. 1967;7:760.

    Google Scholar 

  • Giovannucci E, Harlan DM, Archer MC, Bergenstal RM, Gapstur SM, Habel LA, Pollak M, Regensteiner JG, Yee D. Diabetes and cancer. Diabetes Care. 2010;33(7):1674–85.

    Article  PubMed  PubMed Central  Google Scholar 

  • Greaves M, Maley CC. Clonal evolution in cancer. Nature. 2012;481:306–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harvey KF, Pfleger CM, Hariharan IK. The Drosophila Mst Ortholog, hippo, restricts growth and cell proliferation and promotes apoptosis. Cell. 2003;114(4):457–67.

    Article  PubMed  CAS  Google Scholar 

  • Harvey KF, Zhang X, Thomas DM. The Hippo pathway and human cancer. Nat Rev Cancer. 2013;13:246–57.

    Article  PubMed  CAS  Google Scholar 

  • Herranz H, Weng R, Cohen Stephen M. Crosstalk between epithelial and mesenchymal tissues in tumorigenesis and imaginal disc development. Curr Biol. 2014;24(13):1476–84.

    Article  PubMed  CAS  Google Scholar 

  • Herz H-M, Chen Z, Scherr H, Lackey M, Bolduc C, Bergmann A. vps25 mosaics display non-autonomous cell survival and overgrowth, and autonomous apoptosis. Development. 2006;133(10):1871–80.

    Article  PubMed  CAS  Google Scholar 

  • Hirabayashi S, Cagan RL. Salt-inducible kinases mediate nutrient-sensing to link dietary sugar and tumorigenesis in Drosophila. elife. 2015;4:e08501.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hirabayashi S, Baranski Thomas J, Cagan Ross L. Transformed Drosophila cells evade diet-mediated insulin resistance through wingless signaling. Cell. 2013;154(3):664–75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang J, Wu S, Barrera J, Matthews K, Pan D. The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila homolog of YAP. Cell. 2005;122(3):421–34.

    Article  PubMed  CAS  Google Scholar 

  • Igaki T, Pagliarini RA, Xu T. Loss of cell polarity drives tumor growth and invasion through JNK activation in Drosophila. Curr Biol. 2006;16(11):1139–46.

    Article  PubMed  CAS  Google Scholar 

  • Igaki T, Pastor-Pareja JC, Aonuma H, Miura M, Xu T. Intrinsic tumor suppression and epithelial maintenance by endocytic activation of Eiger/TNF signaling in Drosophila. Dev Cell. 2009;16(3):458–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jia J, Zhang W, Wang B, Trinko R, Jiang J. The Drosophila Ste20 family kinase dMST functions as a tumor suppressor by restricting cell proliferation and promoting apoptosis. Genes Dev. 2003;17(20):2514–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Justice RW, Zilian O, Woods DF, Noll M, Bryant PJ. The Drosophila tumor suppressor gene warts encodes a homolog of human myotonic dystrophy kinase and is required for the control of cell shape and proliferation. Genes Dev. 1995;9(5):534–46.

    Article  PubMed  CAS  Google Scholar 

  • Kango-Singh M, Nolo R, Tao C, Verstreken P, Hiesinger PR, Bellen HJ, Halder G. Shar-pei mediates cell proliferation arrest during imaginal disc growth in Drosophila. Development. 2002;129(24):5719–30.

    Article  PubMed  CAS  Google Scholar 

  • Katheder NS, Khezri R, O’Farrell F, Schultz SW, Jain A, Rahman MM, Schink KO, Theodossiou TA, Johansen T, Juhász G, Bilder D, Brech A, Stenmark H, Rusten TE. Microenvironmental autophagy promotes tumour growth. Nature. 2017;541:417–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khoo P, Allan K, Willoughby L, Brumby AM, Richardson HE. In Drosophila, RhoGEF2 cooperates with activated Ras in tumorigenesis through a pathway involving Rho1–Rok–Myosin-II and JNK signalling. Dis Model Mech. 2013;6(3):661–78.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kwon Y, Song W, Droujinine Ilia A, Hu Y, Asara John M, Perrimon N. Systemic organ wasting induced by localized expression of the secreted insulin/IGF antagonist ImpL2. Dev Cell. 2015;33(1):36–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lai Z-C, Wei X, Shimizu T, Ramos E, Rohrbaugh M, Nikolaidis N, Ho L-L, Li Y. Control of cell proliferation and apoptosis by mob as tumor suppressor, Mats. Cell. 2005;120(5):675–85.

    Article  PubMed  CAS  Google Scholar 

  • Lee T, Luo L. Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron. 1999;22(3):451–61.

