Skip to main content

Polycyclic Aromatic Hydrocarbons from Petroleum Oil Industry Activities: Effect on Human Health and Their Biodegradation

  • Chapter
  • First Online:
Waste Bioremediation

Abstract

Nowadays pollution control and abatement are critical issues faced by environmental scientists due to rapid industrialization. Petroleum industry is one of the major industries which release hydrocarbon pollutants in environment. Polycyclic aromatic hydrocarbons (PAHs) are the priority pollutants which are released into the environment by exploration activities of petroleum industries. The indiscriminate accumulation of petroleum hydrocarbon pollutants can be hazardous to the human life and aquatic biota. Due to toxicity of these pollutants, establishing efficient and environment-friendly method to degrade and detoxify these pollutants is an important research challenge. Various physiochemical methods are applied all over the world to remediate of petroleum hydrocarbon pollutants. Bioremediation technique has been developed for treatment of crude oil pollutants using biological agents like bacteria, fungi, algae, and plants. Applications of certain microorganisms have gained importance in the field of applied environmental microbiology. The application of microbes to degrade pollutants is getting attention due to its environmental and economic benefits. They can be used to change bioavailability and toxicity of petroleum hydrocarbons present in polluted soil and aqueous environment. This paper explores hydrocarbons present in petroleum crude. The effect of petroleum hydrocarbon pollutants on human health and environment is also discussed. This chapter also explains microbial degradation of these pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdel-Shafy HI, Mansour MSM (2016) A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egypt J Pet 25:107–123

    Article  Google Scholar 

  • Agency for Toxic Substances and Disease Registry (ATSDR) (1995) Toxicological profile for polycyclic aromatic hydrocarbons (PAHs): U.S. Department of Health and Human Services, Public Health Service, Atlanta, GA. URL: https://www.atsdr.cdc.gov/toxprofiles/tp69.pdf. Last accessed: 18 Aug 2017

  • Arulazhagan P, Vasudevan N (2011) Biodegradation of polycyclic aromatic hydrocarbons by a halo tolerant bacterial strain Ochrobactrum sp. VA1. Mar Pollut Bull 62:388–394

    Article  CAS  Google Scholar 

  • Azab AM, Shaban WM, Zaki MS, Authman MMN, Zaher MFA (2016) Monitoring of petroleum hydrocarbons in sediment and gastropods from Suez Gulf. Red Sea Life Sci J 13(7):46–59

    CAS  Google Scholar 

  • Bamforth SM, Singleton I (2005) A Review: Bioremediation of polycyclic aromatic hydrocarbons: current knowledge and future directions. J Chem Technol Biotechnol 80:723–736

    Article  CAS  Google Scholar 

  • Bisht S, Pandey P, Sood A, Sharma S (2010) Biodegradation of naphthalene and anthracene by chemo-tactically active rhizobacteria of populus deltoids. Braz J Microbiol 41:922–930

    Article  CAS  Google Scholar 

  • Bojes HK, Pope PG (2007) Characterization of EPAs 16 priority pollutant polycyclic aromatic hydrocarbons (PAHs) in tank bottom solids and associated contaminated soils at oil exploration and production sites in Texas. Regul Toxicol Pharmacol 47(3):288–295

    Article  CAS  Google Scholar 

  • Butler CS, Mason JR (1997) Structure-function analysis of the bacterial aromatic ring-hydroxylating dioxygenases. Adv Microb Physiol 38:47–84

    Article  CAS  Google Scholar 

  • Chaillan F, Flèche LA, Bury E, Phantavong YH, Grimont P, Saliot A, Oudot J (2004) Identification and biodegradation potential of tropical aerobic hydrocarbon-degrading microorganisms. Res Microbiol 155(7):587–595

    Article  CAS  Google Scholar 

  • Chiou TC, McGroddy ES, Kile ED (1998) Partition characteristics of polycyclic aromatic hydrocarbons on soils and sediments. Environ Sci Technol 32(2):264–269

