Skip to main content

Biotechnological Advancements in Industrial Production of Arbuscular Mycorrhizal Fungi: Achievements, Challenges, and Future Prospects

  • Chapter
  • First Online:
Developments in Fungal Biology and Applied Mycology

Abstract

The recent technological advancements in arbuscular mycorrhizal (AM)–plant symbiosis have helped improve the potential applications of mycorrhizal biotechnology in agriculture, horticulture, landscaping, phytoremediation , and other areas of plant market. The most common conventional methods used for large-scale production of AM fungi include cultivation in pots with sterilized soil, aeroponics, hydroponics, or greenhouse-based in vivo methods. However, these techniques suffer from severe problems of cross-contamination in the inoculum production; therefore, production of high-quality inoculum remains a major challenge. The most advanced method is transformed root organ culture (ROC) to produce AM propagules without adulterated microbial contaminants under strictly controlled sterilized conditions after pure AM fungi are inoculated into the transformed root organ. The scientific breakthroughs and advancements in the field of mycorrhizal research during past two-to-three decades have resulted in new technological developments with different types of products and diverse modes of their applications. For example, mycorrhizal formulations are available in the market for seed coating, liquid applications, or biostimulants. An established symbiosis in the plant roots confirms the adaptation even under unsuitable soil or unfavorable climatic conditions. These advantages have led to an increasing demand for mycorrhiza products in the last few years. There is a growing interest among the enterprises in the developed as well as developing world for the production of mycorrhizae-based inoculum given the fact presented by the emerging market trends in developing economies. However, even today it is not possible to trace out the absolute origin of the fungal species/strain used in commercial inoculum. Despite the regulatory challenges imposed by the regulatory bodies to maintain the highest quality standards, a significant number of commercialized products may still be found in the market which claims for extensive and effective mycorrhizal colonization even though they lack the necessary potential for this. This review provides an updated overview of the recent developments in the technology adoption and commercial production of mycorrhizae-based quality inoculum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adholeya A, Tiwari P, Singh R (2005) Large-scale production of arbuscular mycorrhizal fungi on root organs and inoculation strategies. In: Declerck S, Strullu DG, Fortin JA (eds) In vitro culture of mycorrhizas. Springer, Heidelberg, pp 315–338

    Google Scholar 

  • Agnolucci M, Battini F, Cristani C, Giovannetti M (2015) Diverse bacterial communities are recruited on spores of different arbuscular mycorrhizal fungal isolates. Biol Fertil Soils 51:379–389

    CAS  Google Scholar 

  • Albrechtova J, Latr A, Nedorost L, Pokluda R, Posta K, Vosatka M (2012) Dual Inoculation with mycorrhizal and saprotrophic fungi applicable in sustainable cultivation improves the yield and nutritive value of onion. Sci World J. https://doi.org/10.1100/2012/374091

    Article  Google Scholar 

  • Artursson V, Finlay RD, Jansson JK (2005) Combined bromodeoxyuridine immunocapture and terminal restriction fragment length polymorphism analysis highlights differences in the active soil bacterial meta genome due to Glomus mosseae inoculation or plant species. Environ Microbiol 7:1952–1966

    CAS  PubMed  Google Scholar 

  • Artursson V, Finlay RD, Jansson JK (2006) Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environ Microbiol 8:1–10

    CAS  PubMed  Google Scholar 

  • Bagheri V, Shamshiri MH, Shirani H, Roosta H (2012) Nutrient uptake and distribution in mycorrhizal pistachio seedlings under drought stress. J AgricSci Technol 14:1591–1604

    Google Scholar 

  • Bahl N, Jauhri S (1986) Spent compost as a carrier for bacterial inoculant production. In: Proceedings of the International symposium on scientific and technological aspects of cultivating edible fungi, pp. 63–68. The Pennsylvania State University, University Park, PA

    Google Scholar 

  • Barea JM, Pozo MJ, Azcon R, Azcon-Anguilar C (2005) Microbial cooperation in the rhizosphere. J Exp Bot 56:1761–1778

    CAS  PubMed  Google Scholar 

  • Bashan Y (1986) Alginate beads as synthetic inoculant carriers for slow release of bacteria that affect plant growth. Appl Environ Microbiol 51:1089–1098

    Google Scholar 

  • Berruti A, Borriello R, Orgiazzi A, Barbera AC, Lumini E, Bianciotto V (2014) Arbuscular mycorrhizal fungi and their value for ecosystem management. In: Oscar G (ed) Biodiversity-the dynamic balance of the planet. InTech, Rijeka, Croatia, pp 159–191

    Google Scholar 

  • Bharadwaj DP, Lundquist PO, Alstrom S (2008) Arbuscular mycorrhizal fungal spore-associated bacteria affect mycorrhizal colonization, plant growth and potato pathogens. Soil Biol Biochem 40:2494–2501

    CAS  Google Scholar 

  • Bhargava A, Carmona FF, Bhargava M, Srivastava S (2012) Approaches for enhanced phytoextraction of heavy metals. J Environ Manage 105:103–120

    CAS  PubMed  Google Scholar 

  • Bonfante P, Genre A (2010) Mechanisms underlying beneficial plant–fungus interactions in mycorrhizal symbiosis. Nat Commun 1:48

    PubMed  Google Scholar 

  • Boyer LR, Brain P, Xu XM, Jeffries P (2015) Inoculation of drought-stressed strawberry with a mixed inoculum of two arbuscular mycorrhizal fungi: effects on population dynamics of fungal species in roots and consequential plant tolerance to water deficiency. Mycorrhiza 25:215–227

    CAS  PubMed  Google Scholar 

  • Cabral L, de Sousa Soares CRF, Giachini AJ, Siqueira O (2015) Arbuscular mycorrhizal fungi in phytoremediation of contaminated areas by trace elements: mechanisms and major benefits of their applications. World J Microbiol Biotechnol. https://doi.org/10.1007/s11274-015-1918-y

  • Cavagnaro TR (2014) Impacts of compost application on the formation and functioning of arbuscular mycorrhizas. Soil Biol Biochem 78:38–44

    CAS  Google Scholar 

  • Chabot S, Bel-Rhlid R, Chennevert R, Piche Y (1992) Hyphal growth promotion in vitro of the VA mycoorhizal fungus, Gigaspora margarita Becker and Hall, by the activity of structurally specific flavonoid compounds under CO2-enriched conditions. New Phytol 122:461–467

    CAS  Google Scholar 

  • Chakraborty B, De UK (2013) Association and diversity of AM fungi with plantation crops. J Plant Dis Sci 8:24–28

    Google Scholar 

  • Chao WL, Alexander M (1984) Mineral soils as carriers for Rhizobium inoculants. Appl Environ Microbiol 47:94–97

    CAS  PubMed  PubMed Central  Google Scholar 

  • Corkidi L, Allen EB, Merhaut D, Allen MF, Downer J, Bohn J et al (2004) Assessing the infectivity of commercial mycorrhizal inoculants in plant nursery conditions. J Environ Hortic 22:149–154

    Google Scholar 

  • Dalpe Y, Monreal M (2004) Arbuscular mycorrhiza inoculum to support sustainable cropping systems. Crop Manag 3

    Google Scholar 

  • Declerck S, Strullu DG, Fortin JA (eds) (2005) In vitro culture of mycorrhizas. Springer, Heidelberg, p 388

    Google Scholar 

  • Diop TA (2003) In vitro culture of arbuscular mycorrhizal fungi: advances and future prospects. Afr J Biotechnol 2:692–697

    CAS  Google Scholar 

  • Diop TA, Plenchette C, Strullu DG (1994) Dual axenic culture of sheared root inocula of vesicular arbuscular mycorrhizal fungi associated with tomato roots. Mycorrhiza 5:17–22

    Google Scholar 

  • Dommergues YR, Diem HG, Divies C (1979) Polyacrylamide entrapped Rhizobium as an inoculant for legumes. Appl Environ Microbiol 37:779–781

    CAS  PubMed  PubMed Central  Google Scholar 

  • Douds DD Jr (2002) Increased spore production by Glomus intraradices in the split-plate monoxenic culture system by repeated harvest, gel replacement, and re-supply of glucose to the mycorrhiza. Mycorrhiza 12:163–167

    CAS  PubMed  Google Scholar 

  • Douds DD, Galvez L, Franke-Snyder M, Reider C, Drinkwater LE (1997) Effect of compost addition and crop rotation point upon VAM fungi. Agric Ecosyst Environ 65:257–266

