Skip to main content

Fusarium oxysporum: Genomics, Diversity and Plant–Host Interaction

  • Chapter
  • First Online:
Developments in Fungal Biology and Applied Mycology

Abstract

Fusarium oxysporum is amongst the most important and diverse phytopathogenic fungi infecting almost 150 plant species, pathogen of each being specific and identified as formae speciales. It is a broad host range pathogen employing various infection strategies. Considering the economic importance and availability of sequenced genomes of several Fusarium species, its interaction with plant host is under intense investigation. Comparative genomics of four Fusarium species (Fusarium graminearum , Fusarium oxysporum f.sp. lycopersici, Fusarium solani and Fusarium verticillioides) have led to identification of basic and specialized/dynamic pathogenicity genes that confer host specialization. Fungal pathogenicity mechanisms, rapid emergence of pathogenic lineages and polyphyletic origins of host specialization have been identified but regulation of host and tissue specificity is still not known. Although comparative genomics, transcriptomics and proteomic analysis have greatly accelerated the identification of fungal functional genes, but assigning definitive roles is still a challenging task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Affeldt KJ, Brodhagen M, Keller NP (2012) Aspergillus oxylipin signaling and quorum sensing pathways depend on G protein-coupled receptors. Toxins 4:695–717

    CAS  PubMed  PubMed Central  Google Scholar 

  • Amadou C, Pascal G, Mangenot S, Glew M, Bontemps C, Capela D, Carrere S, Dossat C, Lajus A, Marchetti M, Poinsot V, Rouy Z, Servin B, Saad M, Schenowiyz C, Barbe V, Batuit J, Medigue C, Masson-Boivin C (2008) Genome sequence of β-rhizobium Cupriavidus taiwanensis and comparative genomics of rhizobia. Genome Res 18:1472–1483

    Google Scholar 

  • Appel DJ, Gordon TR (1995) Intraspecific variation within populations of Fusarium oxysporum based on RFLP analysis of the intergenic spacer (IGS) region of the rDNA. Exp Mycol 19:120–128

    Google Scholar 

  • Arias SL, Theumer MG, Mary VS, Rubinstein HR (2012) Fumonisins: probable role as effectors in the complex interaction of susceptible and resistant maize hybrids and Fusarium verticillioides. J Agric. FoodChem 60:5667–5675

    CAS  Google Scholar 

  • Armstrong GM, Armstrong JK (1978) Formae speciales and races of Fusarium oxysporum causing wilts of Cucurbitaceae. Phytopathology 68:19–28

    Google Scholar 

  • Armstrong GM, Armstrong JK (1981) Formae speciales and races of Fusarium oxysporum causing wilt diseases. In: Nelson PE, Toussoun TA, Cook R (eds) Fusarium diseases, biology, and taxonomy. Penn State University Press, University Park, PA, pp 391–399

    Google Scholar 

  • Baayen RP, O’Donnell K, Bonants PJM, Cigelnik E, Kroon LPNM, Roebroeck EJA, Waalwijk C (2000) Gene genealogies and AFLP analyses in the Fusarium oxysporum complex identify monophyletic and nonmonophyletic formae speciales causing wilt and rot disease. Phytopathology 90:891–900

    CAS  PubMed  Google Scholar 

  • Baetz U, Martinoia E (2014) Root exudates: the hidden part of plant defense. Trends Plant Sci 19:90–98

    CAS  PubMed  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    CAS  PubMed  Google Scholar 

  • Beckman CH (1987) The nature of wilt diseases of plants. American Phytopathology Society Press, University of California, St Paul, 175 pp

    Google Scholar 

  • Bluhm BH, Zhao X, Flaherty JE, Xu JR, Dunkle LD (2007) RAS2 regulates growth and pathogenesis in Fusarium graminearum. Mol Plant Microbe Interact 20:627–636

    CAS  PubMed  Google Scholar 

  • Boddu J, Cho S, Kruger WM, Muehlbauer GJ (2006) Transcriptome analysis of the barley-Fusarium graminearum interaction. Mol Plant-MicrobeInteract 19:407–417

    CAS  Google Scholar 

  • Bolker M (2001) Ustilago maydis-a valuable model system for the study of fungal dimorphism and virulence. Microbiology 147:1395–1401

    CAS  PubMed  Google Scholar 

  • Bonfante P, Genre A (2010) Mechanisms underlying beneficial plant–fungus interactions in mycorrhizal symbiosis. Nat Commun 1:48

    PubMed  Google Scholar 

  • Booth C (1971) The genus Fusarium. Commonwealth Mycological Institute, Kew, Surrey, UK, p 237

    Google Scholar 

  • Brefort T, Tanaka S, Neidig N, Doehlemann G, Vincon V, Kahmann R (2014) Characterization of the largest effector gene cluster of Ustilago maydis. PLoS Pathog 10:e1003866

    PubMed  PubMed Central  Google Scholar 

  • Brodhagen M, Tsitsigiannis DI, Hornung E, Goebel C, Feussner I, Keller NP (2008) Reciprocaloxylipin-mediated cross-talk in the Aspergillus-seed pathosystem. Mol Microbiol 67:378–391

    CAS  PubMed  Google Scholar 

  • Brundrett M (2004) Diversity and classification of mycorrhizal associations. Biol Rev 79:473–495

    PubMed  Google Scholar 

  • Burow G, Nesbitt T, Dunlap J, Keller NP (1997) Seed Lipoxygenase products modulate Aspergillus mycotoxin biosynthesis. Mol Plant Microbe Interact 10:380–387

    Google Scholar 

  • Cai G, Gale LR, Schneider RW, Kistler HC, Davis RM, Elias KS, Miyao EM (2003) Origin of race 3 of Fusarium oxysporum f. sp. lycopersici at a singlesite in California. Phytopathology 93:1014–1022

    CAS  PubMed  Google Scholar 

  • Calvo AM, Hinze LL, Gardner HW, Keller NP (1999) Sporogenic effect of polyunsaturated fatty acids on development of Aspergillus spp. Appl Environ Microbiol 65:3668–3673

    CAS  PubMed  PubMed Central  Google Scholar 

  • Caracuel Z, Casanova C, Roncero MI, Di Pietro A, Ramos J (2003) pH response transcription factor PacC controls salt stress tolerance and expression of the P-Type Na+-ATPase Ena1 in Fusarium oxysporum. Eukaryot Cell 2:1246–1252

    CAS  PubMed  PubMed Central  Google Scholar 

  • Caracuel Z, Martinez-Rocha AL, Di Pietro A, Madrid MP, Roncero MI (2005) Fusarium oxysporum gas1 encodes a putative beta-1, 3-glucanosyltransferaserequired for virulence on tomato plants. Mol Plant-Microbe Interact 18:1140–1147

    CAS  PubMed  Google Scholar 

  • Catlet NL, Yoder OC, Turgeon BG (2003) Whole-genome analysis of two-component signal transduction genes in fungal pathogens. Eukaryot Cell 2(6):1151–1161

    Google Scholar 

  • Chi MH, Park SY, Kim S, Lee YH (2009) A novel pathogenicity gene is required in the rice blast fungus to suppress the basal defenses of the host. PLoS Pathog 5:e1000401

    Google Scholar 

  • Cho Y, Kim KH, LaRota M, Scott D, Santopietro G, Callihan M, Mitchell TK, Lawrence CB (2009) Identification of novel virulencefactors associated with signal transduction pathways in Alternaria brassicicola. Mol Microbiol 72:1316–1333

    CAS  PubMed  Google Scholar 

  • Christakopoulos P, Kekos D, Macris BJ, Claeyssens M, Bhat MK (1995) Purification and mode of action of a low molecular mass endo-1, 4-β-d-glucanase from Fusarium oxysporum. J Biotechnol 39:85–93

    CAS  Google Scholar 

  • Christakopoulos P, Nerinckx W, Kekos D, Macris B, Claeyssens M (1996) Purification and characterization of two low molecular mass alkaline xylanases from Fusarium oxysporum F3. J Biotechnol 51:181–189

