Skip to main content

Key Parameters for Fracture Toughness of Particle/Polymer Nanocomposites; Sensitivity Analysis via XFEM Modeling Approach

  • Conference paper
  • First Online:
Proceedings of the 7th International Conference on Fracture Fatigue and Wear (FFW 2018)

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Included in the following conference series:

Abstract

Epoxy polymers are highly crosslinked polymers that result in brittle fracture. Adding rigid fillers to the bulk epoxy can lead to tougher composites. This study present comprehensive sensitivity analysis in order to determine the key input parameters for fracture toughness of particle/polymer nanocomposites. Within the framework of Extended Finite Element Method (XFEM), the cohesive segments method and phantom nodes have been exploited to model numerically the fracture and crack propagation based on 2D finite element model. Four common global sensitivity analysis methods are applied: (1) regression method, (2) elementary effects of Morris (MOAT), (3) Sobol’/Saltelli method, and (4) Extended fourier amplitude sensitivity test (EFAST). The results indicated that the maximum allowable principal stress and Young’s modulus of the epoxy matrix were the most two significant parameters. Besides, the size of the nanoparicles showed weighty interaction effect. The achievement of this study is of value for a better understanding of fracture mechanism in polymer nanocomposites that provides a sufficient support for the further exploration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Argon, A., Cohen, R.: Toughenability of polymers. Polymer 44(19), 6013–6032 (2003)

    Article  Google Scholar 

  2. Thostenson, E.T., Li, C., Chou, T.W.: Nanocomposites in context. Compos. Sci. Technol. 65(3), 491–516 (2005)

    Article  Google Scholar 

  3. Hsieh, T., Kinloch, A., Masania, K., Taylor, A., Sprenger, S.: The mechanisms and mechanics of the toughening of epoxy polymers modified with silica nanoparticles. Polymer 51(26), 6284–6294 (2010)

    Article  Google Scholar 

  4. Hamdia, K.M., Zhuang, X., He, P., Rabczuk, T.: Fracture toughness of polymeric particle nanocomposites: evaluation of models performance using bayesian method. Compos. Sci. Technol. 126, 122–129 (2016)

    Article  Google Scholar 

  5. Huang, Y., Kinloch, A.: Modelling of the toughening mechanisms in rubber-modified epoxy polymers. Part II a quantitative description of the microstructure-fracture property relationships. J. Mater. Sci. 27(10), 2763–2769 (1992)

    Article  Google Scholar 

  6. Williams, J.: Particle toughening of polymers by plastic void growth. Compos. Sci. Technol. 70(6), 885–891 (2010)

    Article  Google Scholar 

  7. Quaresimin, M., Salviato, M., Zappalorto, M.: A multi-scale and multi-mechanism approach for the fracture toughness assessment of polymer nanocomposites. Compos. Sci. Technol. 91, 16–21 (2014)

    Article  Google Scholar 

  8. Lauke, B.: Fracture toughness modelling of polymers filled with inhomogeneously distributed rigid spherical particles. Express Polym. Lett. 11(7), 545 (2017)

    Article  Google Scholar 

  9. Scocchi, G., Posocco, P., Danani, A., Pricl, S., Fermeglia, M.: To the nanoscale, and beyond!: multiscale molecular modeling of polymer-clay nanocomposites. Fluid Phase Equilib. 261(1), 366–374 (2007)

    Article  Google Scholar 

  10. Silani, M., Talebi, H., Ziaei-Rad, S., Kerfriden, P., Bordas, S.P., Rabczuk, T.: Stochastic modelling of clay/epoxy nanocomposites. Compos. Struct. 118, 241–249 (2014)

    Article  Google Scholar 

  11. Qiao, R., Brinson, L.C.: Simulation of interphase percolation and gradients in polymer nanocomposites. Compos. Sci. Technol. 69(3), 491–499 (2009)

    Article  Google Scholar 

  12. Boutaleb, S., Zaïri, F., Mesbah, A., Naït-Abdelaziz, M., Gloaguen, J.M., Boukharouba, T., Lefebvre, J.M.: Micromechanics-based modelling of stiffness and yield stress for silica/polymer nanocomposites. Int. J. Solids Struct. 46(7), 1716–1726 (2009)

    Article  Google Scholar 

  13. Wang, H., Zhou, H., Peng, R., Mishnaevsky, L.: Nanoreinforced polymer composites: 3D FEM modeling with effective interface concept. Compos. Sci. Technol. 71(7), 980–988 (2011)

    Article  Google Scholar 

  14. Silani, M., Ziaei-Rad, S., Esfahanian, M., Tan, V.: On the experimental and numerical investigation of clay/epoxy nanocomposites. Compos. Struct. 94(11), 3142–3148 (2012)

    Article  Google Scholar 

  15. Msekh, M.A., Silani, M., Jamshidian, M., Areias, P., Zhuang, X., Zi, G., He, P., Rabczuk, T.: Predictions of J integral and tensile strength of clay/epoxy nanocomposites material using phase field model. Compos. Part B: Eng. 93, 97–114 (2016)