    Article  CAS  Google Scholar 

  • Choi H, Harrison R, Komulainen H, Saborit MJ (2010) Polycyclic aromatic hydrocarbons WHO guidelines for indoor air quality: selected pollutants (https://www.ncbi.nlm.nih.gov/books/NBK138709/). Last accessed: 18 Aug 2017

  • Clemente RA, Torres-Palma RA, Peñuela AG (2014) Removal of polycyclic aromatic hydrocarbons in aqueous environment by chemical treatments: a review. Sci Total Environ 478:201–225

    Article  Google Scholar 

  • Das N, Chandran P (2011) Microbial degradation of petroleum hydrocarbon contaminants: an overview. In: Biotechnology research international 2010:13 (doi:https://doi.org/10.4061/2011/941810)

  • Detoxifying Heterocyclic Aromatic Amines (HCAs) and polycyclic aromatic hydrocarbons (PAHs) with Chlorella vulgaris, A natural approach to human health (NAHH), Biofoundation (https://biofoundations.org/detoxifying-heterocyclic-aromatic-amines-hcas-and-polycyclic-aromatic-hydrocarbons-pahs-with-chlorella-vulgaris/) (Last assessed: 18.08.2017)

  • Digg DL, Harris KL, Rekhadevi PV, Ramesh A (2012) Tumor microsomal metabolism of the food toxicant, benzo(a)pyrene, in ApcMin mouse model of colon cancer. Tumor Biol 33(4):1255–1260

    Article  Google Scholar 

  • Dudhagara DR, Rajpara RK, Bhatt JK, Gosai HB, Sachaniya BK, Dave BP (2016) Distribution, sources and ecological risk assessment of PAHs in historically contaminated surface sediments at Bhavnagar coast, Gujarat, India. Environ Pollut 213:338–346

    Article  CAS  Google Scholar 

  • Freeman Cattell D J (1990) Wood burning as a source of atmospheric polycyclic aromatic hydrocarbons. Environ Sci Technol 24:1581–1585

    Article  CAS  Google Scholar 

  • Ganesh KA, Vijayakumar L, Joshi G, Magesh Peter D, Dharani G, Kirubagaran R (2014) Biodegradation of complex hydrocarbons in spent engine oil by novel bacterial consortium isolated from deep sea sediment. Biores Technol 170:556–564

    Article  Google Scholar 

  • Ghosal D, Ghosh S, Dutta T K, Ahn Y (2016) Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): a review. Front Microbiol 7:1–27 (Article 1369) (https://doi.org/10.3389/fmicb.2016.01369)

  • Gibson DT, Parales RE (2000) Aromatic hydrocarbon dioxygenases in environmental biotechnology. Curr Opin Biotechnol 11(3):236–243

    Article  CAS  Google Scholar 

  • Gupte A, Tripathi A, Patel H, Rudakiya D Gupte S (2016) Bioremediation of polycyclic aromatic hydrocarbon (PAHs): a perspective. Open Biotechnol J 10:363–378

    Google Scholar 

  • Haritash AK, Kaushik CP (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 169:1–15. http://biomonitoring.ca.gov/downloads/polycyclic-aromatic-hydrocarbons-pahs-fact-sheet. Polycyclic Aromatic Hydrocarbons (PAHs) Fact Sheet, biomonitoring, California. Last accessed: 18 Aug 2017

  • Kim K, Jahan SA, Kabir E, Brown RJC (2013) A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environ Int 60:71–80

    Article  CAS  Google Scholar 

  • Kostka JE, Prakash O, Overholt WA, Green SJ, Freyer G, Canion A, Delgardio J, Norton N, Hazen TC, Huettel M (2011) Hydrocarbon-degrading bacteria and the bacterial community response in gulf of Mexico beach sands impacted by the deepwater horizon oil spill. Appl Environ Microbiol 77:7962–7974

    Google Scholar 

  • Lammel G, Dvorska A, Klanova J, Kohoutek J, Kukuka P, Prokes R, Sehili MA (2015) Long-range atmospheric transport of polycyclic aromatic hydrocarbons is worldwide problem—results from measurements at remote sites and modelling. Acta Chim Slov 62:729–735

