Skip to main content

Architecture of the Saccharomyces cerevisiae Replisome

  • Chapter
  • First Online:
DNA Replication

Abstract

Eukaryotic replication proteins are highly conserved, and thus study of Saccharomyces cerevisiae replication can inform about this central process in higher eukaryotes including humans. The S. cerevisiae replisome is a large and dynamic assembly comprised of ~50 proteins. The core of the replisome is composed of 31 different proteins including the 11-subunit CMG helicase; RFC clamp loader pentamer; PCNA clamp; the heteroligomeric DNA polymerases ε, δ, and α-primase; and the RPA heterotrimeric single strand binding protein. Many additional protein factors either travel with or transiently associate with these replisome proteins at particular times during replication. In this chapter, we summarize several recent structural studies on the S. cerevisiae replisome and its subassemblies using single particle electron microscopy and X-ray crystallography. These recent structural studies have outlined the overall architecture of a core replisome subassembly and shed new light on the mechanism of eukaryotic replication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Abid Ali F, Renault L, Gannon J, Gahlon HL, Kotecha A, Zhou JC, Rueda D, Costa A (2016) Cryo-EM structures of the eukaryotic replicative helicase bound to a translocation substrate. Nat Commun 7:10708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asturias FJ, Cheung IK, Sabouri N, Chilkova O, Wepplo D, Johansson E (2006) Structure of Saccharomyces cerevisiae DNA polymerase epsilon by cryo-electron microscopy. Nat Struct Mol Biol 13:35–43

    Article  CAS  PubMed  Google Scholar 

  • Banks GR, Boezi JA, Lehman IR (1979) A high molecular weight DNA polymerase from Drosophila melanogaster embryos. Purification, structure, and partial characterization. J Biol Chem 254:9886–9892

    CAS  PubMed  Google Scholar 

  • Bell SD, Botchan MR (2013) The minichromosome maintenance replicative helicase. Cold Spring Harb Perspect Biol 5:a012807

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bell SP, Labib K (2016) Chromosome duplication in Saccharomyces cerevisiae. Genetics 203:1027–1067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bell SP, Stillman B (1992) ATP-dependent recognition of eukaryotic origins of DNA replication by a multiprotein complex. Nature 357:128–134

    Article  CAS  PubMed  Google Scholar 

  • Belotserkovskaya R, Oh S, Bondarenko VA, Orphanides G, Studitsky VM, Reinberg D (2003) FACT facilitates transcription-dependent nucleosome alteration. Science 301:1090–1093

    Article  CAS  PubMed  Google Scholar 

  • Bielinsky AK (2016) Mcm10: the glue at replication forks. Cell Cycle 15:1–2

    Article  CAS  Google Scholar 

  • Bochman ML, Schwacha A (2008) The Mcm2-7 complex has in vitro helicase activity. Mol Cell 31:287–293

    Article  CAS  PubMed  Google Scholar 

  • Bochman ML, Bell SP, Schwacha A (2008) Subunit organization of Mcm2-7 and the unequal role of active sites in ATP hydrolysis and viability. Mol Cell Biol 28:5865–5873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boskovic J, Coloma J, Aparicio T, Zhou M, Robinson CV, Mendez J, Montoya G (2007) Molecular architecture of the human GINS complex. EMBO Rep 8:678–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brewster AS, Wang G, Yu X, Greenleaf WB, Carazo JM, Tjajadi M, Klein MG, Chen XS (2008) Crystal structure of a near-full-length archaeal MCM: functional insights for an AAA+ hexameric helicase. Proc Natl Acad Sci U S A 105:20191–20196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brill SJ, DiNardo S, Voelkel-Meiman K, Sternglanz R (1987) Need for DNA topoisomerase activity as a swivel for DNA replication for transcription of ribosomal RNA. Nature 326:414–416