    Google Scholar 

  • Douds DD, Gadkar V, Adholeya A (2000) Mass production of AMF fungus biofertilizer. In: Mukerji KG, Chamola BP, Singh J (eds) Mycorrhizal Biology. Kluwer, Dordrecht, pp 197–215

    Google Scholar 

  • Dube JN, Mahere DP, Bawat AF (1980) Development of coal as a carrier for rhizobial inoculants. Sci Cult 46:304

    Google Scholar 

  • Dupre de Boulois H, Voets L, Delvaux B, Jakobsen I, Declerck S (2006) Transport of radiocaesium by arbuscular mycorrhizal fungi to Medicago truncatula under in vitro conditions. Environ Microbiol 8:1926–1934

    CAS  Google Scholar 

  • Faye A, Dalpe Y, Ndung’u-Magiroi K, Jefwa J, Ndoye I, Diouf M et al (2013) Evaluation of commercial arbuscular mycorrhizal inoculants. Can J Plant Sci 93:1201–1208

    Google Scholar 

  • Fernandez-Gomez MJ, Quirantes M, Vivas A, Nogales R (2012) Vermicomposts and/or arbuscular mycorrhizal fungal inoculation in relation to metal availability and biochemical quality of a soil contaminated with heavy metals. Water Air Soil Pollut 223:2707–2718

    CAS  Google Scholar 

  • Filippi C, Bagnoli G, Citernesi AS, Giovannetti M (1998) Ultrastructural spatial distribution of bacteria associated with sporocarps of Glomus mosseae. Symbiosis 24:1–12

    Google Scholar 

  • Fitter AH, Helgason T, Hodge A (2011) Nutritional exchanges in the arbuscular mycorrhizal symbiosis: implications for sustainable agriculture. Fungal Biol Rev 25:68–72

    Google Scholar 

  • Fortin JA, Becard G, Declerck S, Dalpe Y, St-Arnaud M, Coughlan AP, Piche Y (2002) Arbuscular mycorrhiza on root organ cultures. Can J Bot 80:1–20

    CAS  Google Scholar 

  • Garg N, Chandel S (2010) Arbuscular mycorrhizal networks: process and functions. A review Agron Sustain Dev 30:581–599

    CAS  Google Scholar 

  • Gaur A, Adholeya A (2000) Growth and flowering in Petunia hybrid, Callistephus chinensis and Impatiens balsamina inoculated with mixed AM inocula or chemical fertilizers in a soil of low P fertility. Sci Hortic 84:151–162

    CAS  Google Scholar 

  • Gianinazzi S, Gollotte A, Binet MN, van Tuinen D, Redecker D, Wipf D (2010) Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20:519–530

    PubMed  Google Scholar 

  • Gomez-Bellot MJ, Ortuno MF, Nortes PA, Vicente-Sanchez J, Banon S, Sanchez-Blanco MJ (2015) Mycorrhizal euonymus plants and reclaimed water biomass, water status and nutritional responses. Sci Hortic 186:61–69

    CAS  Google Scholar 

  • Gonzalez-Chavez MDCA, Carillo-Gonzalez R (2013) Tolerance of Chrysantemum maximum to heavy metals: the potential for its use in the revegetation of tailing heaps. J Environ Sci 25:367–375

    CAS  Google Scholar 

  • Gryndler M, Vosatka M, Hrselova H, Catska V, Chvatalova I, Jansa J (2002) Effect of dual inoculation with arbuscular mycorrhizal fungi and bacteria on growth and mineral nutrition of strawberry. J Plant Nutr 25:1341–1358

    CAS  Google Scholar 

  • Hijri I, Sykorova Z, Oehl F, Ineichen K, Mader P, Wiemken A, Redecker D (2006) Communities of arbuscular mycorrhizal fungi in arable soils are not necessarily low in diversity. Mol Ecol 15:2277–2289

    CAS  PubMed  Google Scholar 

  • Huang Z, Zou ZR, He CX, He ZQ, Zhang ZB, Li JM (2011) Physiological and photosynthetic responses of melon (Cucumis melo L.) seedlings to three Glomus species under water deficit. Plant Soil 339:391–399