    Google Scholar 

  • Coleman JJ, Rounsley SD, Rodriguez-Carres M, Kuo A, Wasmann CC, Grimwood J, Schmutz J, Taga M, White GJ, Zhou S, Schwartz DC, Freitag M, Ma L-J, Danchin EGJ, Henrissat B, Coutinho PM, Nelson DR, Straney D, Napoli CA, Barker BM, Gribskov M, Rep M, Kroken S, Molnár I, Rensing C, Kennell JC, Zamora J, Farman ML, Selker EU, Salamov A, Shapiro H, Pangilinan J, Lindquist E, Lamers C, Grigoriev IV, Geiser DM, Covert SF, Temporini E, VanEtten HD (2009) The genome of Nectria haematococca: contribution of supernumerary chromosomes to gene expansion. PLoS Genet 5:e1000618

    PubMed  PubMed Central  Google Scholar 

  • Collemare J, Pianfetti M, Houlle AE, Morin D, Camborde L, Gagey MJ, Barbisan C, Fudal I, Lebrun MH, Böhnert HU (2008) Magnaporthe grisea avirulence gene ACE1 belongs to an infection-specific gene cluster involved in secondary metabolism. New Phytol 179:196–208

    CAS  PubMed  Google Scholar 

  • Corradi N, Bonfante P (2012) The Arbuscular mycorrhizal symbiosis: origin and evolution of a beneficial plant infection. PLoS Pathog 8:8–10

    Google Scholar 

  • Correll JC (1991) The relationship between formae speciales, races and vegetative compatibility groups in Fusarium oxysporum. Phytopathology 81(9):1061–1064

    Google Scholar 

  • Cuomo CA, Güldener U, Xu JR, Trail F, Turgeon BG, Di Pietro A, Walton JD, Ma L-J, Baker SE, Rep M, Adam G, Antoniw J, Baldwin T, Calvo S, Chang YL, Decaprio D, Gale LR, Gnerre S, Goswami RS, Hammond-Kosack K, Harris LJ, Hilburn K, Kennell JC, Kroken S, Magnuson JK, Mannhaupt G, Mauceli E, Mewes HW, Mitterbauer R, Muehlbauer G, Münsterkötter M, Nelson D, O’Donnell K, Ouellet T, Qi W, Quesneville H, Roncero MI, Seong KY, Tetko IV, Urban M, Waalwijk C, Ward TJ, Yao J, Birren BW, Kistler HC (2007) The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization. Science 317:1400–1402

    CAS  PubMed  Google Scholar 

  • Dangl J, Jones J (2001) Plant pathogens and integrated defense responses to infection. Nature 411:826

    CAS  PubMed  Google Scholar 

  • Dean RA, Talbot NJ, Ebbole DJ, Farman ML, Mitchell TK, Orbach MJ, Thon M, Kulkarni R, Xu J-R, Pan H, Read ND, Lee Y-H, Carbone I, Brown D, Oh YY, Donofrio N, Jeong JS, Soanes DM, Djonovic S, Kolomiets E, Rehmeyer C, Li W, Harding M, Kim S, Lebrun M-H, Bohnert H, Coughlan S, Butler J, Calvo S, Ma L-J, Nicol R, Purcell S, Nusbaum C, Galagan JE, Birren BW (2005) The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 434:980–986

    CAS  PubMed  Google Scholar 

  • Delgado-Jarana J, Martinez-Rocha AL, Roldan-Rodriguez R, Roncero MI, Di Pietro A (2005) Fusarium oxysporum G-protein beta subunitFgb1 regulates hyphal growth, development, and virulencethrough multiple signalling pathways. Fungal Genet Biol 42:61–72

    CAS  PubMed  Google Scholar 

  • DeZwaan TM, Carroll AM, Valent B, Sweigard JA (1999) Magnaporthe grisea pth11p is a novel plasma membrane protein that mediates ppressorium differentiation in response to inductive substrate cues. Plant Cell 11:2013–2030

    Google Scholar 

  • Di Pietro A, Garcia-MacEira FI, Meglecz E, Roncero MI (2001) A MAP kinase of the vascular wilt fungus Fusarium oxysporum is essential for root penetration and pathogenesis. Mol Microbiol 39:1140–1152

    PubMed  Google Scholar 

  • Djamei A, Kahmann R (2012) Ustilago maydis: dissecting the molecular interface between pathogen and plant. PLoS Pathog 8:e1002955

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dowd C, Wilson IW, McFadden H (2004) Gene expression profile changes incotton root and hypocotyl tissues in response to infection with Fusarium oxysporum f. sp. vasinfectum. Mol Plant-Microbe Interact 17:654–667

    CAS  PubMed  Google Scholar 

  • Ebbole D, Sachs MS (1990) A rapid and simple method for isolation of Neurospora crassa homokaryons using microconidia. Fungal Genetic Newslett 37:17–18

    Google Scholar 

  • Egan MJ, Wang ZY, Jones MA, Smirnoff N, Talbot NJ (2007) Generation of reactive oxygen species by fungal NADPH oxidases is required for rice blast disease. Proc Natl Acad Sci USA 104:11772–11777

    CAS  PubMed  Google Scholar 

  • Elias KS, Schneider RW (1991) Vegetative compatibility groups in Fusarium oxysporum f. sp. lycopersici. Phytopathology 18:159–162

    Google Scholar 

  • Elias KS, Schneider RW (1992) Geneticdiversity within and among vegetativecompatibility groups of Fusarium oxysporum f. sp. lycopersici as determined by isozyme analysis. Phytopathology 82:1421–1427

    CAS  Google Scholar 

  • Elmer WH, Stephens CT (1989) Classification of Fusarium oxysporum f.sp. asparagi into vegetatively compatible groups. Phytopathology 79:88–93

    Google Scholar 

  • Fiely MB, Correll JC, Morelock TE (1995) Vegetative compatibility, pathogenicity, and virulence diversity of Fusarium oxysporum recovered from spinach. Plant Dis 79:990–993

    Google Scholar 

  • Fiers M, Lognay G, Fauconnier M-L, Jijakli MH (2013) Volatile compoundmediated interactions between barley and pathogenic fungi in the soil. PloS One 8:e66805

    Google Scholar 

  • Fravel D, Olivain C, Alabouvette C (2003) Fusarium oxysporum and its biocontrol. New Phytol 157:493–502

    Google Scholar 

  • Galagan JE, Calvo SE, Borkovich KA, Selker EU, Read ND, Jaffe D, FitzHugh W, Ma L-J, Smirnov S, Purcell S, Rehman B, Elkins T, Engels R, Wang S, Nielsen CB, Butler J, Endrizzi M, Qui D, Ianakiev P, Bell-Pedersen D, Nelson MA, Werner-Washburne M, Selitrennikoff CP, Kinsey JA, Braun EL, Zelter A, Schulte U, Kothe GO, Jedd G, Mewes W, Staben C, Marcotte E, Greenberg D, Roy A, Foley K, Naylor J, Stange-Thomann N, Barrett R, Gnerre S, Kamal M, Kamvysselis M, Mauceli E, Bielke C, Rudd S, Frishman D, Krystofova S, Rasmussen C, Metzenberg RL, Perkins DD, Kroken S, Cogoni C, Macino G, Catcheside D, Li W, Pratt RJ, Osmani SA, DeSouza CPC, Glass L, Orbach MJ, Berglund JA, Voelker R, Yarden O, Plamann O, Seiler S, Dunlap J, Radford A, Aramayo A, Natvig DO, Alex DO, Mannhaupt G, Ebbole DJ, Freitag DJ, Paulsen I, Sachs MS, Lander ES, Nusbaum C, Birren B (2003) The genome sequence of the filamentous fungus Neurospora crassa. Nature 422:859–868