    Article  CAS  PubMed  Google Scholar 

  • Bruck I, Kaplan DL (2013) Cdc45 protein-single-stranded DNA interaction is important for stalling the helicase during replication stress. J Biol Chem 288:7550–7563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burgers PM (2009) Polymerase dynamics at the eukaryotic DNA replication fork. J Biol Chem 284:4041–4045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burgers PM, Gordenin D, Kunkel TA (2016) Who is leading the replication fork, Pol epsilon or Pol delta? Mol Cell 61:492–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calzada A, Hodgson B, Kanemaki M, Bueno A, Labib K (2005) Molecular anatomy and regulation of a stable replisome at a paused eukaryotic DNA replication fork. Genes Dev 19:1905–1919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang YP, Wang G, Bermudez V, Hurwitz J, Chen XS (2007) Crystal structure of the GINS complex and functional insights into its role in DNA replication. Proc Natl Acad Sci U S A 104:12685–12690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi JM, Lim HS, Kim JJ, Song OK, Cho Y (2007) Crystal structure of the human GINS complex. Genes Dev 21:1316–1321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clausen AR, Lujan SA, Burkholder AB, Orebaugh CD, Williams JS, Clausen MF, Malc EP, Mieczkowski PA, Fargo DC, Smith DJ et al (2015) Tracking replication enzymology in vivo by genome-wide mapping of ribonucleotide incorporation. Nat Struct Mol Biol 22:185–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cocker JH, Piatti S, Santocanale C, Nasmyth K, Diffley JF (1996) An essential role for the Cdc6 protein in forming the pre-replicative complexes of budding yeast. Nature 379:180–182

    Article  CAS  PubMed  Google Scholar 

  • Coloma J, Johnson RE, Prakash L, Prakash S, Aggarwal AK (2016) Human DNA polymerase alpha in binary complex with a DNA:DNA template-primer. Sci Rep 6:23784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conaway RC, Lehman IR (1982) A DNA primase activity associated with DNA polymerase alpha from Drosophila melanogaster embryos. Proc Natl Acad Sci U S A 79:2523–2527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costa A, Ilves I, Tamberg N, Petojevic T, Nogales E, Botchan MR, Berger JM (2011) The structural basis for MCM2-7 helicase activation by GINS and Cdc45. Nat Struct Mol Biol 18:471–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costa A, Hood IV, Berger JM (2013) Mechanisms for initiating cellular DNA replication. Annu Rev Biochem 82:25–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costa A, Renault L, Swuec P, Petojevic T, Pesavento JJ, Ilves I, MacLellan-Gibson K, Fleck RA, Botchan MR, Berger JM (2014) DNA binding polarity, dimerization, and ATPase ring remodeling in the CMG helicase of the eukaryotic replisome. Elife 3:e03273

    PubMed  PubMed Central  Google Scholar 

  • Duzdevich D, Warner MD, Ticau S, Ivica NA, Bell SP, Greene EC (2015) The dynamics of eukaryotic replication initiation: origin specificity, licensing, and firing at the single-molecule level. Mol Cell 58:483–494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Enemark EJ, Joshua-Tor L (2006) Mechanism of DNA translocation in a replicative hexameric helicase. Nature 442:270–275

    Article  CAS  PubMed  Google Scholar 

  • Enemark EJ, Joshua-Tor L (2008) On helicases and other motor proteins. Curr Opin Struct Biol 18:243–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evrin C, Clarke P, Zech J, Lurz R, Sun J, Uhle S, Li H, Stillman B, Speck C (2009) A double-hexameric MCM2-7 complex is loaded onto origin DNA during licensing of eukaryotic DNA replication. Proc Natl Acad Sci U S A 106:20240–20245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fenwick AL, Kliszczak M, Cooper F, Murray J, Sanchez-Pulido L, Twigg SR, Goriely A, McGowan SJ, Miller KA, Taylor IB et al (2016) Mutations in CDC45, encoding an essential component of the pre-initiation complex, cause Meier-Gorlin syndrome and Craniosynostosis. Am J Hum Genet 99:125–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foltman M, Evrin C, De Piccoli G, Jones RC, Edmondson RD, Katou Y, Nakato R, Shirahige K, Labib K (2013) Eukaryotic replisome components cooperate to process histones during chromosome replication. Cell Rep 3:892–904