    Article  CAS  Google Scholar 

  • Leahy JG, Colwell RR (1990) Microbial degradation of hydrocarbons in the environment. Microbiol Rev 54:305–315

    CAS  Google Scholar 

  • Lundstedt S, Haglund P, Oberg L (2003) Degradation and formation of polycyclic aromatic compounds during bioslurry treatment of an aged gasworks soil. Environ Toxicol Chem 22(7):1413–1420

    Article  CAS  Google Scholar 

  • Mohsen A, Simin N, Chimezie A (2009) Biodegradation of polycyclic aromatic hydrocarbons (PAHs) in petroleum contaminated soils. Iran J Chem Eng 28(3):53–59

    Google Scholar 

  • Nikitha T, Satyaprakash M, Satya Vani S, Sadhana B, Padal SB (2017) A review on polycyclic aromatic hydrocarbons: their transport, fate and biodegradation in the environment. Int J Curr Microbiol Appl Sci 6(4):1627–1639

    Article  Google Scholar 

  • Okparanma RN, Ayatamuno MJ, Davis DD, Allagoa M (2011) Mycoremediation of polycyclic aromatic hydrocarbons (PAH) contaminated oil-based drill-cuttings. Afr J Biotech 10(26):5149–5156

    CAS  Google Scholar 

  • Olajire A, Essien JP (2014) Aerobic degradation of petroleum components by microbial consortia. J Pet Environ Biotechnol 5. doi:https://doi.org/10.4172/2157-7463.1000195

  • Oluwaseun O, Alegbeleye A, Opeolub OB, Jackson V (2017) Bioremediation of polycyclic aromatic hydrocarbon (PAH) compounds: (acenaphthene and fluorene) in water using indigenous bacterial species isolated from the Diep and Plankenburg rivers, Western Cape, South Africa. Braz J Microbiol 48:314–325

    Article  Google Scholar 

  • Qi Y, Wang C, Lv C, Lun Z, Zheng C (2017) Removal capacities of polycyclic aromatic hydrocarbons (PAHs) by a newly isolated strain from oil field produced water. Int J Environ Res Public Health 14:215

    Article  Google Scholar 

  • Rubailo AI, Oberenko AV (2008) Polycyclic aromatic hydrocarbons as priority pollutants. J Sib Fed Univ Chem 4:344–354

    Google Scholar 

  • Sakari M (2012) depositional history of polycyclic aromatic hydrocarbons: reconstruction of petroleum pollution record in peninsular Malaysia. Water Research Unit & School of Science and Technology, Malaysia CHE-6 (http://cdn.intechopen.com/pdfs/29372/InTechDepositional_history_of_polycyclic_aromatic_hydrocarbons_reconstruction_of_petroleum_pollution_record_in_peninsular_malaysia.pdf) (Last assessed: 09/06/2017)

  • Samanta SK, Singh OV, Jain RK (2002) Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation. Trends Biotechnol 20(6):243–248

    Article  CAS  Google Scholar 

  • Sarria-Villa R, Ocampo-Duque W, Páez M, Schuhmacher M (2015) Presence of PAHs in water and sediments of the Colombian Cauca river during heavy rain episodes, and implications for risk assessment. Sci Total Environ 540:455–465

    Article  Google Scholar 

  • Shuttleworth KL, Cerniglia CE (1995) Environmental aspects of PAH biodegradation. Appl Biochem Biotechnol 54(1–3):291–302

    Article  CAS  Google Scholar 

  • Stankovic D, Krstic B, Nikolic N (2014) Effect of traffic on the soil contamination with polycyclic aromatic hydrocarbons PAHs. Biotechnol Equip 22(2):736–741

    Article  Google Scholar 

  • Stogiannidis E, Laane R (2015) Source characterization of polycyclic aromatic hydrocarbons by using their molecular indices: an overview of possibilities. In: Whitacre DM (ed) Reviews of environmental contamination and toxicology. Springer International Publishing Switzerland (https://doi.org/10.1007/978-3-319-10638-0_2)

