Skip to main content

Linguistic Rule-Based Ontology-Driven Chatbot System

  • Conference paper
  • First Online:
Advances in Computer Communication and Computational Sciences

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 760))

Abstract

Chatbots are designed to change the way system and users interact. As the IT-support system interaction behaves like developer asks a query regarding a project from system, then system searches and results the best suitable answer. Chatbots usually roam around two components of a conversational system—intent and entity. In order to build a generic chatbot, it is important to employ natural language understanding system and process machine to understand language as does we human interpret. In this research work, linguistic rules, ontology, and similarity indexing are performed in a uniform manner to build a generic chatbot system. Initially, linguistic rules have been implied to understand context in correspondence to detect intent and entity in user query. Then, ontology is used to map intent and entity in varying parts of question–answering system. Even, ontology helps in finding similarity among relations used in query and relations in its ontological structure while applying syntactic ambiguity resolution. Syntactic ambiguity resolution is used to edit distance, cosine similarity, N-gram matching, and semantic feature similarity as a set of text preprocessing, information retrieval, and similarity algorithms. System provides a confidence score to consume resolved entity, and one can safely uses resolved entity if its score is above than defined threshold value.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sneiders, E.: Automated question answering using question templates that cover the conceptual model of the database. In: NLDB, vol. 2, pp. 235–239, June 2002

    Google Scholar 

  2. Komiya, K., Abe, Y., Morita, H., Kotani, Y.: Question answering system using Q & A site corpus Query expansion and answer candidate evaluation. SpringerPlus 2(1), 396 (2013)

    Article  Google Scholar 

  3. Mcauliffe, J.D., Blei, D.M.: Supervised topic models. In: NIPS’07, pp. 121–128 (2007)

    Google Scholar 

  4. Zhang, K., Wu, W., Wu, H., Li, Z., Zhou, M.: Question retrieval with high quality answers in community question answering. In: Proceedings of the 23rd ACM International Conference on Information and Knowledge Management, pp. 371–380. ACM, Nov 2014

    Google Scholar 

  5. Verma, A., Arora, A.: Reflexive hybrid approach to provide precise answer of user desired frequently asked question. In: 2017 7th International Conference on Cloud Computing, Data Science & Engineering-Confluence, pp. 159–163. IEEE, Jan 2017

    Google Scholar 

  6. Li, W., Srihari, R.K., Li, X., Srikanth, M., Zhang, X., Niu, C.: Extracting Exact Answers to Questions Based on Structural Links. Association for Computational Linguistics Stroudsburg, PA, USA (2002)

    Google Scholar 

  7. Guo, Q.-l.: A novel approach for agent ontology and its application in question answering. J. Cent. South Univ. Technol. (2009) 16: 0781–0788

    Google Scholar 

  8. Lai, Y., Lin, Y., Chen, J., Feng, Y., Zhao, D.: Open domain question answering system based on knowledge base. In: Lin, C.-Y., et al. (eds.) NLPCC-ICCPOL 2016, LNAI 10102, pp. 722–733 (2016)

    Google Scholar 

  9. Vargas-Vera, M., Motta, E.: AQUA—ontology-based question answering system. In: Monroy, R., et al. (eds.) MICAI 2004, LNAI 2972, pp. 468–477 (2004)

    Google Scholar 

  10. Tartir, S., McKnight, B., Budak Arpinar, I.: SemanticQA: web-based ontology-driven question answering. In: SAC ‘09 Proceedings of the 2009 ACM symposium on Applied Computing, pp. 1275–1276, Honolulu, Hawaii, U.S.A. (2009)

    Google Scholar 

  11. Gupta, K., Arora, A.: Web search personalization using ontological user profiles. In: Proceedings of the Second International Conference on Soft Computing for Problem Solving (SocProS 2012), 28–30 Dec 2012, pp. 849–855. Springer, New Delhi (2014)

    Google Scholar 

  12. Franz, A.: Automatic Ambiguity Resolution in Natural Language Processing: An Empirical Approach, Volume 1171 of Lecture Notes in Artificial Intelligence. Springer Science & Business Media, 13-Nov-1996—Computers, 3540620044, 9783540620044

    Google Scholar 

  13. Yujian, L., Bo, L.: A normalized Levenshtein distance metric. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 1091–1095 (2007)

    Article  Google Scholar 

  14. https://nlp.stanford.edu/IR-book/html/htmledition/edit-distance-1.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anuj Saini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Saini, A., Verma, A., Arora, A., Gupta, C. (2019). Linguistic Rule-Based Ontology-Driven Chatbot System. In: Bhatia, S., Tiwari, S., Mishra, K., Trivedi, M. (eds) Advances in Computer Communication and Computational Sciences. Advances in Intelligent Systems and Computing, vol 760. Springer, Singapore. https://doi.org/10.1007/978-981-13-0344-9_4

Download citation

Publish with us

Policies and ethics