    Article  CAS  PubMed  Google Scholar 

  • Forterre P, Filee J, Myllykallio H (2004) Origin and evolution of DNA and DNA replication. In: Landes Bioscience, p 24

    Google Scholar 

  • Fortune JM, Pavlov YI, Welch CM, Johansson E, Burgers PM, Kunkel TA (2005) Saccharomyces cerevisiae DNA polymerase delta: high fidelity for base substitutions but lower fidelity for single- and multi-base deletions. J Biol Chem 280:29980–29987

    Article  CAS  PubMed  Google Scholar 

  • Froelich CA, Kang S, Epling LB, Bell SP, Enemark EJ (2014) A conserved MCM single-stranded DNA binding element is essential for replication initiation. Elife 3:e01993

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fu YV, Yardimci H, Long DT, Ho TV, Guainazzi A, Bermudez VP, Hurwitz J, van Oijen A, Scharer OD, Walter JC (2011) Selective bypass of a lagging strand roadblock by the eukaryotic replicative DNA helicase. Cell 146:931–941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gambus A, Jones RC, Sanchez-Diaz A, Kanemaki M, van Deursen F, Edmondson RD, Labib K (2006) GINS maintains association of Cdc45 with MCM in replisome progression complexes at eukaryotic DNA replication forks. Nat Cell Biol 8:358–366

    Article  CAS  PubMed  Google Scholar 

  • Gambus A, van Deursen F, Polychronopoulos D, Foltman M, Jones RC, Edmondson RD, Calzada A, Labib K (2009) A key role for Ctf4 in coupling the MCM2-7 helicase to DNA polymerase alpha within the eukaryotic replisome. EMBO J 28:2992–3004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Georgescu R, Langston L, O’Donnell M (2015a) A proposal: evolution of PCNA’s role as a marker of newly replicated DNA. DNA Repair (Amst) 29:4–15

    Article  CAS  Google Scholar 

  • Georgescu RE, Schauer GD, Yao NY, Langston LD, Yurieva O, Zhang D, Finkelstein J, O’Donnell ME (2015b) Reconstitution of a eukaryotic replisome reveals suppression mechanisms that define leading/lagging strand operation. Elife 4:e04988

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Heller RC, Kang S, Lam WM, Chen S, Chan CS, Bell SP (2011) Eukaryotic origin-dependent DNA replication in vitro reveals sequential action of DDK and S-CDK kinases. Cell 146:80–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hogg M, Johansson E (2012) DNA polymerase epsilon. Subcell Biochem 62:237–257

    Article  CAS  PubMed  Google Scholar 

  • Hogg M, Osterman P, Bylund GO, Ganai RA, Lundstrom EB, Sauer-Eriksson AE, Johansson E (2014) Structural basis for processive DNA synthesis by yeast DNA polymerase varepsilon. Nat Struct Mol Biol 21:49–55

    Article  CAS  PubMed  Google Scholar 

  • Hossain M, Stillman B (2016) Meier-Gorlin syndrome. In: Kaplan DL (ed) The initiation of DNA replication in eukaryotes. Springer International Publishing, Cham, p 563

    Google Scholar 

  • Huang H, Stromme CB, Saredi G, Hodl M, Strandsby A, Gonzalez-Aguilera C, Chen S, Groth A, Patel DJ (2015) A unique binding mode enables MCM2 to chaperone histones H3-H4 at replication forks. Nat Struct Mol Biol 22:618–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iida T, Araki H (2004) Noncompetitive counteractions of DNA polymerase epsilon and ISW2/yCHRAC for epigenetic inheritance of telomere position effect in Saccharomyces cerevisiae. Mol Cell Biol 24:217–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ilves I, Petojevic T, Pesavento JJ, Botchan MR (2010) Activation of the MCM2-7 helicase by association with Cdc45 and GINS proteins. Mol Cell 37:247–258