    Article  Google Scholar 

  16. Hamdia, K.M., Msekh, M.A., Silani, M., Vu-Bac, N., Zhuang, X., Nguyen-Thoi, T., Rabczuk, T.: Uncertainty quantification of the fracture properties of polymeric nanocomposites based on phase field modeling. Compos. Struct. 133, 1177–1190 (2015)

    Article  Google Scholar 

  17. Msekh, M.A., Cuong, N., Zi, G., Areias, P., Zhuang, X., Rabczuk, T.: Fracture properties prediction of clay/epoxy nanocomposites with interphase zones using a phase field model. Eng. Fract. Mech. 188, 287–299 (2017)

    Article  Google Scholar 

  18. Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., Tarantola, S.: Global Sensitivity Analysis. The Primer. Wiley, Hoboken (2008)

    MATH  Google Scholar 

  19. Griffith, A.A.: The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. Lond. Ser. A 221, 163–198 (1921). Containing papers of a mathematical or physical character

    Article  Google Scholar 

  20. Rabczuk, T., Zi, G., Gerstenberger, A., Wall, W.A.: A new crack tip element for the phantom-node method with arbitrary cohesive cracks. Int. J. Numer. Meth. Eng. 75, 577–599 (2008)

    Article  Google Scholar 

  21. Chau-Dinh, T., Zi, G., Lee, P.S., Rabczuk, T., Song, J.H.: Phantom-node method for shell models with arbitrary cracks. Comput. Struct. 92, 242–256 (2012)

    Article  Google Scholar 

  22. Vu-Bac, N., Nguyen-Xuan, H., Chen, L., Lee, C.K., Zi, G., Zhuang, X., Liu, G.R., Rabczuk, T.: A phantom-node method with edge-based strain smoothing for linear elastic fracture mechanics. J. Appl. Math. 2013 (2013)

    Google Scholar 

  23. Areias, P., Rabczuk, T.: Quasi-static crack propagation in plane and plate structures using set-valued traction-separation laws. Int. J. Numer. Meth. Eng. 74(3), 475–505 (2008)

    Article  Google Scholar 

  24. Campolongo, F., Saltelli, A.: Sensitivity analysis of an environmental model: an application of different analysis methods. Reliab. Eng. Syst. Saf. 57(1), 49–69 (1997)

    Article  Google Scholar 

  25. Badawy, M.F., Msekh, M.A., Hamdia, K.M., Steiner, M.K., Lahmer, T., Rabczuk, T.: Hybrid nonlinear surrogate models for fracture behavior of polymeric nanocomposites. Probab. Eng. Mech. 50, 64–75 (2017)

    Article  Google Scholar 

  26. Morris, M.D.: Factorial sampling plans for preliminary computational experiments. Technometrics 33(2), 161–174 (1991)

    Article  Google Scholar 

  27. Campolongo, F., Saltelli, A., Cariboni, J.: From screening to quantitative sensitivity analysis. A unified approach. Comput. Phys. Commun. 182(4), 978–988 (2011)

    Article  Google Scholar 

  28. Sobol’, I.M.: On sensitivity estimation for nonlinear mathematical models. Matematicheskoe Modelirovanie 2(1), 112–118 (1990)

    MathSciNet  MATH  Google Scholar 

  29. Saltelli, A.: Making best use of model evaluations to compute sensitivity indices. Comput. Phys. Commun. 145(2), 280–297 (2002)

    Article  MathSciNet  Google Scholar 

  30. Cukier, R., Levine, H., Shuler, K.: Nonlinear sensitivity analysis of multiparameter model systems. J. Comput. Phys. 26(1), 1–42 (1978)

    Article  MathSciNet  Google Scholar 

  31. Saltelli, A., Tarantola, S., Chan, K.S.: A quantitative model-independent method for global sensitivity analysis of model output. Technometrics 41(1), 39–56 (1999)

    Article  Google Scholar 

  32. Hamdia, K.M., Silani, M., Zhuang, X., He, P., Rabczuk, T.: Stochastic analysis of the fracture toughness of polymeric nanoparticle composites using polynomial chaos expansions. Int. J. Fract. 206(2), 215–227 (2017)

    Article  Google Scholar 

  33. Liang, Y., Pearson, R.: Toughening mechanisms in epoxy-silica nanocomposites (ESNs). Polymer 50(20), 4895–4905 (2009)

    Article  Google Scholar 

  34. Dittanet, P., Pearson, R.A.: Effect of silica nanoparticle size on toughening mechanisms of filled epoxy. Polymer 53(9), 1890–1905 (2012)

    Article  Google Scholar 

  35. Hamdia, K.M., Lahmer, T., Nguyen-Thoi, T., Rabczuk, T.: Predicting the fracture toughness of PNCs: a stochastic approach based on ANN and ANFIS. Comput. Mater. Sci. 102, 304–313 (2015)

    Article  Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge the support for this research provided by the Deutsche Forschungsgemeinschaft (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khader M. Hamdia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hamdia, K.M., Rabczuk, T. (2019). Key Parameters for Fracture Toughness of Particle/Polymer Nanocomposites; Sensitivity Analysis via XFEM Modeling Approach. In: Abdel Wahab, M. (eds) Proceedings of the 7th International Conference on Fracture Fatigue and Wear. FFW 2018. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-13-0411-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-0411-8_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-0410-1

  • Online ISBN: 978-981-13-0411-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics