Skip to main content

Antibacterial Applications of Nanomaterials

  • Chapter
  • First Online:
Recent Trends in Nanomaterials

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 83))

Abstract

Many serious threats due to infectious diseases laid serious threats to the public health worldwide. This is particularly with the outgrowth of bacterial strains due to antibiotic-resistant. In recent advances, nanotechnology has provided its huge potential effect on public health care and plays a significant role in controlling the infectious diseases. Nanotechnology exploits the improved properties of all fields in the disciplines of chemicals, medicinal, biological, engineering, materials science, etc. Recent advances in nanotechnology contributed to the evolution of various novel antimicrobial agents in nanobiotechnology subject. Therefore, metal oxide nanoparticles have received a great attention due to their effective antibacterial properties. ZnO has received great many interests as an antibacterial material because of its stability under abrasive conditions of processing. This is also because of its being safe for human as well as animal’s life. The antibacterial property of ZnO is due to its reaction with water and its generating reactive oxygen species. This chapter describes the effect of pure and doped (cobalt and magnesium) ZnO nanoparticles on antibacterial activity against two gram-negative Escherichia coli and Pseudomonas aeroginosa and two gram-positive Bacillus subtilis and Staphylococcus aureus bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Meyer, O. Kuusi, Nanotechnology: generalizations in an interdisciplinary field of science and technology. Int. J. Philos. Chem. 10, 153–168 (2002)

    Google Scholar 

  2. F.J. Hernández-Sierra, F. Ruiz, D.C.C. Pena et al., The antimicrobial sensitivity of Streptococcus mutans to nanoparticles of silver, zinc oxide, and gold. Nanomed. Nanotech. Biol. Med. 4, 237–240 (2008)

    Article  Google Scholar 

  3. M. Oves, M.S. Khan, A. Zaidi et al., Antibacterial and cytotoxic efficacy of extracellular silver nanoparticles biofabricated from chromium reducing novel OS4 strain of Stenotrophomonas maltophilia. PLoS ONE 8(3), e59140 (2013)

    Article  Google Scholar 

  4. J. Sawai, Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. J. Microbiol. Methods 54, 177–182 (2003)

    Article  Google Scholar 

  5. A. Azam, A.S. Ahmed, M. Oves, Antimicrobial activity of metal oxide nanoparticles against gram-positive and gram-negative bacteria: a comparative study. Int. J. Nanomed. 6003–6009 (2012)

    Google Scholar 

  6. J. Musarrat, S. Dwivedi, B.R. Singh, A.A. Al-Khedhairy, A. Azam, A. Naqvi, Production of antimicrobial silver nanoparticles in water extracts of the fungus Amylomyces rouxii strain KSU-09. Biores. Technol. 101(22), 8772–8776 (2010)

    Article  Google Scholar 

  7. A. Vascashta, D. DimovaMalinovska, Nanostructured and nanoscale devices, sensors and detectors. Sci. Technol. Adv. Mater. 6, 312 (2005)

    Article  Google Scholar 

  8. R. Langer, Drug delivery. Drugs on target. Science 293, 58–59 (2001)

    Article  Google Scholar 

  9. K.H. Roy, Q. Mao, S.K. Huang et al., Oral gene delivery with chitosan–DNA nanoparticles generates immunologic protection in a murine model of peanut allergy. Nat. Med. 5, 387 (1999)

    Article  Google Scholar 

  10. E. Sachlors, D. Gotora, J.T. Czernuszka, Collagen scaffolds reinforced with biomimetic composite nano-sized carbonate-substituted hydroxyapatite crystals and shaped by rapid prototyping to contain internal microchannels. Tissue Eng. 12, 2479 (2006)

    Article  Google Scholar 

  11. Z.P. Xu, Q.H. Zeng, G.Q. Lu et al., Nanoscience and computational chemistry: research progress. Chem. Eng. Sci. 61, 1027 (2006)

    Article  Google Scholar 

  12. O.C. Farokhzad, J. Cheng, B.A. Teply, I. Sherifi, S. Jon, P.W. Kantoff, J.P. Richie, R. Langer, Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Natl. Acad. Sci. USA 103, 6315 (2006)

    Article  Google Scholar 

  13. P.K. Stoimenov, R.L. Klinger, G.L. Marchin et al., Synthesis of AgNPs by Bacillus cereus bacteria and their antimicrobial potential. Langmuir 18, 6679 (2002)

    Article  Google Scholar 

  14. I. Sondi, B. Salopek-Sondi, Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram-negative bacteria. J. Coll. Interface Sci 275, 177 (2004)

    Article  Google Scholar 

  15. A. Panacek, K. vitek, R.M. Prucek et.al., Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J. Phys. Chem B 110, 16248 (2006)

    Google Scholar 

  16. A.H. Pfund, The light sensitiveness of copper oxide. Phys. Rev. 3, 289 (1916)

    Article  Google Scholar 

  17. A.E. Rakhshni, Preparation, characteristics and photovoltaic properties of cuprous oxide—a review. Solid State Electron. 29(1), 7–17 (1986)