    Article  CAS  PubMed  Google Scholar 

  • Itsathitphaisarn O, Wing RA, Eliason WK, Wang J, Steitz TA (2012) The hexameric helicase DnaB adopts a nonplanar conformation during translocation. Cell 151:267–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson RE, Klassen R, Prakash L, Prakash S (2015) A major role of DNA polymerase delta in replication of both the leading and lagging DNA strands. Mol Cell 59:163–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaguni LS, Rossignol JM, Conaway RC, Banks GR, Lehman IR (1983a) Association of DNA primase with the beta/gamma subunits of DNA polymerase alpha from Drosophila melanogaster embryos. J Biol Chem 258:9037–9039

    CAS  PubMed  Google Scholar 

  • Kaguni LS, Rossignol JM, Conaway RC, Lehman IR (1983b) Isolation of an intact DNA polymerase-primase from embryos of Drosophila melanogaster. Proc Natl Acad Sci U S A 80:2221–2225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamada K, Kubota Y, Arata T, Shindo Y, Hanaoka F (2007) Structure of the human GINS complex and its assembly and functional interface in replication initiation. Nat Struct Mol Biol 14:388–396

    Article  CAS  PubMed  Google Scholar 

  • Kang YH, Galal WC, Farina A, Tappin I, Hurwitz J (2012) Properties of the human Cdc45/Mcm2-7/GINS helicase complex and its action with DNA polymerase epsilon in rolling circle DNA synthesis. Proc Natl Acad Sci U S A 109:6042–6047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanke M, Kodama Y, Takahashi TS, Nakagawa T, Masukata H (2012) Mcm10 plays an essential role in origin DNA unwinding after loading of the CMG components. EMBO J 31:2182–2194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kilkenny ML, Longo MA, Perera RL, Pellegrini L (2013) Structures of human primase reveal design of nucleotide elongation site and mode of Pol alpha tethering. Proc Natl Acad Sci U S A 110:15961–15966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim RA, Wang JC (1989) Function of DNA topoisomerases as replication swivels in Saccharomyces cerevisiae. J Mol Biol 208:257–267

    Article  CAS  PubMed  Google Scholar 

  • Klinge S, Nunez-Ramirez R, Llorca O, Pellegrini L (2009) 3D architecture of DNA Pol alpha reveals the functional core of multi-subunit replicative polymerases. EMBO J 28:1978–1987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klingseisen A, Jackson AP (2011) Mechanisms and pathways of growth failure in primordial dwarfism. Genes Dev 25:2011–2024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krastanova I, Sannino V, Amenitsch H, Gileadi O, Pisani FM, Onesti S (2012) Structural and functional insights into the DNA replication factor Cdc45 reveal an evolutionary relationship to the DHH family of phosphoesterases. J Biol Chem 287:4121–4128

    Article  CAS  PubMed  Google Scholar 

  • Kubota Y, Takase Y, Komori Y, Hashimoto Y, Arata T, Kamimura Y, Araki H, Takisawa H (2003) A novel ring-like complex of Xenopus proteins essential for the initiation of DNA replication. Genes Dev 17:1141–1152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kunkel TA, Burgers PM (2008) Dividing the workload at a eukaryotic replication fork. Trends Cell Biol 18:521–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langston LD, Zhang D, Yurieva O, Georgescu RE, Finkelstein J, Yao NY, Indiani C, O’Donnell ME (2014) CMG helicase and DNA polymerase epsilon form a functional 15-subunit holoenzyme for eukaryotic leading-strand DNA replication. Proc Natl Acad Sci U S A 111:15390–15395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SJ, Syed S, Enemark EJ, Schuck S, Stenlund A, Ha T, Joshua-Tor L (2014) Dynamic look at DNA unwinding by a replicative helicase. Proc Natl Acad Sci U S A 111:E827–E835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leipe DD, Aravind L, Koonin EV (1999) Did DNA replication evolve twice independently? Nucleic Acids Res 27:3389–3401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leman AR, Noguchi E (2013) The replication fork: understanding the eukaryotic replication machinery and the challenges to genome duplication. Genes (Basel) 4:1–32

    Article  CAS  Google Scholar 

  • Li Y, Araki H (2013) Loading and activation of DNA replicative helicases: the key step of initiation of DNA replication. Genes Cells 18:266–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li N, Zhai Y, Zhang Y, Li W, Yang M, Lei J, Tye BK, Gao N (2015) Structure of the eukaryotic MCM complex at 3.8 A. Nature 524:186–191