    CAS  PubMed  Google Scholar 

  • Galagan JE, Calvo SE, Cuomo C, Ma L-J, Wortman JR, Batzoglou S, Lee S-I, Bastürkmen M, Spevak CC, Clutterbuck J, Kapitonov V, Jurka J, Scazzocchio C, Farman M, Butler J, Purcell S, Harris S, Braus GH, Draht O, Busch S, D’Enfert C, Bouchier C, Goldman GH, Bell-Pedersen D, Griffiths-Jones S, Doonan JH, Yu J, Vienken K, Pain A, Freitag M, Selker EU, Archer DB, Penālva MA, Oakley BR, Momany M, Tanaka T, Kumagai T, Asai K, Machida M, Nierman WC, Denning DW, Caddick M, Hynes M, Paolett M, Fischer R, Miller B, Dyer P, Sachs MS, Osmani SA, Birren BW (2005) Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature 438:1105–1115

    CAS  PubMed  Google Scholar 

  • Gale LR, Katan T, Kistler HC (2003) The probable center of origin of Fusarium oxysporum f. sp. lycopersici VCG 0033. Plant Dis 87:1433–1438

    PubMed  Google Scholar 

  • Garcia-Martinez J, Adam AL, Avalos J (2012) Adenylyl cyclase plays a regulatory role in development, stress resistance and secondary metabolism in Fusarium fujikuroi. PLoS ONE 7:e28849

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gardiner DM, Kazan K, Manners JM (2013) Cross-kingdom gene transfer facilitates the evolution of virulence in fungal pathogens. Plant Sci 210:151–158

    CAS  PubMed  Google Scholar 

  • Gardiner DM, Stiller J, Kazan K (2014) Genome sequence of Fusarium graminearumisolate CS3005. Genome Announce 2:5–8

    Google Scholar 

  • Gerlagh M, Blok WJ (1988) Fusarium oxysporum f. sp. cucurbitacearum n. f. embracing all formae speciales of F. oxysporum attacking Cucurbitaceous crops. Neth J Plant Pathol 94:17–31

    Google Scholar 

  • Giraldo MC, Dagdas YF, Gupta YK, Mentlak TA, Yi M, Martinez-Rocha AL, Saitoh H, Terauchi R, Talbot NJ, Valent B (2013) Two distinct secretion systems facilitate tissue invasion by the rice blast fungus Magnaporthe oryzae. Nat Commun 4:1996. https://doi.org.10.1038/ncomms2996

  • Giraldo MC, Valent B (2013) Filamentous plant pathogen effectors in action. Nat Rev Microbiol 11:800–814

    CAS  PubMed  Google Scholar 

  • Gordon TR, Martyn RD (1997) The evolutionary biology of Fusarium oxysporum. Annu Rev Phytopathol 35:111–128

    CAS  PubMed  Google Scholar 

  • Gordon TR, Okamoto D (1992) Variationin mitochondrial DNA among vegetatively compatible isolates of Fusarium oxysporum. Exp Mycol 16:245–250

    CAS  Google Scholar 

  • Gordon WL (1965) Pathogenic strains of Fusarium oxysporum. Can J Bot 45:1309–1318

    Google Scholar 

  • Grigoriev I (2013) Fungal genomics for energy and environment. In: Horwitz B, Mukherjee P, Mukherjee M (eds) Genomics of soil- and plant-associated fungi: soil biology, vol 36. Springer, Berlin, pp 11–27

    Google Scholar 

  • Guadet J, Julien J, Lafay JF, Brygoo Y (1989) Phylogeny of some Fusarium species, as determined by large-subunit rRNA sequence comparison. Mol Biol Evol 6:227–242

    CAS  PubMed  Google Scholar 

  • Hamel LP, Nicole MC, Duplessis S, Ellis BE (2012) Mitogen-activated protein kinase signaling in plant-interacting fungi: distinct messages from conserved messengers. Plant Cell 24:1327–1351

    CAS  PubMed  PubMed Central  Google Scholar 

  • Han Y, Liu X, Benny U, Kistler HC, VanEtten HD (2001) Genes determining pathogenicity to pea are clustered on a supernumerary chromosome in the fungal plant pathogen Nectria haematococca. Plant J 25:305–314

    CAS  PubMed  Google Scholar 

  • Hansen FT, Gardiner DM, Lysøe E, Feurtes PR, Tudzynski B, Weimann P, Sondergaard TE, Giese H, Brodersen DE, Sørensen JL (2015) An update to polyketide synthase and non-ribosomal synthetase genes and nomenclature in Fusarium Fungal Genet. Biology 75:20–29

    CAS  Google Scholar 

  • Hansen FT, Sørensen JL, Giese H, Sondergaard TE, Frandsen RJ (2012a) Quickguide to polyketide synthase and nonribosomal synthetase genes in Fusarium. Int J Food Microbiol 155:128–136

    CAS  PubMed  Google Scholar 

  • Hansen FT, Droce A, Sørensen JL, Fojan P, Giese H, Sondergaard TE (2012b) Overexpression of NRPS4 leads to increased surface hydrophobicity in Fusarium graminearum. Fungal Biol 116:855–862

    CAS  PubMed  Google Scholar 

  • Harimoto Y, Hatta R, Kodama M, Yamamoto M, Otani H, Tsuge T (2007) Expression profiles of genes encoded by the supernumerary chromosome controlling AM-toxin biosynthesis and pathogenicity in the applepathotype of Alternaria alternata. Mol Plant Microbe Interact 20:1463–1476

    CAS  PubMed  Google Scholar 

  • Herrmann M, Zocher R, Haese A (1996) Effect of disruption of the enniatinsynthetase gene on the virulence of Fusarium avenaceum. Mol Plant Microbe Interact 9:226–232

    CAS  PubMed  Google Scholar 

  • Hopwood DA, Khosla C (1992) Genes for polyketide secondarymetabolic pathways in microorganisms and plants. In: Chadwick DJ, Whelan J (eds) Secondary metabolites: their functionand evolution. Wiley, Chichester, pp 88–112

    Google Scholar 

  • Horbach R, Navarro-Quesada AR, Knogge W, Deising HB (2011) When and how to kill a plant cell: infection strategies of plant pathogenic fungi. J Plant Physiol 168:51–62

    CAS  PubMed  Google Scholar 

  • Hou Z, Xue C, Peng Y, Katan T, Kistler HC, Xu JR (2002) A mitogen-activated protein kinase gene (MGV1) in Fusarium graminearum is required for female fertility, heterokaryon formation, and plant infection. Mol. Plant-Microbe Interact 15:1119–1127

    CAS  PubMed  Google Scholar 

  • Houterman PM, Ma L, van Ooijen G, de Vroomen MJ, Cornelissen BJ, Takken FL, Rep M (2009) The effector protein Avr2 of the xylem colonizing fungus Fusarium oxysporum activates the tomato resistance protein I-2 intracellularly. Plant J 58:970–978

    Google Scholar 

  • Houterman PM, Speijer D, Dekker HL, de Koster CG, Cornelissen BJC, Rep M (2007) The mixed xylem sap proteome of Fusarium oxysporum infected tomato plants. Mol. Plant Pathol. 8:215–221

    CAS  PubMed  Google Scholar 

  • Ilgen P, Maier F, Schäfer W (2008) Trichothecenes and lipases are host-induced and secreted virulence factors of Fusarium graminearum. Cereal Res Commun 36:421–428

    Google Scholar 

  • Jackson AO, Taylor CB (1996) Plant-microbe interactions: life and death at the interface. Plant Cell 8:1651–1668

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobson DJ, Gordon TR (1988) Vegetative compatibility and self-incompatibility within Fusarium oxysporum f. sp. melonis. Phytopathology 78:668–672

    Google Scholar 

  • Jacobson DJ, Gordon TR (1990a) Furtherinvestigations of vegetative compatibilitywithin Fusarium oxysporum f. sp. melonis. Can J Bot 68:1245–1248

    Google Scholar 

  • Jacobson DJ, Gordon TR (1990b) Variabilityof mitochondrial DNA as an indicator of relationships between populations of Fusarium oxysporum f. sp. melonis. Mycol Res 94:734–744

    CAS  Google Scholar 

  • Jain S, Akiyama K, Mae K, Ohguchi T, Takata R (2002) Targeted disruption of a G protein alpha subunit gene results in reduced pathogenicity in Fusarium oxysporum. Curr Genet 41:407–413

    CAS  PubMed  Google Scholar 

  • Jain S, Akiyama K, Kan T, Ohguchi T, Takata R (2003) The G protein beta subunit FGB1 regulates development and pathogenicity in Fusarium oxysporum. Curr Genet 43(2):79–86

    Google Scholar 

  • Jain S, Akiyama K, Takata R, Ohguchi T (2005) Signaling via the G protein alpha subunit FGA2 is necessary for pathogenesis in Fusarium oxysporum. FEMS Microbiol Lett 243(1):165–172

    Google Scholar 

  • Jansen C, VonWettstein D, Schäfer W, Kogel K-H, Felk A, Maier FJ (2005) Infection patterns in barley and wheat spikes inoculated with wild-type and trichodiene synthase gene disrupted Fusarium graminearum. Proc Natl Acad Sci USA 102:16892–16897

    CAS  PubMed  Google Scholar 

  • Joaramillo VD, Sukno SA, Thon MR (2015) Identification of horizontally transferred genes in the genus Colletotrichum reveals a steady tempo of bacterial to fungal gen etransfer. BMC Genom 16:2

    Google Scholar 

  • Johnson RD, Johnson L, Itoh Y, Kodama M, Otani H, Kohmoto K (2000) Cloning and characterization of a cyclic peptide synthetase gene from Alternaria alternata apple pathotype whose product is involved in AM-toxin synthesis and pathogenicity. Mol Plant Microbe Interact 13:742–753

    CAS  PubMed  Google Scholar 

  • Jørgensen SH, Frandsen RJN, Nielsen KF, Lysøe E, Sondergaard TE, Wimmer R, Giese H, Sørensen JL (2014) Fusarium graminearum PKS14 is involved in orsellinicacid and orcinol synthesis. Fungal Genet Biol 70:24–31

    PubMed  Google Scholar 

  • Kabbage M, Yarden O, Dickman MB (2015) Pathogenic attributes of Sclerotinia sclerotiorum: switching from a biotrophic to necrotrophic lifestyle. Plant Sci 233:53–60

    CAS  PubMed  Google Scholar 

  • Kamper J, Kahmann R, Bolke M, Ma L-J, Brefort T, Saville BJ, Banuett F, Kronstad JW, Gold SE, Müller O, Perlin MH, Wösten HAB, de Vries R, Ruiz-Herrera J, Reynaga-Peña CG, Snetselaar K, McCann M, Pérez-Martín J, Feldbrügge M, Basse CW, Steinberg G, Ibeas JI, Holloman W, Guzman P, Farman M, Stajich JE, Sentandreu R, González-Prieto JM, Kennell JC, Molina L, Schirawski J, Mendoza-Mendoza A, Greilinger D, Münch K, Rössel N, Scherer M, Vraneš M, Ladendorf O, Vincon V, Fuchs U, Sandrock B, Meng S, Ho ECH, Cahill MJ, Boyce KJ, Klose J, Klosterman SJ, Deelstra HJ, Ortiz-Castellanos L, Li W, Sanchez-Alonso P, Schreier PH, Häuser-Hahn I, Vaupel M, Koopmann E, Friedrich G, Voss H, Schlüter T, Margolis J, Platt D, Swimmer C, Gnirke A, Chen F, Vysotskaia V, Mannhaupt G, Güldener U, Münsterkötter M, Haase D, Oesterheld M, Mewes H-W, Mauceli EW, DeCaprio D, Wade CM, Butler J, Young S, Jaffe DB, Calvo S, Nusbaum C, Galagan J, Birren BW (2006) Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature 444:97–101

    PubMed  Google Scholar 

  • Karpinets TV, Park BH, Syed MH, Klotz MG, Uberbacher EC (2014) Metabolic enviroment and genomic feature associated with pathogenic and mutualistic interaction between bacteria and plants. Mol. Plant-Microbe Interact. 27:664–667

    CAS  PubMed  Google Scholar 

  • Katan T, Hadar E, Katan J (1989) Vegetative compatibility of Fusarium oxysporum f. sp. dianthi from carnation in Israel. Plant Pathol 38:376–381

    Google Scholar 

  • Katan T, Katan J (1988) Vegetativecompatibilitygroupings of Fusariumoxysporum f. sp. vasinfectum from tissueand the rhizosphere of cotton plants. Phytopathology 78:852–855

    Google Scholar 

  • Kawahara Y, Oono Y, Kanamori H, Matsumoto T, Itoh T, Minami E (2012) Simultaneous RNA-seq analysis of a mixed transcriptome of rice and blast fungus interaction. PLoS ONE 7:e49423

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kazan K, Gardiner DM, Manners JM (2012) On the trail of a cereal killer: recent advances in Fusarium graminearum pathogenomics and host resistance. Mol Plant Pathol 13(4):399–413

    Google Scholar 

  • Kazan K, Lyons R (2014) Intervention of phytohormone pathways by pathogen effectors. Plant Cell 26:2285–2309

    CAS  PubMed  PubMed Central  Google Scholar 

  • Keller NP, Turner G, Bennett JW (2005) Fungal secondary metabolism from biochemistry to genomics. Nat Rev Microbiol 3:937–947

    CAS  PubMed  Google Scholar 

  • Khan R, Tan R, Mariscal AG, Straney D (2003) A binuclear zinc transcription factor binds the host isoflavonoid-responsive element in a fungal cytochrome p450 gene responsible for detoxification. Mol Microbiol 49:117–130

    CAS  PubMed  Google Scholar 

  • Kim DH, Martyn RD, Magill CW (1992) RFLP groups and physical map of themtDNA from Fusarium oxysporum f. sp.niveum. Phytopathology 82:346–353

    CAS  Google Scholar 

  • Kim DH, Martyn RD, Magill CW (1993) Mitochondrial DNA (mt-DNA) relatednessamong formae speciales of Fusarium oxysporum in the Cucurbitaceae. Phytopathology 83:91–97

    CAS  Google Scholar 

  • King R, Urban M, Hammond-Kosack MCU, Hassani-Pak K, Hammond-Kosack KE (2015) The completed genome sequences of pathogenic ascomycete fungus Fusarium graminearum. BMC Genom 16:544–564

    Google Scholar 

  • Kistler HC (1997) Genetic diversity in theplant pathogenic fungus, Fusarium oxysporum. Phytopathology 87:474–479

    CAS  PubMed  Google Scholar 

  • Kistler HC, Momol EA (1990) Molecular genetics of plant pathogenic Fusarium oxysporum. In: Ploetz RC (ed) Fusarium wilt of banana. American Phytopathological Society, St. Paul, pp 49–54

    Google Scholar 

  • Koenig RL, Ploetz RC, Kistler HC (1997) Fusarium oxysporum f. sp. cubense consists of a small number of divergent andglobally distributed clonal lineages. Phytopathology 87:915–923

    CAS  PubMed  Google Scholar 

  • Kubicek CP (2013) Fungi and Lignocellulosic Biomass. Wiley, New York

    Google Scholar 

  • Kumamoto CA (2008) Molecular mechanisms of mechano-sensing and their roles in fungal contact sensing. Nat Rev Microbiol 6:667–673

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lanver D, Berndt P, Tollot M, Naik V, Vranes M, Warmann T, Münch K, Rössel N, Kahmann R (2014) Plant surface cues prime Ustilago maydis for biotrophic development. PLoS Pathog 10:e1004272

    PubMed  PubMed Central  Google Scholar 

  • Lee J, Myong K, Kim JE, Kim HK, Yun SH, Lee YW (2012) FgVelBglobally regulates sexual reproduction, mycotoxin production and pathogenicity in the cereal pathogen Fusarium graminearum. Microbiology 158:1723–1733