    Article  Google Scholar 

  18. Y.W. Chun, T.J. Webster, The role of nanomedicine in growing tissues. Ann. Biomed. Eng. 37(10), 2034–2047 (2009)

    Article  Google Scholar 

  19. E. Weir, A. Lawlor, A. Whelan et al., The use of nanoparticles in anti-microbial materials and their characterization. E. Analyst. 133(7), 835–845 (2008)

    Article  Google Scholar 

  20. S. Pedroso, I.A. Guillen, Microarray and nanotechnology applications of functional nanoparticles Comb. Chem. High Throughput Screen. 9(5), 389–397 (2006)

    Article  Google Scholar 

  21. J.R. Kanwar, G. Mahidhara, R.K. Kanwar, Recent advances in nanoneurology for drug delivery to the brain. Curr. Nanosci. 5(4), 441–448 (2009)

    Article  Google Scholar 

  22. B. Sara, R.K. Kanwar, K. Khoshmanesh, Promises of nanotechnology for drug delivery to brain in neurodegenerative diseases. Curr. Nanosci. 5(1), 26–32 (2009)

    Article  Google Scholar 

  23. I. Yacoby, I. Benhar, Antibacterial nanomedicine. Nanomed 3(3), 329–341 (2008)

    Article  Google Scholar 

  24. G. Fu, P.S. Vary, C.T. Lin, Anatase TiO2 nanocomposites for antimicrobial coatings. J. Phys. Chem. B 109, 8889–8898 (2005)

    Article  Google Scholar 

  25. M. Nirmala, A. Anukaliani, Synthesis and characterization of undoped and TM (Co, Mn) doped ZnO nanoparticles. Phys. B: Phys. Mat 406, 911–915 (2011)

    Article  Google Scholar 

  26. N. Vigneshwaran, S. Kumar, A.A. Kathe et al., Functional finishing of cotton fabrics using zinc oxide–soluble starch nanocomposites. Nanotechnology 17, 5087–5095 (2006)

    Article  Google Scholar 

  27. A. Becheri, M. Durr, P.L. Nostro et al., Synthesis and characterization of zinc oxide nanoparticles: application to textiles as UV-absorbers. J. Nanopart. Res. 10, 679–689 (2007)

    Article  Google Scholar 

  28. T. Xu, C.S. Xie, Tetrapod-Like nano-particle ZnO/Acrylic resin composite and its multi-function property. Prog. Org. Coat. 46, 297–301 (2003)

    Article  Google Scholar 

  29. Q. Li, S.L. Chen, W.C. Jiang, Durability of nano ZnO antibacterial cotton fabric to sweat. J. Appl. Polym. Sci. 103, 412–416 (2007)

    Article  Google Scholar 

  30. E. Richards, Antibacterial wallpaper. Chem. Tech. 11 (2006)

    Google Scholar 

  31. S. Nair, A. Sasidharan, V.V.D. Rani et al., Role of size scale of ZnO nanoparticles and microparticles on toxicity toward bacteria and osteoblast cancer cells. J. Mat. Sci. 20, 235–241 (2009)

    Google Scholar 

  32. J. Sawai, H. Igarashi, A. Hashimoto et al., Evaluation of growth inhibitory effect of ceramics powder slurry on bacteria by conductance method. Chem. Eng. Jpn. 29, 251–256 (1996)

    Article  Google Scholar 

  33. W. Jiang, H. Mashayeikhi, B. Xing, Bacterial toxicity comparison between nano- and micro-scaled oxide particles. Environ. Pollut. 157, 1619–1625 (2009)

    Article  Google Scholar 

  34. Y. Liu, L. He, A. Mustapha, H. Li, Z.Q. Hu, Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7. J. App. Microbiol. 107, 1193–1201 (2009)

    Article  Google Scholar 

  35. H. Lopez-Sandoval, M. Londono-Lemos, R. Garza-Velasco et al., Synthesis, structure and biological activities of cobalt(II) and zinc(II) coordination compounds with 2-benzimidazole derivatives. J. Inorg. Biochem. 102, 1267–1276 (2008)

    Article  Google Scholar 

  36. L. Saghatforoush, F. Chalabian, A. Aminkhani et al., Synthesis, spectroscopic characterization and antibacterial activity of new cobalt(II) complexes of unsymmetrical tetradentate (OSN2) schiff base ligands. Eur. J. Med. Chem. 44, 4490–4495 (2009)

    Article  Google Scholar 

  37. Rodrıguez-Arguelles MC, Cao R, A.M. Garcıa-Deibe et al., Antibacterial and antifungal activity of metal(II) complexes of acylhydrazones of 3-isatin and 3-(N-methyl) isatin. Polyhedron 28, 2187–2195 (2009)

    Google Scholar 

  38. J. Sawai, E. Kawada, F. Kanou et al., Detection of active oxygen generated from ceramic powders having antibacterial activity. J. Chem. Eng. Jpn. 29, 627–633 (1996)