    Article  CAS  PubMed  Google Scholar 

  • Liang C, Weinreich M, Stillman B (1995) ORC and Cdc6p interact and determine the frequency of initiation of DNA replication in the genome. Cell 81:667–676

    Article  CAS  PubMed  Google Scholar 

  • Lou H, Komata M, Katou Y, Guan Z, Reis CC, Budd M, Shirahige K, Campbell JL (2008) Mrc1 and DNA polymerase epsilon function together in linking DNA replication and the S phase checkpoint. Mol Cell 32:106–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacNeill S (2012) Composition and dynamics of the eukaryotic replisome: a brief overview. Subcell Biochem 62:1–17

    Article  CAS  PubMed  Google Scholar 

  • Meselson M, Stahl FW (1958) The replication of DNA in Escherichia Coli. Proc Natl Acad Sci U S A 44:671–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller JM, Arachea BT, Epling LB, Enemark EJ (2014) Analysis of the crystal structure of an active MCM hexamer. Elife 3:e03433

    PubMed  PubMed Central  Google Scholar 

  • Mimura S, Seki T, Tanaka S, Diffley JF (2004) Phosphorylation-dependent binding of mitotic cyclins to Cdc6 contributes to DNA replication control. Nature 431:1118–1123

    Article  CAS  PubMed  Google Scholar 

  • Miyabe I, Kunkel TA, Carr AM (2011) The major roles of DNA polymerases epsilon and delta at the eukaryotic replication fork are evolutionarily conserved. PLoS Genet 7:e1002407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohanty BK, Bairwa NK, Bastia D (2006) The Tof1p-Csm3p protein complex counteracts the Rrm3p helicase to control replication termination of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 103:897–902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morrison A, Araki H, Clark AB, Hamatake RK, Sugino A (1990) A third essential DNA polymerase in S. cerevisiae. Cell 62:1143–1151

    Article  CAS  PubMed  Google Scholar 

  • Moyer SE, Lewis PW, Botchan MR (2006) Isolation of the Cdc45/Mcm2-7/GINS (CMG) complex, a candidate for the eukaryotic DNA replication fork helicase. Proc Natl Acad Sci U S A 103:10236–10241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nethanel T, Zlotkin T, Kaufmann G (1992) Assembly of simian virus 40 Okazaki pieces from DNA primers is reversibly arrested by ATP depletion. J Virol 66:6634–6640

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nick McElhinny SA, Gordenin DA, Stith CM, Burgers PM, Kunkel TA (2008) Division of labor at the eukaryotic replication fork. Mol Cell 30:137–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishitani H, Lygerou Z, Nishimoto T, Nurse P (2000) The Cdt1 protein is required to license DNA for replication in fission yeast. Nature 404:625–628

    Article  CAS  PubMed  Google Scholar 

  • Nunez-Ramirez R, Klinge S, Sauguet L, Melero R, Recuero-Checa MA, Kilkenny M, Perera RL, Garcia-Alvarez B, Hall RJ, Nogales E et al (2011) Flexible tethering of primase and DNA Pol alpha in the eukaryotic primosome. Nucleic Acids Res 39:8187–8199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Donnell M, Langston L, Stillman B (2013) Principles and concepts of DNA replication in bacteria, archaea, and eukarya. Cold Spring Harb Perspect Biol 5

    Google Scholar 

  • Onesti S, MacNeill SA (2013) Structure and evolutionary origins of the CMG complex. Chromosoma 122:47–53

    Article  CAS  PubMed  Google Scholar 

  • Orphanides G, LeRoy G, Chang CH, Luse DS, Reinberg D (1998) FACT, a factor that facilitates transcript elongation through nucleosomes. Cell 92:105–116

    Article  CAS  PubMed  Google Scholar 

  • Orphanides G, Wu WH, Lane WS, Hampsey M, Reinberg D (1999) The chromatin-specific transcription elongation factor FACT comprises human SPT16 and SSRP1 proteins. Nature 400:284–288