    Article  PubMed  CAS  Google Scholar 

  • Levine Benjamin D, Cagan Ross L. Drosophila lung cancer models identify Trametinib plus statin as candidate therapeutic. Cell Rep. 2016;14(6):1477–87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Levinson S, Cagan Ross L. Drosophila cancer models identify functional differences between Ret fusions. Cell Rep. 2016;16(11):3052–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lu H, Bilder D. Endocytic control of epithelial polarity and proliferation in Drosophila. Nat Cell Biol. 2005;7(12):1232–9.

    Article  PubMed  CAS  Google Scholar 

  • Ma X, Shao Y, Zheng H, Li M, Li W, Xue L. Src42A modulates tumor invasion and cell death via Ben/dUev1a-mediated JNK activation in Drosophila. Cell Death Differ. 2013;4:e864.

    Article  CAS  Google Scholar 

  • Ma X, Lu J-Y, Dong Y, Li D, Malagon JN, Xu T. PP6 disruption synergizes with oncogenic Ras to promote JNK-dependent tumor growth and invasion. Cell Rep. 2017;19(13):2657–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Markstein M, Dettorre S, Cho J, Neumüller RA, Craig-Müller S, Perrimon N. Systematic screen of chemotherapeutics in Drosophila stem cell tumors. Proc Natl Acad Sci U S A. 2014;111(12):4530–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martinez A-M, Schuettengruber B, Sakr S, Janic A, Gonzalez C, Cavalli G. Polyhomeotic has a tumor suppressor activity mediated by repression of notch signaling. Nat Genet. 2009;41:1076–82.

    Article  PubMed  CAS  Google Scholar 

  • Martorell Ã’, Merlos-Suárez A, Campbell K, Barriga FM, Christov CP, Miguel-Aliaga I, Batlle E, Casanova J, Casali A. Conserved mechanisms of tumorigenesis in the Drosophila adult midgut. PLoS One. 2014;9(2):e88413.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marusyk A, Almendro V, Polyak K. Intra-tumour heterogeneity: a looking glass for cancer ? Nat Rev Cancer. 2012;12(5):323–34.

    Article  CAS  PubMed  Google Scholar 

  • Mattissek C, Teis D. The role of the endosomal sorting complexes required for transport (ESCRT) in tumorigenesis. Mol Membr Biol. 2014;31(4):111–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Merino M, Rhiner C, Lopez-Gay Jesus M, Buechel D, Hauert B, Moreno E. Elimination of unfit cells maintains tissue health and prolongs lifespan. Cell. 2015;160(3):461–76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meyer SN, Amoyel M, Bergantiños C, de la Cova C, Schertel C, Basler K, Johnston LA. An ancient defense system eliminates unfit cells from developing tissues during cell competition. Science. 2014;346(6214):1258236.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moberg KH, Bell DW, Wahrer DCR, Haber DA, Hariharan IK. Archipelago regulates cyclin E levels in Drosophila and is mutated in human cancer cell lines. Nature. 2001;413:311.

    Article  PubMed  CAS  Google Scholar 

  • Moberg KH, Schelble S, Burdick SK, Hariharan IK. Mutations in erupted, the Drosophila Ortholog of mammalian tumor susceptibility gene 101, elicit non-cell-autonomous overgrowth. Dev Cell. 2005;9(5):699–710.

    Article  PubMed  CAS  Google Scholar 

  • Morata G, Ripoll P. Minutes: mutants of Drosophila autonomously affecting cell division rate. Dev Biol. 1975;42(2):211–21.

    Article  PubMed  CAS  Google Scholar 

  • Moreno E, Basler K. dMyc transforms cells into super-competitors. Cell. 2004;117(1):117–29.

    Article  PubMed  CAS  Google Scholar 

  • Muzzopappa M, Murcia L, Milán M. Feedback amplification loop drives malignant growth in epithelial tissues. Proc Natl Acad Sci U S A. 2017;114(35):E7291–300.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Na J, Musselman LP, Pendse J, Baranski TJ, Bodmer R, Ocorr K, Cagan R. A Drosophila model of high sugar diet-induced cardiomyopathy. PLoS Genet. 2013;9(1):e1003175.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nakamura M, Ohsawa S, Igaki T. Mitochondrial defects trigger proliferation of neighbouring cells via a senescence-associated secretory phenotype in Drosophila. Nat Commun. 2014;5:5264.