    CAS  PubMed  Google Scholar 

  • Leslie JF (1993) Fungal vegetative compatibility. Ann Rev Phytopathol 31:127–150

    CAS  Google Scholar 

  • Leslie JF (1996) Fungal vegetative compatibility promises and prospects. Phytoparasitica 24:3–6

    Google Scholar 

  • Li G, Zhou X, Xu JR (2012) Genetic control of infection-related development in Magnaporthe oryzae. Curr Opin Microbiol 15:678–684

    CAS  PubMed  Google Scholar 

  • Liao X, Fang W, Lin L, Lu H-L, St. Leger RJ (2013) Metarhizium robertsii produces an extracellular invertase (MrINV) that plays a pivotal role in rhizospheric interactions and root colonization. PloS One 8:e78118

    Google Scholar 

  • Link HF (1809) Observationes in ordines plantarum naturales, dissertatioprima, complectens anandrarum ordines Epiphytas, Mucedines. Gastromycosed Fungos, Der Gesellschaft Naturforschender Freunde zu Berlin, Berlin, Germany

    Google Scholar 

  • Liu W, Zhou X, Li G, Li L, Kong L, Wang C, Zhang H, Xu JR (2011) Multiple plant surface signals aresensed by different mechanisms in the rice blast fungus forappressorium formation. PLoS Pathog 7: e1001261

    Google Scholar 

  • Liu ZM, Kolattukudy PE (1999) Early expression of the calmodulin gene, which precedes appressorium formation in Magnaporthe grisea, is inhibited by self-inhibitors and requires surface attachment. J Bacteriol 181:3571–3577

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lo Presti L, Lanver D, Schweizer G, Tanaka S, Liang L, Tollot M, Zuccaro A, Reissmann S, Kahmann R (2015) Fungal effectors and plant susceptibility. Annu Rev Plant Biol 66:513–545

    Google Scholar 

  • Lopez-Berges MS, Capilla J, Turra D, Schafferer L, Matthijs S, Jochl C, Cornelis P, Guarro J, Haas H, Di Pietro A (2012) HapX-mediated iron homeostasis isessential for rhizosphere competence and virulence of the soilborne pathogen Fusarium oxysporum. Plant Cell 24:3805–3822

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Berges MS, Hera C, Sulyok M, Schafer K, Capilla J, Guarro J, Di Pietro A (2013) The velvet complex governs mycotoxin production and virulence ofFusarium oxysporum on plant and mammalian hosts. Mol Microbiol 87:49–65

    CAS  PubMed  Google Scholar 

  • Lucas JA (1998) Plant pathology and plant pathogens, 3rd edn. Blackwell Science, p 274

    Google Scholar 

  • Ma L-J, Geiser DM, Proctor RH, Rooney AP, O’Donnell K, Trail F, Gardiner DM, Manners JM, Kazan K (2013) Fusarium pathogenomics. Annu Rev Microbiol 67:399–416

    CAS  PubMed  Google Scholar 

  • Ma L-J, van der Does HC, Borkovich KA, Coleman JJ, Daboussi M-J, Di Pietro A, Dufresne M, Freitag M, Grabherr M, Henrissat B, Houterman PM, Kang S, Shim W-B, Woloshuk C, Xie X, Xu J-R, Antoniw J, Baker SE, Bluhm BH, Breakspear A, Brown DW, Butchko RAE, Chapman S, Coulson R, Coutinho PM, Danchin EGJ, Diener A, Gale LR, Gardiner DM, Goff S, Hammond-Kosack KE, Hilburn K, Hua-Van A, Jonkers W, Kazan K, Kodira CD, Koehrsen M, Kumar L, Lee Y-H, Li L, Manners JM, Miranda-Saavedra D, Mukherjee M, Park G, Park J, Park S-Y, Proctor RH, Regev A, Ruiz-Roldan MC, Sain D, Sakthikumar S, Sykes S, Schwartz DC, Turgeon BG, Wapinski I, Yoder O, Young S, Zeng Q, Zhou S, Galagan J, Cuomo CA, Kistler HC, Rep M et al (2010) Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 464:367–373

    Google Scholar 

  • Madrid MP, Di Pietro A, Roncero MI (2003) Class V chitin synthase determines pathogenesis in the vascular wilt fungus Fusarium oxysporum and mediates resistance to plant defence compounds. Mol Microbiol 47:257–266

    CAS  PubMed  Google Scholar 

  • Manicom BQ, Bar-Joseph M, Kotze JM (1990) Molecular methods of potential use in the identification and taxonomy of filamentous fungi, particularly Fusarium oxysporum. Phytophylactica 22:233–240

    Google Scholar 

  • Martinez-Rocha AL, Roncero MI, Lopez-Ramirez A, Marine M, Guarro J, Martinez-Cadena G, Di Pietro A (2008) Rho1 has distinct functionsin morphogenesis, cell wall biosynthesis and virulenceof Fusarium oxysporum. Cell Microbiol 10:1339–1351

    CAS  PubMed  Google Scholar 

  • Martin-Udiroz M, Madrid MP, Roncero MI (2004) Role of chitin synthase genes in Fusarium oxysporum. Microbiol. 150:3175–3187

    CAS  Google Scholar 

  • Martin-Urdiroz M, Roncero MI, Gonzalez-Reyes JA, Ruiz-Roldan C (2008) ChsVb, a class VII chitin synthase involved in septation, iscritical for pathogenicity in Fusarium oxysporum. Eukaryot Cell 7:112–121

    CAS  PubMed  Google Scholar 

  • Mbofung GY, Hong SG, Pryor BM (2007) Phylogeny of Fusarium oxysporumf. sp. lactucae inferred from mitochondrial small subunit, elongation factor-1 and nuclear ribosomal intergenic spacer sequence data. Phytopathology 97:87–98

    CAS  PubMed  Google Scholar 

  • Mendoza-Mendoza A, Berndt P, Djamei A, Weise C, Linne U, Marahiel M, Vranes M, Kämper J, Kahmann R (2009) Physical–chemical plant-derived signals induce differentiation in Ustilago maydis. Mol Microbiol 71:895–911

    CAS  PubMed  Google Scholar 

  • Miao VP, Covert SF, VanEtten HD (1991) A fungal gene for antibiotic resistanceon a dispensable (‘‘B’’) chromosome. Science 254:1773–1776

    CAS  PubMed  Google Scholar 

  • Michielse CB, van Wijk R, Reijnen L, Cornelissen BJC, Rep M (2009) Insight into the molecular requirements for pathogenecity of Fusarium oxysporum f. sp. lycopersici through large-scale insertional mutagenesis. Genome Biol 10:R4. https://doi.org/10.1186/gb-2009-10-1-r4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michielse CB, Rep M (2009) Pathogen profile update: Fusarium oxysporum. Mol Plant Pathol 10:311–324

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mitter B, Brader G, Afzal M, Compant S, Naveed M, Trogitnz F, Sessitsch A (2013) Advances in eluciadating beneficial interaction between plant soil and bacteria. In: Sparks DL (ed) Advances in agronomy, vol 121. Elesvier, San Diego, pp 381–445

    Google Scholar 

  • Molina L, Kahmann R (2007) An Ustilago maydis gene involved in H2O2 detoxification is required for virulence. Plant Cell 19:2293–2309

    CAS  PubMed  PubMed Central  Google Scholar 

  • Navazio L, Baldan B, Moscatiello R, Zuppini A, Woo SL, Mariani P, Lorito M (2007) Calcium-mediated perception and defence responses activated in plant cells by metabolite mixtures secreted by the biocontrol fungus Trichoderma atroviride. BMC Plant Biol 7:41

    PubMed  PubMed Central  Google Scholar 

  • Nelson PE, Toussoun TA, Marasas WFO (1983) Fusarium species: an illustrated manual for identification. Pennsylvania State University Press, University Park