    CAS  Google Scholar 

  • Humphreys CP, Franks PJ, Rees M, Bidartondo MI, Leake JR et al (2010) Mutualistic mycorrhiza-like symbiosis in the most ancient group of land plants. Nat Commun 1:103

    PubMed  Google Scholar 

  • Iswaran V, Sen A, Apte R (1972) Plant compost as a substitute for peat for legume inoculants. Curr Sci 41:299

    Google Scholar 

  • Jackson AM, Whipps JM, Lynch JM (1991) Production, delivery systems, and survival in soil of four fungi with disease biocontrol potential. Enzyme Microbiol Technol 13:636–642

    Google Scholar 

  • Jayne B, Quigley M (2014) Influence of arbuscular mycorrhiza on growth and reproductive response of plants under water deficit: a meta-analysis. Mycorrhiza 24:109–119

    PubMed  Google Scholar 

  • Jiao H, Chen YL, Lin XG, Liu RJ (2011) Diversity of arbuscular mycorrhiza fungi in greenhouse soils continuously planted to watermelon in North China. Mycorrhiza 21:681–688

    PubMed  Google Scholar 

  • Jolicoeur M, Williams RD, Chavarie C, Jortin JA, Archambault J (1999) Production of Glomus intraradices propagules, an arbuscular mycorrhizal fungus, in a airlift bioreactor. Biotechnol Bioeng 63:224–232

    CAS  PubMed  Google Scholar 

  • Juge C, Samson J, Bastien C, Vierheilig H, Coughlan A, Piche Y (2002) Breaking dormancy in spores of the arbuscular mycorrhizal fungus Glomus intraradices: a critical cold-storage period. Mycorrhiza 12:37–42

    PubMed  Google Scholar 

  • Kruger M, Kruger C, Walker C, Stockinger H, Schußler A (2012) Phylogenetic reference data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level. New Phytol 193:970–984

    PubMed  Google Scholar 

  • Kuppusamy S, Kumutha K (2012) Standardization of the spore density of AM fungal inoculum for effective colonization. Int J Agri Sci 4:176–181

    Google Scholar 

  • Liu LZ, Gong ZQ, Zhang YL, Li PJ (2011) Growth, cadmium accumulation and physiology of marigold (Tagetes erecta L.) as affected by arbuscular mycorrhizal fungi. Pedosphere 21:319–327

    CAS  Google Scholar 

  • Long L, Zhu H, Yao Q, Ai Y (2008) Analysis of bacterial communities associated with spores of Gigaspora margarita and Gigaspora rosea. Plant Soil 310:1–9

    CAS  Google Scholar 

  • Lynch JP (2007) Roots of the second green revolution. Aust J Bot 55:1–20

    Google Scholar 

  • Malusa E, Sas-Paszt L, Ciesielska J (2012) Technologies for beneficial microorganisms inocula used as biofertilizers. The Scientific World Journal 2012:491206

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meier S, Borie F, Bolan N, Cornejo P (2012) Phytoremediation of metal-polluted soils by arbuscular mycorrhizal fungi. Crit Rev Environ Sci Technol 42:741–775

    CAS  Google Scholar 

  • Miransari M (2011) Interactions between arbuscular mycorrhizal fungi and soil bacteria. Appl Microb Biotechnol 89:917–930

    CAS  Google Scholar 

  • Mosse B, Hepper CM (1975) Vesicular arbuscular mycorrhizal infections in root organ cultures. Physiol Plant Pathol 5:215–223

    Google Scholar 

  • Mugnier J, Mosse B (1987) Spore germination and viability of a vesicular arbuscular mycorrhizal fungus, Glomus mosseae. Trans Br Mycol Soc 88:411–413

    Google Scholar 

  • Oehl F, Laczko E, Bogenrieder A, Stahr K, Bosch R, van der Heijden M et al (2010) Soil type and land use intensity determine the composition of arbuscular mycorrhizal fungal communities. Soil Biol Biochem 42:724–738

    CAS  Google Scholar 

  • Olsen PE, Rice WA, Bordeleau LM, Biederbeck VO (1994) Analysis and regulation of legume inoculants in Canada: the need for an increase in standards. Plant Soil 161:127–134

    Google Scholar 

  • Paau AS, Graham LL, Bennett M (1991) Progress in formulation research for PGPR and biocontrol inoculants. In: Keel C, Koller B, Defago G (eds) Plant growth-promoting rhizobacteria-progress and prospects, pp. 399–403. IOBC/WPRS Bulletin, Zurich, Switzerland