    Article  CAS  PubMed  Google Scholar 

  • Perera RL, Torella R, Klinge S, Kilkenny ML, Maman JD, Pellegrini L (2013) Mechanism for priming DNA synthesis by yeast DNA polymerase alpha. Elife 2:e00482

    Article  PubMed  PubMed Central  Google Scholar 

  • Petojevic T, Pesavento JJ, Costa A, Liang J, Wang Z, Berger JM, Botchan MR (2015) Cdc45 (cell division cycle protein 45) guards the gate of the Eukaryote replisome helicase stabilizing leading strand engagement. Proc Natl Acad Sci U S A 112:E249–E258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pursell ZF, Kunkel TA (2008) DNA polymerase epsilon: a polymerase of unusual size (and complexity). Prog Nucleic Acid Res Mol Biol 82:101–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pursell ZF, Isoz I, Lundstrom EB, Johansson E, Kunkel TA (2007) Yeast DNA polymerase epsilon participates in leading-strand DNA replication. Science 317:127–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Remus D, Beuron F, Tolun G, Griffith JD, Morris EP, Diffley JF (2009) Concerted loading of Mcm2-7 double hexamers around DNA during DNA replication origin licensing. Cell 139:719–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez-Pulido L, Ponting CP (2011) Cdc45: the missing RecJ ortholog in eukaryotes? Bioinformatics 27:1885–1888

    Article  CAS  PubMed  Google Scholar 

  • Santocanale C, Diffley JF (1996) ORC- and Cdc6-dependent complexes at active and inactive chromosomal replication origins in Saccharomyces cerevisiae. EMBO J 15:6671–6679

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schlesinger MB, Formosa T (2000) POB3 is required for both transcription and replication in the yeast Saccharomyces cerevisiae. Genetics 155:1593–1606

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schwacha A, Bell SP (2001) Interactions between two catalytically distinct MCM subgroups are essential for coordinated ATP hydrolysis and DNA replication. Mol Cell 8:1093–1104

    Article  CAS  PubMed  Google Scholar 

  • Simon AC, Zhou JC, Perera RL, van Deursen F, Evrin C, Ivanova ME, Kilkenny ML, Renault L, Kjaer S, Matak-Vinkovic D et al (2014) A Ctf4 trimer couples the CMG helicase to DNA polymerase alpha in the eukaryotic replisome. Nature 510:293–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simon AC, Sannino V, Costanzo V, Pellegrini L (2016) Structure of human Cdc45 and implications for CMG helicase function. Nat Commun 7:11638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singleton MR, Sawaya MR, Ellenberger T, Wigley DB (2000) Crystal structure of T7 gene 4 ring helicase indicates a mechanism for sequential hydrolysis of nucleotides. Cell 101:589–600

    Article  CAS  PubMed  Google Scholar 

  • Slaymaker IM, Chen XS (2012) MCM structure and mechanics: what we have learned from archaeal MCM. Subcell Biochem 62:89–111

    Article  CAS  PubMed  Google Scholar 

  • Steitz TA (1999) DNA polymerases: structural diversity and common mechanisms. J Biol Chem 274:17395–17398

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Evrin C, Samel SA, Fernandez-Cid A, Riera A, Kawakami H, Stillman B, Speck C, Li H (2013) Cryo-EM structure of a helicase loading intermediate containing ORC-Cdc6-Cdt1-MCM2-7 bound to DNA. Nat Struct Mol Biol 20:944–951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun J, Fernandez-Cid A, Riera A, Tognetti S, Yuan Z, Stillman B, Speck C, Li H (2014) Structural and mechanistic insights into Mcm2-7 double-hexamer assembly and function. Genes Dev 28:2291–2303