    Google Scholar 

  • O’Donnell K (1993) Fusarium and its nearrelatives. In: Taylor JW, Reynolds DR (eds) The fungal holomorph. CAB International, England, pp 225–233

    Google Scholar 

  • O’Donnell K, Kistler HC, Cigelnik E, Ploetz RC (1998) Multiple evolutionary originsof the fungus causing Panama disease of banana: concordant evidence fromnuclear and mitochondrial gene genealogies. Proc Natl Acad Sci USA 95:2044–2049

    PubMed  Google Scholar 

  • O’Donnell K, Rooney AP, Proctor RH, Brown DW, McCormick SP, Todd JW, Frandsen RJ, Lysøe E, Rehner SA, Aoki T, Robert VARG, Crous PW, Groenewald JZ, Kang S, Geiser DM (2013) Phylogeneticanalyses of RPB1 and RPB2 support a middle Cretaceous origin for a clade comprising all agriculturally and medically important fusaria. Fungal Genet Biol 52:20–31

    PubMed  Google Scholar 

  • O’Donnell K, Sutton DA, Rinaldi MG, Magnon KC, Cox PA, Revankar SG, Sanche S, Geiser DM, Juba JH, van Burik J-AH, Padhye AA, Anaissie EJ, Francesconi A, Walsh TJ, Robinson JS (2004) Genetic diversity of human pathogenic members of the Fusarium oxysporum complex inferred from multilocus DNA sequence data and amplified fragment length polymorphism analyses: evidence for the recent dispersion of a geographically widespread clonal lineage and nosocomial origin. J Clin Microbiol 42:5109–5120

    PubMed  PubMed Central  Google Scholar 

  • O’Donnell K, Kistler HC, Tacke BK, Casper HH (2000) Gene genealogies reveal global phylogeographic structure and reproductive isolation among lineages of Fusarium graminearum, the fungus causing wheat scab. Proc Nat Acad Sci USA 95:7905–7910

    Google Scholar 

  • O’Donnell K, Cigelnik E (1997) Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Mol Phylogenet Evol 7:103–116

    PubMed  Google Scholar 

  • Oide S, Liu J, Yun SH, Wu D, Michev A, Choi MY, Horwitz BA, Turgeon BG (2010) Histidine kinase two-component response regulator proteins regulate reproductive development, virulence, and stress responses of the fungal cereal pathogens Cochliobolus heterostrophus and Gibberella zeae. EukaryotCell 9:1867–1880

    Google Scholar 

  • Oide S, Moeder W, Krasnoff S, Gibson D, Haas H, Yoshioka K, Turgeon BG (2006) NPS6, encoding a nonribosomal peptide synthetase involved in siderophore mediated iron metabolism, is a conserved virulence determinant of plant pathogenic ascomycetes. Plant Cell 18:2836–2853

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ortoneda M, Guarro J, Madrid MP, Caracuel Z, Roncero MIG, Mayayo E, Di Pietro A (2004) Fusarium oxysporum as a multihost model for the genetic dissection of fungal virulence in plants and mammals. Infect Immun 72:1760–1766

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ospina-Giraldo MD, Mullins E, Kang S (2003) Loss of function of the Fusarium oxysporum SNF1 gene reduces virulence on cabbage and Arabidopsis. Curr Genet 44:49–57

    CAS  PubMed  Google Scholar 

  • Park AR, Cho AR, Seo J-A, Min K, Son H, Lee J, Choi GJ, Kim J-C, Lee Y-W (2012) Functional analyses of regulators of G protein signaling in Gibberella zeae. Fungal Genet Biol 49:511–520

    CAS  PubMed  Google Scholar 

  • Perez-Nadales E, Nogueira MF, Baldin C, Castanheira S, El Ghalid M, Grund E, Lengeler K, Marchegiani E, Mehrotra PV, Moretti M, Naik V, Oses-Ruiz M, Oskarsson T, Schäfer K, Wasserstrom L, Brakhage AA, Gow NA, Kahmann R, Lebrun MH, Perez-Martin J, Di Pietro A, Talbot NJ, Toquin V, Walther A, Wendland J (2014) Fungal model systems and the elucidation of pathogenicity determinants. Fungal Genet Biol 70C:42–67

    Google Scholar 

  • Perez-Nadales E, Di Pietro A (2011) The membrane mucin Msb2 regulates invasive growth and plant infection in Fusarium oxysporum. Plant Cell 23:1171–1185

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perfect SE, Green JR (2001) Infection structures of biotrophic and hemibiotrophic fungal plant pathogens. Mol Plant Pathol 2:101–108

    CAS  PubMed  Google Scholar 

  • Pieterse CMJ, Leon-Reyes A, Van der Ent S, Van Wees SCM (2009) Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5:308–316

    CAS  PubMed  Google Scholar 

  • Ploetz RC (1990) Variability in Fusarium oxysporum f. sp. cubense Can. J. Bot. 68:1357–1363

    Google Scholar 

  • Ploetz RC, Correll JC (1988) Vegetative compatibility among races of Fusarium oxysporum f. sp. cubense. Plant Dis 72:325–328

    Google Scholar 

  • Poppenberger B, Berthiller F, Lucyshyn D, Sieberer T, Schuhmacher R, Krska R, Kuchler K, Glössl J, Luschnig C, Adam G (2003) Detoxificationof the Fusarium mycotoxin deoxynivalenol by a UDP-glucosyltransferase from Arabidopsis thaliana. J Biol Chem 278:47905–47914

    CAS  PubMed  Google Scholar 

  • Prados Rosales RC, Di Pietro A (2008) Vegetative hyphal fusion is not essential forplant infection by Fusarium oxysporum. Eukaryot Cell 7:162–171

    CAS  PubMed  Google Scholar 

  • Prados Rosales RC, Roldan-Rodriguez R, Serena C, Lopez-Berges MS, Guarro J, Martinez-del-Pozo A, Di Pietro A (2012) A PR-1-like protein of Fusarium oxysporum functions in virulence on mammalian hosts. J Biol Chem 287:21970–21979

    CAS  PubMed  PubMed Central  Google Scholar 

  • Proctor RH, Butchko RAE, Brown DW, Moretti A (2007) Functionalcharacterization, sequence comparisons and distribution of a polyketidesynthase gene required for perithecial pigmentation in some Fusarium species. Food Addit Contam 24:1076–1087

    Google Scholar 

  • Pryce-Jones E, Carver TIM, Gurr SJ (1999) The roles of cellulase enzymes and mechanical force in host penetration by Erysiphe graminis f.sp. hordei. Physiol Mol Plant P 55:175–182

    Google Scholar 

  • Puhalla JE (1985) Classification of strain of Fusarium oxysporum on the basis of vagetative compatibility Can. J Bot 63:179–183

    Google Scholar 

  • Qutob D, Kemmerling B, Brunner F, Küfner I, Engelhardt S, Gust AA, Luberacki B, Seitz HU, Stahl D, Rauhut T, Glawischnig E, Schween G, Lacombe B, Watanabe N, Lam E, Schlichting R, Scheel D, Nau K, Dodt G, Hubert D, Gijzen M, Nürnberger T (2006) Phytotoxicity and innate immune responses induced by Nep1-likeproteins. Plant Cell 18:3721–3744

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ramos B, Alves-Santos FM, Garcia-Sanchez MA, Martin-Rodrigues N, Eslava AP, Diaz-Minguez JM (2007) The gene coding for a new transcription factor (ftf1) of Fusarium oxysporum is only expressed during infection of common bean. Fungal Genet Biol 44:864–876

    CAS  PubMed  Google Scholar 

  • Rep M, van der Does HC, Meijer M, van Wijk R, Houterman PM, Dekker HL, de Koster CG, Cornelissen BJ (2004) Asmall, cysteine-rich protein secreted by Fusarium oxysporum duringcolonization of xylem vessels is required for I-3-mediated resistance in tomato. Mol Microbiol 53:1373–1383