    Google Scholar 

  • Perner H, Rohn S, Driemel G, Batt N, Schwarz D, Kroh LW, George E (2008) Effect of nitrogen species supply and mycorrhizal colonization on organosulfur and phenolic compounds in onions. J Agric Food Chem 56:3538–3545

    CAS  PubMed  Google Scholar 

  • Philip K, Jauhri KS (1984) Pressmud: a potential carrier for Rhizobium and Azotobacter. I. Comparative analytical studies of various carrier materials. Zentralblatt fur Mikrobiologie 139:35–41

    CAS  Google Scholar 

  • Plenchette C, Furlan V, Fortin JA (1983) Responses of endomycorrhizal plants grown in calcined montmorillonite clay to different levels of phosphorus. I. Effect on growth and mycorrhizal development. Can J Bot 61:1377–1383

    CAS  Google Scholar 

  • Porcel R, Aroca R, Ruiz-Lozano JM (2012) Salinity stress alleviation using arbuscular mycorrhizal fungi. Agron Sustainable Dev 32:181–200

    CAS  Google Scholar 

  • Prasad A, Kumar S, Khaliq A (2011) Heavy metals and arbuscular mycorrhizal(AM) fungi can alter the field and chemical composition of volatile oil of sweet basil (Ocimum basilicum L.). Biol Fertil Soils 47:853–861

    CAS  Google Scholar 

  • Ray DK, Mueller ND, West PC, Foley JA (2013) Yield trends are insufficient to double global crop production by 2050. PLoS ONE 8(6):e66428

    CAS  PubMed  PubMed Central  Google Scholar 

  • Redecker D, Thierfelder H, Werner D (1995) A new cultivation system for arbuscular mycorrhizal fungi on glass beads. J Appl Bot Ang Bot 69:183–188

    Google Scholar 

  • Redecker D, Kodner R, Graham LE (2000) Glomalean fungi from the ordovician. Science 289:1920–1921

    CAS  PubMed  Google Scholar 

  • Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339

    CAS  Google Scholar 

  • Rivera-Becerril F, Calantzis C, Turnau K, Caussanel JP, Belimov AA, Gianinazzi S, Strasse RJ, Gianinazzi-Pearson V (2002) Cadmium accumulation and buffering of cadmium-induced stress by arbuscular mycorrhiza in three Pisum sativum L. genotypes. J Exp Bot 53:1177–1185

    CAS  PubMed  Google Scholar 

  • Roesti D, Ineichen K, Braissant O, Redecker D, Wiemken A, Aragno M (2005) Bacteria associated with spores of the arbuscular mycorrhizal fungi Glomus geosporum and Glomus constrictum. Appl Environ Microbiol 71:6673–6679

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rouphael Y, Franken P, Schneider C, Schwarz D, Giovannetti M, Agnolucci M, De Pascale S, Bonini P, Colla G (2015) Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops. Sci Hortic 196:91–108

    Google Scholar 

  • Sadasivam KV, Tyagi RK, Ramarethinam S (1986) Evaluation of some agricultural wastes as carriers for bacterial inoculants. Agric Wastes 17:301–306

    Google Scholar 

  • Scervino JM, Ponce MA, Monica ID, Vierheilig H, Ocampo JA, Godeas A (2009) Development of arbuscular mycorrhizal fungi in the presence of different patterns of Trifolium repens shoot flavonoids. J Soil Sci Plant Nutr 9:102–115

    Google Scholar 

  • Singh RK, Dai O, Nimasow G (2011) Effect of arbuscular mycorrhizal (AM) inoculation on growth of chili plant in organic manure amended soil. Afr J Micorbiol Res 5:5004–5012

    Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, London

    Google Scholar 

  • St-Arnaud M, Hamel C, Vimard B, Caron M, Fortin JA (1996) Enhanced hyphal growth and spore production of the arbuscular mycorrhizal fungus Glomus intraradices in an in vitro system in absence of host roots. Mycol Res 100:328–332

    Google Scholar 

  • Strullu DG, Plenchette C (1991) The entrapment of Glomus sp in alginate beads and their use as root inoculum. Mycol Res 95:1194–1196