    Article  PubMed  CAS  Google Scholar 

  • Neto-Silva RM, de Beco S, Johnston LA. Evidence for a growth-stabilizing regulatory feedback mechanism between Myc and Yorkie, the Drosophila homolog of yap. Dev Cell. 2010;19(4):507–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nowell PC. The clonal evolution of tumor cell populations. Science. 1976;194(4260):23.

    Article  PubMed  CAS  Google Scholar 

  • Ohsawa S, Sugimura K, Takino K, Xu T, Miyawaki A, Igaki T. Elimination of oncogenic neighbors by JNK-mediated engulfment in Drosophila. Dev Cell. 2011;20(3):315–28.

    Article  PubMed  CAS  Google Scholar 

  • Ohsawa S, Sato Y, Enomoto M, Nakamura M, Betsumiya A, Igaki T. Mitochondrial defect drives non-autonomous tumour progression through Hippo signalling in Drosophila. Nature. 2012;490(7421):547–51.

    Article  PubMed  CAS  Google Scholar 

  • Overholtzer M, Zhang J, Smolen GA, Muir B, Li W, Sgroi DC, Deng C-X, Brugge JS, Haber DA. Transforming properties of YAP, a candidate oncogene on the chromosome 11q22 amplicon. Proc Natl Acad Sci U S A. 2006;103(33):12405–10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pagliarini RA, Xu T. A genetic screen in Drosophila for metastatic behavior. Science. 2003;302(5648):1227–31.

    Article  PubMed  CAS  Google Scholar 

  • Pan D. The hippo signaling pathway in development and Cancer. Dev Cell. 2010;19(4):491–505.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pantalacci S, Tapon N, Leopold P. The Salvador partner Hippo promotes apoptosis and cell-cycle exit in Drosophila. Nat Cell Biol. 2003;5(10):921–7.

    Article  PubMed  CAS  Google Scholar 

  • Pastor-Pareja JC, Wu M, Xu T. An innate immune response of blood cells to tumors and tissue damage in Drosophila. Dis Model Mech. 2008;1(2–3):144–54.

    Article  PubMed  PubMed Central  Google Scholar 

  • Patel PH, Dutta D, Edgar BA. Niche appropriation by Drosophila intestinal stem cell tumors. Nat Cell Biol. 2015;17(9):1182–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Potter CJ, Luo L. Using the Q system in Drosophila. Nat Protoc. 2011;6(8):1105–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Potter CJ, Huang H, Xu T. Drosophila Tsc1 functions with Tsc2 to antagonize insulin signaling in regulating cell growth, cell proliferation, and organ size. Cell. 2001;105(3):357–68.

    Article  PubMed  CAS  Google Scholar 

  • Read RD, Goodfellow PJ, Mardis ER, Novak N, Armstrong JR, Cagan RL. A Drosophila model of multiple endocrine neoplasia type 2. Genetics. 2005;171(3):1057–81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Read RD, Cavenee WK, Furnari FB, Thomas JB. A Drosophila model for EGFR-Ras and PI3K-dependent human glioma. PLoS Genet. 2009;5(2):e1000374.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rodrigues AB, Zoranovic T, Ayala-Camargo A, Grewal S, Reyes-Robles T, Krasny M, Wu DC, Johnston LA, Bach EA. Activated STAT regulates growth and induces competitive interactions independently of Myc, Yorkie, wingless and ribosome biogenesis. Development. 2012;139(21):4051–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rossi F, Gonzalez C. Studying tumor growth in Drosophila using the tissue allograft method. Nat Protoc. 2015;10:1525–34.

    Article  PubMed  CAS  Google Scholar 

  • Sousa CM, Biancur DE, Wang X, Halbrook CJ, Sherman MH, Zhang L, Kremer D, Hwang RF, Witkiewicz AK, Ying H, Asara JM, Evans RM, Cantley LC, Lyssiotis CA, Kimmelman AC. Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion. Nature. 2016;536:479–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Srivastava A, Pastor-Pareja JC, Igaki T, Pagliarini R, Xu T. Basement membrane remodeling is essential for Drosophila disc eversion and tumor invasion. Proc Natl Acad Sci U S A. 2007;104(8):2721–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Suijkerbuijk SJE, Kolahgar G, Kucinski I, Piddini E. Cell competition drives the growth of intestinal adenomas in Drosophila. Curr Biol. 2016;26(4):428–38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Takino K, Ohsawa S, Igaki T. Loss of Rab5 drives non-autonomous cell proliferation through TNF and Ras signaling in Drosophila. Dev Biol. 2014;395(1):19–28.