    CAS  PubMed  Google Scholar 

  • Reverberi M, Fabbri AA, Fanelli C (2012) Oxidative stress and oxylipins in plant–fungus interaction. In: Guenther W (ed) Biocommunicationof Fungi. Springer, The Netherlands, pp 273–290

    Google Scholar 

  • Rispail N, Soanes DM, Ant C, Czajkowski R, Grünler A, Huguet R, Perez-Nadales E, Poli A, Sartorel E, Valiante V, Yang M, Beffa R, Brakhage AA, Gow NA, Kahmann R, Lebrun MH, Lenasi H, Perez-Martin J, Talbot NJ, Wendland J, Di Pietro A (2009) Comparative genomics ofMAP kinase and calcium-calcineurin signalling componentsin plant and human pathogenic fungi. Fungal Genet Biol 46:287–298

    CAS  PubMed  Google Scholar 

  • Rispail N, Di Pietro A (2009) Fusarium oxysporum Ste12 controls invasive growthand virulence downstream of the Fmk1 MAPK cascade. Mol Plant MicrobeInteract 22:830–839

    CAS  Google Scholar 

  • Risser G, Banihashemi Z, Davis DW (1976) A Proposed Nomenclature ofFusarium oxysporum f. sp. melonis races and resistance genes in Cucumis melo. Phytopathology 66:1105–1106

    Google Scholar 

  • Rodriguez A, Perestelo F, Carnicero A, Regalado V, Perez R, De la Fuente G, Falcon MA (1996) Degradation of natural lignins and lignocellulosic substrates by soil-inhabiting fungi imperfecti. FEMS Microbiol Ecol 21:213–219

    CAS  Google Scholar 

  • Rovenich H, Boshoven BPHJ, Thomma JC (2014) Filamentous pathogen effector functions: of pathogens, hosts and microbiomes. Curr Opin Plant Biol 20C:96–103

    Google Scholar 

  • Salomon S, Gácser A, Frerichmann S, Kröger C, Schäfer W, Voigt CA (2012) The secreted lipase FGL1 is sufficient to restore the initial infection step to the apathogenic Fusarium graminearum MAP kinase disruption mutant Δgpmk1. Eur J Plant Pathol 134:23–37

    CAS  Google Scholar 

  • Scheffer RP (1991) Role of toxins in evolution and ecology of plant pathogenic fungi. Experientia 47:804–811

    CAS  Google Scholar 

  • Schippers B, van Eck WH (1981) Formation and survival of chlamydospores in Fusarium: In: Nelson PE, Toussoun TA, Cook RJ (eds) Fusarium: diseases, biology and taxonomy. Penn State University Press, University Park, pp 250–260

    Google Scholar 

  • Schroeder DT, Gordon TR (1993) An assessment of the relatedness of subpopulations within Fusarium oxysporum f.sp.melonis based on DNA fingerprinting. Phytopathology 83:1346–1347

    Google Scholar 

  • Skibbe D, Doehlemann G, Fernandes J, Walbot V (2010) Maize tumors caused by Ustilago maydis require organ-specific genes in host and pathogen. Science 328: 89–92

    Google Scholar 

  • Skovgaard K, Nirenberg HI, O’Donnell K, Rosendahl S (2001) Evolution of Fusarium oxysporum f. sp. vasifectum races inferred from multigene genealogies. Phytopathology 91:1231–1237

    CAS  PubMed  Google Scholar 

  • Snyder WC, Hansen HN (1940) The species concept in Fusarium. Am J Bot 27:64–67

    Google Scholar 

  • Sørensen JL, Sondergaard TE, Covarelli L, Fuertes PR, Hansen FT, Frandsen RJN, Saei W, Lukassen MB, Wimmer R, Nielsen KF, Gardiner DM, Giese H (2014) Identification of the biosynthetic gene clusters for the lipopeptidesfusaristatin A and W493 B in Fusarium graminearum and F.pseudograminearum. J Nat Prod 77:2615–2619

    Google Scholar 

  • Sperschneider J, Gardiner DM, Thatcher LF, Lyons R, Singh SB, Manners JM, Taylor JM (2015) Genome-wide analysis of three Fusarium pathogens identifies rapidly evolving chromosomes and genes associated with pathogenicity. Genome Biol Evol 7(6):1613–1627

    CAS  PubMed  PubMed Central  Google Scholar 

  • Steindorff AS, Persinoti GF, Monteiro VN, Silva RN (2015) Fungal metabolic diversity. In: Gupta VK, Mach RL, Sreenivasaprasad S (eds) Fungal biomolecules: sources, applications and recent developments. Wiley, Chichester, pp 239–262

    Google Scholar 

  • Stoner MF (1981) Ecology of Fusarium in non-cultivated soils. In: Nelson PE, Toussoun TA, Cook RJ (eds) Fusarium: diseases, biology, and taxonomy. The Pennsylvania State University Press, University Park, pp 276–286

    Google Scholar 

  • Stracke S, Kistner C, Yoshida S, Mulder L, Sato S, Kaneko T, Tabata S, Sandal N, Stougaard J, Szczyglowski K, Parniske M (2002) A plant receptor-like kinase required for both bacterial and fungal symbiosis. Nature 417:959–962

    CAS  PubMed  Google Scholar 

  • Straight PD, Fischbach MA, Walsh CT, Rudner DZ, Kolter R (2007) A singular enzymaticmegacomplex from Bacillus subtilis. Proc Natl Acad Sci USA 104:305–310

    CAS  PubMed  Google Scholar 

  • Strieker M, Tanovic A, Marahiel MA (2010) Nonribosomal peptide synthetases:structures and dynamics. Curr Opin Struct Biol 20:234–240

    CAS  PubMed  Google Scholar 

  • Struck C (2006) Infection strategies of plant parasitic fungi. In: Cooke BM, Jones DG, Kaye B (eds) The epidemiology of plant diseases. Springer, The Netherlands, pp 117–137

    Google Scholar 

  • Sutherland JB, Pometto AL, Crawford DL (1983) Lignocellulose degradation by Fusarium species. Can J Bot 61:1194–1198

    CAS  Google Scholar 

  • Sutherland R, Viljoen A, Myburg AA, Van den Berg N (2013) Pathogenicity associated genes in Fusarium oxysporum f. sp. cubense race 4. S Afr J Sci 109(5/6), Art. #0023, 10 p. https://doi.org/10.1590/sajs.2013/20120023

  • Taghavi S, van der Lelie D, Hoffman A, Zhang YB, Walla MD, Vangronsveld J, Newman L, Monchy S (2010) Genome sequence of the plant growth prmoting endophytic bacterium Enterobacter species 638. PLoS Genet 6:e100943

    Google Scholar 

  • Takahashi K (1985) Distribution of hydrolytic enzymes at barley powdery mildew encounter sites: implications for resistance associated with papilla formation in a compatible system. Physiol Plant Pathol 27:167–184

    CAS  Google Scholar 

  • Tantaoui A, Ouinten M, Geiger JP, Fernandez D (1996) Characterization of asingle lineage of Fusarium oxysporum f.sp. albedinis causing Bayoud disease ofdate palm in Morocco. Phytopathology 86:787–792

    Google Scholar 

  • Teunissen HAS, Rep M, Houterman PM, Cornelissen BJC, Haring MA (2003) Construction of a mitotic linkage map of Fusarium oxysporumbased on Foxy-AFLPs. Mol Genet Genomics 269:215–226

    CAS  PubMed  Google Scholar 

  • Thatcher LF, Manners JM, Kazan K (2009) Fusarium oxysporum hijacks COI1-mediated jasmonate signaling to promote disease development in Arabidopsis. Plant J. 58:927–939

    CAS  PubMed  Google Scholar 

  • Tian CF, Zhou YZ, Zhang YM, Li Q, Zhang YZ, Li DF, Wang S, Wang J, Gilbert LB, Li YR, Chen WX (2012) Comperative genomics of rhizobia nodulating soybean suggests extensive recruitment of lineage specific gene in adaptation. Proc Natl Acad Sci USA 109:8629–8634