  • Ukiwe LN, Egereonu UU, Njoku CP, Nwoko IAC, Allinor IJ (2013) Polycyclic aromatic hydrocarbons degradation techniques: a review. Int J Chem 5(4):43–55

    Article  Google Scholar 

  • U.S. Environmental Protection Agency (2012) 2012 edition of the drinking water standards and health advisories: Office of Water, U.S. Environmental Protection Agency, Washington, D.C. EPA 822-S-12-001. URL: https://www.epa.gov/sites/production/files/2015-09/documents/dwstandards2012.pdf. Last accessed: 18 Aug 2017

  • Varjani SJ (2017a) Review on microbial degradation of petroleum hydrocarbon. Biores Technol 223:277–286

    Article  CAS  Google Scholar 

  • Varjani SJ (2017b) Biodegradation of petroleum hydrocarbon pollutants in marine environments. In: Prasad R, Kumar N (eds) Microbes and sustainable agriculture. IK International, New Delhi, pp 89–99

    Google Scholar 

  • Varjani SJ, Upasani VN (2016a) Core Flood study for enhanced oil recovery through ex-situ bioaugmentation with thermo- and halo-tolerant rhamnolipid produced by Pseudomonas aeruginosa NCIM 5514. Biores Technol 220:175–182

    Article  CAS  Google Scholar 

  • Varjani SJ, Upasani VN (2016b) Carbon spectrum utilization by an indigenous strain of Pseudomonas aeruginosa NCIM 5514: production, characterization and surface active properties of biosurfactant. Biores Technol 221:510–516

    Article  CAS  Google Scholar 

  • Varjani SJ, Upasani VN (2016c) Biodegradation of petroleum hydrocarbons by oleophilic strain of Pseudomonas aeruginosa NCIM 5514. Biores Technol 222:1950201

    Article  Google Scholar 

  • Varjani SJ, Upasani VN (2017a) Review on A new look on factors affecting microbial degradation of petroleum hydrocarbon pollutants. Int Biodeterior Biodegrad 120:71–83

    Article  CAS  Google Scholar 

  • Varjani SJ, Upasani VN (2017b) Critical review on biosurfactant analysis, purification and characterization using rhamnolipid as a model biosurfactant. Biores Technol 232:389–397

    Article  CAS  Google Scholar 

  • Varjani SJ, Upasani VN (2017c) Crude oil degradation by P. aeruginosa NCIM5514: influence of process parameters. Indian J Exp Biol 55:493–497

    Google Scholar 

  • Varjani SJ, Rana DP, Jain AK, Bateja S, Upasani VN (2015) Synergistic ex-situ biodegradation of crude oil by halotolerant bacterial consortium of indigenous strains isolated from on shore sites of Gujarat, India. Int Biodeterior Biodegrad 103:116–124

    Article  CAS  Google Scholar 

  • Vasconcelos U, Franca FP, Oliveira FJS (2011) Removal of high-molecular weight polycyclic aromatic hydrocarbons. Quim Nova 34(2):218–221

    Article  CAS  Google Scholar 

  • Wilson SC, Jones KC (1993) Bioremediation of soil contaminated with polynuclear aromatic hydrocarbons (PAHs): a review. Environ Pollut 81(3):229–249

    Article  CAS  Google Scholar 

  • Yan Z, Jiang J, Cai H, Zhou Y, Lee Y, Krumholz LR (2015) Complex interactions between macrophyte Acorus calamus and microbial fuel cells during pyrene and benzo(a)pyrene degradation in sediments. Sci Rep (https://doi.org/10.1038/srep10709)

  • Zohair A, Salim A, Adeola A, Beck JA (2006) Residues of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and organochlorine pesticides in organically farmed vegetables. Chemosphere 63:541–553

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunita J. Varjani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Varjani, S.J. et al. (2018). Polycyclic Aromatic Hydrocarbons from Petroleum Oil Industry Activities: Effect on Human Health and Their Biodegradation. In: Varjani, S., Gnansounou, E., Gurunathan, B., Pant, D., Zakaria, Z. (eds) Waste Bioremediation. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-10-7413-4_9

Download citation

Publish with us

Policies and ethics