    Google Scholar 

  • Sylvia DM, Jarstfer AG (1992) Sheared root inoculum of vesicular-arbuscular mycorrhizal fungi. Appl Environ Microbiol 58:229–232

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tiwari P, Adholeya A (2003) Host dependent differential spread of Glomus intraradices on various Ri T-DNA transformed roots in vitro. Mycol Prog 2:171–177

    Google Scholar 

  • Ustuner O, Wininger S, Gadkar V, Badani H, Raviv M, Dudai N, Medina S, Kapulnik Y (2009) Evaluation of different compost amendments with AM fungal inoculum for optimal growth of chives. Compost Sci Utilization 17:257–265

    Google Scholar 

  • Vazquez MM, Cesar S, Azcon R, Barea JM (2000) Interactions between arbuscular mycorrhizal fungi and other microbial inoculants (Azospirillum, Pseudomonas, Trichoderma) and their effects on microbial population and enzyme activities in the rhizosphere of maize plants. Appl Soil Ecol 15:261–272

    Google Scholar 

  • Verma A, Adholeya A (1996) Cost-economics of existing methodologies for inoculum production of vesicular-arbuscular mycorrhizal fungi. In: Mukerji KG (ed) Concepts in mycorrhizal research. Kluwer, Dordrecht, pp 179–194

    Google Scholar 

  • Voets L, de Boulois Dupre, Renard H, Strullu L, Declerck S (2005) Development of an autotrophic culture system for the in vitro mycorrhization of potato plantlets. FEMS Microbiol Lett 248:111–118

    CAS  PubMed  Google Scholar 

  • Vosatka M, Albrechtova J (2009) Microbial strategies for crop improvement. In: Khan MS, Zaidi A, Musarrat J (eds) Benefits of arbuscular mycorrhizal fungi to sustainable crop production. Springer, Dordrecht, pp 205–225

    Google Scholar 

  • Vosatka M, Albrechtova J, Patten R (2008a) The international market development for mycorrhizal technology. In: Varma A (ed) mycorrhiza. Springer, Dordrecht, pp 419–438

    Google Scholar 

  • Vosatka M, Latr A, Albrechtova J (2008b) How to apply mycorrhizal inocula in a large-scale and what outcome can be expected in respect to plant growth and cultivation costs. In: Feldmann F, Kapulnik Y, Baar J (eds) Mycorrhiza works. Desutsche Phytomedizinische Gesellschaft, Braunschweig, pp 323–339

    Google Scholar 

  • Vosatka M, Latr A, Gianinazzi S, Albrechtova J (2012) Development of arbuscular mycorrhizal biotechnology and industry: current achievements and bottlenecks. Symbiosis 58:29–37

    Google Scholar 

  • Wang B, Yao Z, Zhao S, Guo K, Sun J, Zhang H (2014) Arbuscular mycorrhizal application to improve growth and tolerance of processing tomato (Lycopersicum esculentum Miller) under drought stress. J Food Agric Environ 12:452–457

    CAS  Google Scholar 

  • Xu P, Liang LZ, Dong XX, Xu J, JiangPK Shen RF (2014) Response of soil phosphorus require for maximum growth of Asparagus officinalis L. to arbuscular mycorrhizal fungi. Pedosphere 24:776–782

    Google Scholar 

  • Zhang L, Fan J, Ding X, He X, Zhang F, Feng G (2014) Hyphosphere interactions between an arbuscular mycorrhizal fungus and a phosphate solubilizing bacterium promote phytate mineralization in soil. Soil Biol Biochem 74:177–183

    CAS  Google Scholar 

Download references

Acknowledgements

We sincerely thank Director General, The Energy and Resources Institute (TERI), New Delhi, India, for providing the infrastructure and environment for developing the technology and kind cooperation with regard to the subsequent refinements developed thereafter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alok Adholeya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, A., Singh, R., Adholeya, A. (2017). Biotechnological Advancements in Industrial Production of Arbuscular Mycorrhizal Fungi: Achievements, Challenges, and Future Prospects. In: Satyanarayana, T., Deshmukh, S., Johri, B. (eds) Developments in Fungal Biology and Applied Mycology. Springer, Singapore. https://doi.org/10.1007/978-981-10-4768-8_21

Download citation

Publish with us

Policies and ethics