    CAS  PubMed  Google Scholar 

  • Tisserant E, Malbriel M, Kuo A, Kohler A, Symeonidi A, Balestrini R, Charron P, Duensing N, Frey NFD, Gianinazzi-Pearson V, Gibert LB, Handa Y, Herr JR, Hijri M, Koul R, Kawaguchi M, Krajinski F, Lammers PJ, Masclauxm FG, Murat C, Morin E, Ndikumana S, Pagni M, Petipuerre D, Requena N, Rosikiewhicz P, Riley R, Saito K, Clemente HS, Shapiro H, Van Tuinen D, Becard G, Bonfante P, Paszkowski U, Shacha-Ahaill AYY, Atuskan GA, Young PW, Sanders IR, Henrissat B, Rensing SA, Grigoriev MN, Roux C, Martin F (2013) Genome of an arbuscular mycohrrizal fungus provides insight into the oldest plant symbiosis. Proc Natl Acad Sci USA 110:20117–20122

    CAS  PubMed  Google Scholar 

  • Tobiasen C, Aahman J, Ravnholt KS, Bjerrum MJ, Grell MN, Giese H (2007) Nonribosomalpeptide synthetase (NPS) genes in Fusarium graminearum, F. culmorum and F.pseudograminearium and identification of NPS2 as the producer of ferricrocin. Curr Genet 51:43–58

    Google Scholar 

  • Tsitsigiannis DI, Keller NP (2007) Oxylipins as developmental and host-fungal communication signals. Trends Microbiol 15:109–118

    CAS  PubMed  Google Scholar 

  • Tsuge T, Harimoto Y, Akimitsu K, Ohtani K, Kodama M, Akagi Y, Egusa M, Yamamoto M, Otani H (2013) Host-selective toxins produced by the plant pathogenic fungus Alternaria alternata. FEMS Microbiol Rev 37:44–66

    CAS  PubMed  Google Scholar 

  • Turrà D, El Ghalid M, Rossi F, Di Pietro A (2015) Fungal pathogen uses sex pheromone receptor for chemotropic sensing of host plant signals. Nature 527:521–536

    PubMed  Google Scholar 

  • Urban M, Mott E, Farley T, Hammond-Kosack K (2003) The Fusarium graminearum MAP1 gene is essential for pathogenicity and development of perithecia. Mol. Plant Pathol. 4:347–359

    CAS  PubMed  Google Scholar 

  • Van der Does HC, Duyvesteijn RG, Goltstein PM, van Schie CC, Manders EM, Cornelissen BJ, Rep M (2008) Expression of effector gene SIX1 of Fusarium oxysporum requires living plant cells. Fungal Genet Biol 45:1257–1264

    PubMed  Google Scholar 

  • Voigt CA, Schãfer W, Salomon S (2005) A secreted lipase of Fusarium graminearum is a virulence factor required for infection of cereals. Plant J. 42:364–375

    CAS  PubMed  Google Scholar 

  • Waalwijk C, De Koning JRA, Baayen RP, Gams W (1996) Discordant groupings of Fusarium spp. from section Elegans, Liseola and Dlaminia based on ribosomal ITS1 and ITS2 sequences. Mycologia 88:361–368

    CAS  Google Scholar 

  • Walter S, Nicholson P, Doohan FM (2010) Action and reaction of host and pathogen during Fusarium head blight disease. New Phytol 185:54–66

    CAS  PubMed  Google Scholar 

  • Walton JD (1996) Host-selective toxins: agents of compatibility. Plant Cell 8:1723–1733

    Google Scholar 

  • Wang X, Jiang N, Liu J, Liu W, Wang GL (2014) The role of effectors and host immunity in plant–necrotrophic fungal interactions. Virulence 5:722–732

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weiberg A, Wang M, Lin FM, Zhao H, Zhang Z, Kaloshian I, Huang HD, Jin H (2013) Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. Science 342:118–123

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weimann P, Brown DW, Kleigrewe K, Bok JW, Keller NP, Humpf H-U, Tudzynski B (2010) FfVel1 and FfLae1, components of a velvet—like complex in Fusarium fujikuroi, affect differentiation, secondary metabolism and virulence. Mol Micribiol 77(4):972–994

    Google Scholar 

  • Widmann C, Gibson S, Jarpe MB, Johnson GL (1999) Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev 79:143–180

    CAS  PubMed  Google Scholar 

  • Wiemann P, Sieber CMK, von Bargen KW, Studt L, Niehaus EM, Espino JJ, Huß K, Michielse CB, Albermann S, Wagner D, Bergner SV, Connolly LR, Fischer A, Reuter G, Kleigrewe K, Bald T, Wingfield BD, Ophir R, Freeman S, Hippler M, Smith KM, Brown DW, Proctor RH, Münsterkötter M, Freitag M, Humpf H-U, Güldener U, Tudzynski B (2013) Deciphering the cryptic genome: genome-wideanalyses of the rice pathogen Fusarium fujikuroi reveal complex regulationof secondary metabolism and novel metabolites. PLoS Pathog 9:e1003475

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wollenweber HW (1931) Fusarium-Monographie. Fungi parasitici et saprophytici. Zeitschrift für Parasitenkunde 3:269–516

    Google Scholar 

  • Wollenweber HW, Reinking OA (1935) Die Fusarien, ihre Beschreibung. Schadwirkung und Bekampfung. P, Parey, Berlin, p 365

    Google Scholar 

  • Wolpert TJ, Dunkle LD, Ciuffetti LM (2002) Host-selective toxins and avirulence determinants: What’s in a name? Annu Rev Phytopathol 40:251–285

    CAS  PubMed  Google Scholar 

  • Woudt LP, Neuvel A, Sikkema A, VanGrinsven MQJM, de Milliano WAJ, Campbell CL, Leslie JF (1995) Genetic variation in Fusarium oxysporum from cyclamen. Phytopathology 85:1348–1355

    Google Scholar 

  • Wright KM, Chapman S, McGeachy K, Humphris S, Campbell E, TothI K, Holden NJ (2013) The endophytic lifestyle of Escherichia coli O157:H7: quantification and internal localization in roots. Phytopathology 103:333–340

    PubMed  Google Scholar 

  • Xu JR, Hamer JE (1996) MAP kinase and cAMP signaling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporthe grisea. Genes Dev 10:2696–2706

    CAS  PubMed  Google Scholar 

  • Yi M, Valent B (2013) Communication between filamentous pathogens and plants at the biotrophic interface. Annu Rev Phytopathol 51:567–611

    Google Scholar 

  • Yoder OC, Turgeon BG (2001) Fungal genomics and pathogenicity. Curr Opin Plant Biol 4:315–321

    CAS  PubMed  Google Scholar 

  • Zeilinger S, Gupta VK, Dahms TES, Silva RN, Singh HB, Upadhyay RS, Gomes EV, Tsui CKM, Nayak SC (2015) Friends or Foes? Emerging insights from fungal interactions with plants. FEMS Microbiol Rev https://doi.org/10.1093/femsre/fuv045

  • Zhao X, Xu JR (2007) A highly conserved MAPK-docking site in Mst7is essential for Pmk1 activation in Magnaporthe grisea. MolMicrobiol 63:881–894

    CAS  Google Scholar 

  • Zhao Z, Liu H, Wang C, Xu JR (2013) Comparative analysis of fungalgenomes reveals different plant cell wall degrading capacityin fungi. BMC Genome 14:274

    Google Scholar 

Download references

Acknowledgements

Authors thank Mr Hemant Dasila, postgraduate student at Department of Microbiology for his contribution in the preparation of manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manvika Sahgal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rana, A., Sahgal, M., Johri, B.N. (2017). Fusarium oxysporum: Genomics, Diversity and Plant–Host Interaction. In: Satyanarayana, T., Deshmukh, S., Johri, B. (eds) Developments in Fungal Biology and Applied Mycology. Springer, Singapore. https://doi.org/10.1007/978-981-10-4768-8_10

Download citation

Publish with us

Policies and ethics