Skip to main content

Cyclin E Deregulation and Genomic Instability

  • Chapter
  • First Online:
DNA Replication

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1042))

Abstract

Precise replication of genetic material and its equal distribution to daughter cells are essential to maintain genome stability. In eukaryotes, chromosome replication and segregation are temporally uncoupled, occurring in distinct intervals of the cell cycle, S and M phases, respectively. Cyclin E accumulates at the G1/S transition, where it promotes S phase entry and progression by binding to and activating CDK2. Several lines of evidence from different models indicate that cyclin E/CDK2 deregulation causes replication stress in S phase and chromosome segregation errors in M phase, leading to genomic instability and cancer. In this chapter, we will discuss the main findings that link cyclin E/CDK2 deregulation to genomic instability and the molecular mechanisms by which cyclin E/CDK2 induces replication stress and chromosome aberrations during carcinogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven I. Reed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Teixeira, L.K., Reed, S.I. (2017). Cyclin E Deregulation and Genomic Instability. In: Masai, H., Foiani, M. (eds) DNA Replication. Advances in Experimental Medicine and Biology, vol 1042. Springer, Singapore. https://doi.org/10.1007/978-981-10-6955-0_22

Download citation

Publish with us

Policies and ethics