    Article  PubMed  CAS  Google Scholar 

  • Tamori Y, Suzuki E, Deng W-M. Epithelial tumors originate in tumor hotspots, a tissue-intrinsic microenvironment. PLoS Biol. 2016;14(9):e1002537.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tapon N, Harvey KF, Bell DW, Wahrer DCR, Schiripo TA, Haber DA, Hariharan IK. Salvador promotes both cell cycle exit and apoptosis in Drosophila and is mutated in human cancer cell lines. Cell. 2002;110(4):467–78.

    Article  PubMed  CAS  Google Scholar 

  • Thompson BJ, Mathieu J, Sung H-H, Loeser E, Rørth P, Cohen SM. Tumor suppressor properties of the ESCRT-II complex component Vps25 in Drosophila. Dev Cell. 2005;9(5):711–20.

    Article  PubMed  CAS  Google Scholar 

  • Thornton K, Kim G, Maher VE, Chattopadhyay S, Tang S, Moon YJ, Song P, Marathe A, Balakrishnan S, Zhu H, Garnett C, Liu Q, Booth B, Gehrke B, Dorsam R, Verbois L, Ghosh D, Wilson W, Duan J, Sarker H, Miksinski SP, Skarupa L, Ibrahim A, Justice R, Murgo A, Pazdur R. Vandetanib for the treatment of symptomatic or progressive medullary thyroid Cancer in patients with Unresectable locally advanced or metastatic disease: U.S. Food and Drug Administration drug approval summary. Clin Cancer Res. 2012;18(14):3722–30.

    Article  PubMed  CAS  Google Scholar 

  • Tisdale MJ. Cachexia in cancer patients. Nat Rev Cancer. 2002;2:862–71.

    Article  PubMed  CAS  Google Scholar 

  • Tyler DM, Li W, Zhuo N, Pellock B, Baker NE. Genes affecting cell competition in Drosophila. Genetics. 2007;175(2):643–57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Udan RS, Kango-Singh M, Nolo R, Tao C, Halder G. Hippo promotes proliferation arrest and apoptosis in the Salvador/Warts pathway. Nat Cell Biol. 2003;5(10):914–20.

    Article  PubMed  CAS  Google Scholar 

  • Vaccari T, Bilder D. The Drosophila tumor suppressor vps25 prevents nonautonomous overproliferation by regulating notch trafficking. Dev Cell. 2005;9(5):687–98.

    Article  PubMed  CAS  Google Scholar 

  • Vaughen J, Igaki T. Slit-Robo repulsive signaling extrudes tumorigenic cells from epithelia. Dev Cell. 2016;39(6):683–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vidal M, Wells S, Ryan A, Cagan R. ZD6474 suppresses oncogenic RET isoforms in a Drosophila; model for type 2 multiple endocrine neoplasia syndromes and papillary thyroid carcinoma. Cancer Res. 2005;65(9):3538–41.

    Article  PubMed  CAS  Google Scholar 

  • Vincent J-P, Kolahgar G, Gagliardi M, Piddini E. Steep differences in wingless signaling trigger Myc-independent competitive cell interactions. Dev Cell. 2011;21(2):366–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA, Kinzler KW. Cancer genome landscapes. Science. 2013;339(6127):1546–58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Willoughby LF, Schlosser T, Manning SA, Parisot JP, Street IP, Richardson HE, Humbert PO, Brumby AM. An in vivo large-scale chemical screening platform using Drosophila for anti-cancer drug discovery. Dis Model Mech. 2013;6(2):521–9.

    Article  PubMed  CAS  Google Scholar 

  • Wu JS, Luo L. A protocol for mosaic analysis with a repressible cell marker (MARCM) in Drosophila. Nat Protoc. 2007;1:2583–9.

    Article  CAS  Google Scholar 

  • Wu S, Huang J, Dong J, Pan D. Hippo encodes a Ste-20 family protein kinase that restricts cell proliferation and promotes apoptosis in conjunction with Salvador and warts. Cell. 2003;114(4):445–56.

    Article  PubMed  CAS  Google Scholar 

  • Wu M, Pastor-Pareja JC, Xu T. Interaction between RasV12 and scribbled clones induces tumour growth and invasion. Nature. 2010;463(7280):545–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu T, Rubin GM. Analysis of genetic mosaics in developing and adult Drosophila tissues. Development. 1993;117(4):1223–37.

    PubMed  CAS  Google Scholar 

  • Xu T, Wang W, Zhang S, Stewart RA, Yu W. Identifying tumor suppressors in genetic mosaics: the Drosophila lats gene encodes a putative protein kinase. Development. 1995;121(4):1053–63.