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun J, Shi Y, Georgescu RE, Yuan Z, Chait BT, Li H, O’Donnell ME (2015) The architecture of a eukaryotic replisome. Nat Struct Mol Biol 22:976–982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tackett AJ, Dilworth DJ, Davey MJ, O’Donnell M, Aitchison JD, Rout MP, Chait BT (2005) Proteomic and genomic characterization of chromatin complexes at a boundary. J Cell Biol 169:35–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tahirov TH, Makarova KS, Rogozin IB, Pavlov YI, Koonin EV (2009) Evolution of DNA polymerases: an inactivated polymerase-exonuclease module in Pol epsilon and a chimeric origin of eukaryotic polymerases from two classes of archaeal ancestors. Biol Direct 4:11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tanaka S, Araki H (2013) Helicase activation and establishment of replication forks at chromosomal origins of replication. Cold Spring Harb Perspect Biol 5:a010371

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tanaka S, Diffley JF (2002) Interdependent nuclear accumulation of budding yeast Cdt1 and Mcm2-7 during G1 phase. Nat Cell Biol 4:198–207

    Article  CAS  PubMed  Google Scholar 

  • Tanaka H, Katou Y, Yagura M, Saitoh K, Itoh T, Araki H, Bando M, Shirahige K (2009) Ctf4 coordinates the progression of helicase and DNA polymerase alpha. Genes Cells 14:807–820

    Article  CAS  PubMed  Google Scholar 

  • Thomsen ND, Berger JM (2009) Running in reverse: the structural basis for translocation polarity in hexameric helicases. Cell 139:523–534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thu YM, Bielinsky AK (2013) Enigmatic roles of Mcm10 in DNA replication. Trends Biochem Sci 38:184–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ticau S, Friedman LJ, Ivica NA, Gelles J, Bell SP (2015) Single-molecule studies of origin licensing reveal mechanisms ensuring bidirectional helicase loading. Cell 161:513–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tognetti S, Riera A, Speck C (2015) Switch on the engine: how the eukaryotic replicative helicase MCM2-7 becomes activated. Chromosoma 124:13–26

    Article  CAS  PubMed  Google Scholar 

  • Tourriere H, Versini G, Cordon-Preciado V, Alabert C, Pasero P (2005) Mrc1 and Tof1 promote replication fork progression and recovery independently of Rad53. Mol Cell 19:699–706

    Article  CAS  PubMed  Google Scholar 

  • Villa F, Simon AC, Ortiz Bazan MA, Kilkenny ML, Wirthensohn D, Wightman M, Matak-Vinkovic D, Pellegrini L, Labib K (2016) Ctf4 is a hub in the eukaryotic replisome that links multiple CIP-box proteins to the CMG helicase. Mol Cell 63:385–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Wang M, Yang N, Xu RM (2015) Structure of the quaternary complex of histone H3-H4 heterodimer with chaperone ASF1 and the replicative helicase subunit MCM2. Protein Cell 6:693–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watase G, Takisawa H, Kanemaki MT (2012) Mcm10 plays a role in functioning of the eukaryotic replicative DNA helicase, Cdc45-Mcm-GINS. Curr Biol 22:343–349

    Article  CAS  PubMed  Google Scholar 

  • Watson JD, Crick FH (1953a) Genetical implications of the structure of deoxyribonucleic acid. Nature 171:964–967

    Article  CAS  PubMed  Google Scholar 

  • Watson JD, Crick FH (1953b) Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171:737–738

    Article  CAS  PubMed  Google Scholar 

  • Yeeles JT, Deegan TD, Janska A, Early A, Diffley JF (2015) Regulated eukaryotic DNA replication origin firing with purified proteins. Nature 519:431–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan Z, Bai L, Sun J, Georgescu R, Liu J, O’Donnell ME, Li H (2016) Structure of the eukaryotic replicative CMG helicase suggests a pumpjack motion for translocation. Nat Struct Mol Biol 23:217–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang D, O’Donnell M (2016) The eukaryotic replication machine. Enzyme 39:191–229

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michael E. O’Donnell or Huilin Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bai, L., Yuan, Z., Sun, J., Georgescu, R., O’Donnell, M.E., Li, H. (2017). Architecture of the Saccharomyces cerevisiae Replisome. In: Masai, H., Foiani, M. (eds) DNA Replication. Advances in Experimental Medicine and Biology, vol 1042. Springer, Singapore. https://doi.org/10.1007/978-981-10-6955-0_10

Download citation

Publish with us

Policies and ethics