    PubMed  CAS  Google Scholar 

  • Yamamoto M, Ohsawa S, Kunimasa K, Igaki T. The ligand Sas and its receptor PTP10D drive tumour-suppressive cell competition. Nature. 2017;542:246–50.

    Article  PubMed  CAS  Google Scholar 

  • Yeatman TJ. A renaissance for SRC. Nat Rev Cancer. 2004;4:470–80.

    Article  PubMed  CAS  Google Scholar 

  • Zender L, Spector MS, Xue W, Flemming P, Cordon-Cardo C, Silke J, Fan S-T, Luk JM, Wigler M, Hannon GJ, Mu D, Lucito R, Powers S, Lowe SW. Identification and validation of oncogenes in liver cancer using an integrative Oncogenomic approach. Cell. 2006;125(7):1253–67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ziosi M, Baena-López LA, Grifoni D, Froldi F, Pession A, Garoia F, Trotta V, Bellosta P, Cavicchi S, Pession A. dMyc functions downstream of Yorkie to promote the supercompetitive behavior of Hippo pathway mutant cells. PLoS Genet. 2010;6(9):e1001140.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

The authors apologize for omitting relevant literatures due to space constraints. The authors thank the Igaki laboratory for helpful discussion during the manuscript’s preparation. Research in the Igaki laboratory is supported in part by Grants-in-Aid for Scientific Research from the Japanese Ministry of Education, Science, Sports, Culture and Technology (MEXT), the Platform for Dynamic Approaches to Living System from MEXT, and the Japan Agency for Medical Research and development (AMED).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsushi Igaki .

Editor information

Editors and Affiliations

Commonly Used Protocol

Commonly Used Protocol

Protocol I

figure a

MARCM technique used in Drosophila cancer models. (a) The MARCM technique allows expression of target transgenes coupled with GFP specifically in clones. The parental cell contains chromosomes with homologous FRT sequence located at the same position, heterozygous Gal80 controlled by ubiquitous promoter tubP located at a distal site from FRT, heterozygous mutation (denoted as *) distal to FRT but in trans to Gal80 chromosome, and FLP sequence controlled by eyP specific to the eye-antennal imaginal discs (EAD). The Gal4/UAS system is governed by ubiquitous promoter actP with a y spacer tagged downstream with a UAS-GFP marker sequence. The y spacer includes a transcriptional stop codon so that prior to activation of the FLP recombinase (and subsequent FLP-out), the gene downstream (UAS-GFP) of the spacer is not transcribed. After DNA replication , FLP expressed specifically in the EAD mediates mitotic recombination at FRT sites (arrows) and concurrently allows FLP-out of the y spacer. Three types of distinct progeny (as mosaics in an EAD tissue) can be produced after mitosis and cell division, in which cells with one/two copies of Gal80 are unlabeled as wild type, while cells without Gal80 is homozygous for the mutation and are labeled with GFP fluorescence. Fluorescently labeled transgenic cells are a result of the loss of GAL80 repression on GAL4, thus allowing GAL4 to drive expression of any other UAS transgenes. (b) An example of a confocal image showing wt//wt or wts −/−//wt EAD mosaics generated by MARCM. Cell nuclei are stained with DAPI (blue). DAPI, 4,6-diamidino-2-phenylindole; GFP, green fluorescent protein; actP, actin promoter; tubP, tubulin promoter; eyP, eyeless promoter; FLP, flippase; FRT, flippase recognition target; wt, wild type.

Protocol II

figure b

The process of malignant transformation and Drosophila model of tumor progression. (a) General scheme illustrating autonomous malignant transformation of Ras V12 mutant subclones in a tissue after acquiring sequential mutation, e.g., scrib −/−. (b) Schematic drawing showing an EAD mosaic in a scrib −/− + Ras V12 mutant larva generated by eyFLP-MARCM technique. Green spots depicted are GFP-labeled patches of scrib −/− + Ras V12 mutant clones surrounded by unlabeled wild-type cells in the EAD attached to the brain-VNC complex. Over time, scrib −/− + Ras V12 mutant cells acquire malignant behavior and invade to adjacent ventral nerve code (VNC). Overgrowth of scrib −/− + Ras V12 clones outcompetes wt subclones, as shown by an increase in GFP-labeled mutants and a decrease in unlabeled wt cells.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Enomoto, M., Siow, C., Igaki, T. (2018). Drosophila As a Cancer Model. In: Yamaguchi, M. (eds) Drosophila Models for Human Diseases. Advances in Experimental Medicine and Biology, vol 1076. Springer, Singapore. https://doi.org/10.1007/978-981-13-0529-0_10

Download citation

Publish with us

Policies and ethics