    Article  Google Scholar 

  39. J. Sawai, H. Kojima, H. Igarashi et al., Escherichia coli damage by ceramic powder slurries. J. Chem. Eng. Jpn. 30, 1034–1039 (1997)

    Article  Google Scholar 

  40. J. Sawai, S. Shoji, H. Igarashi et al., Hydrogen peroxide as an antibacterial factor in zinc oxide powder slurry. J. Bioeng. 86, 521–522 (1998)

    Google Scholar 

  41. B.G. Applerot, A. Lipovsk, R. Dror, N. Perkas, Y. Nitzan, R. Lubart, A. Gedanken, Enhanced antibacterial activity of nanocrystalline ZnO due to increased ROS-mediated cell injury. Adv. Funct. Mater. 19, 842 (2009)

    Article  Google Scholar 

  42. O. Yamamoto, M. Komatsu, J. Sawai, et.al., Effect of lattice constant of zinc oxide on antibacterial characteristics. Mater. Sci. Mater. Med. 15, 847 (2004)

    Google Scholar 

  43. R. Dastjerdi, M. Montazer, A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties. Coll. Surf. B: Biointerface 79, 5–8 (2010)

    Article  Google Scholar 

  44. I. Djerdj, J. Zvonko, A. Denis, N. Markus, Co-doped ZnO nanoparticles: minireview. Nanoscale 2, 1096–1104 (2010)

    Article  Google Scholar 

  45. H.K. Park, D.K. Kim, C.H. Kim, Effect of solvent on titania particle formation and morphology in thermal hydrolysis of TiCl4. J. Am. Ceram. Soc. 80, 743–749 (1997)

    Article  Google Scholar 

  46. S.I. Hirano, Hydrothermal processing of ceramics. J. Am. Ceram. Soc. 66, 1342–1344 (1987)

    Google Scholar 

  47. D. Vorkapic, T. Matsoukas, Effect of temperature and alcohols in the preparation of titania nanoparticles from alkoxides. J. Am. Ceram. Soc. 81, 2815–2820 (1998)

    Article  Google Scholar 

  48. C.G. Granqvist, R.A. Buhrman, Log-normal size distributions of ultrafine metal particles. J. App. Phys. 47, 2200–2219 (1976)

    Article  Google Scholar 

  49. T.T. Kodas, Generation of complex metal oxides by aerosol processes: superconducting ceramic particles and films. Adv. Mater. 6, 180–192 (1989)

    Article  Google Scholar 

  50. G.D. Ulrich, J.W. Riehl, Aggregation and growth of submicron oxide particles in flames. J. Coll. Interface Sci 87, 257–265 (1982)

    Article  Google Scholar 

  51. G. Skanadan, Y.J. Chen, N. Glumac, B.H. Kear, Synthesis of oxide nanoparticles in low pressure flames. Nanostruct. Mater. 11, 149–158 (1999)

    Article  Google Scholar 

  52. K. Pearson, K.E. Kartan, Biofilm development in bacteria. Adv. Appl. Microb. 57, 79–111 (2005)

    Article  Google Scholar 

  53. M. Kostakioti, M. Hadjifrangiskou, S.J. Hultgren, Bacterial biofilms: development, dispersal and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harb. Perspect. Med. 3, a010306 (2013)

    Article  Google Scholar 

  54. H.C. Flemming, J. Wingender, The biofilm matrix. Nat. Rev. Microbiol. 8, 623–633 (2010)

    Google Scholar 

  55. W.W. Nichols, S.M. Dorrington, M.P.E. Slack, H.L. Walmsley, Inhibition of tobramycin diffusion by binding to alginate. Antimicrob. Agents Chemother. 32, 518–523 (1988)

    Article  Google Scholar 

  56. N. Hoiby, T. Bjarnsholt, M. Givskov, S. Molin, O. Ciofu, Antibiotic resistance of bacterial biofilms. Int. J. Antimicrob. Agents 35, 322–332 (2010)

    Article  Google Scholar 

  57. T. Bjarnsholt, P.O. Jensen, M. Burmolle, M. Hentzer, J.A.J. Haagensen, H.P. Hougen, Pseudomonas aeruginosa tolerance to tobramycin, hydrogen peroxide and polymorphonuclear leukocytes is quorum-sensing dependent. Microbiology 151, 373–383 (2005)

    Article  Google Scholar 

  58. M. Hentzer, H. Wu, J.B. Andersen, Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J. 22, 3803–3815 (2003)

    Article  Google Scholar 

  59. M. Fresta, G. Puglisi, G. Giammona, G. Cavallaro, N. Micali et al., Pefloxacine mesilate and ofloxacin loaded polyethylcyanoacrylate nanoparticles: characterization of the colloidal drug carrier formulation. J. Pharm. Sci. 84, 895–902 (1995)

    Article  Google Scholar 

  60. T. Hamouda, M. Hayes, Z. Cao, R. Tonda, K. Johnson et al., A novel surfactant nanoemulsion with broad-spectrum sporicidal activity against Bacillus species. J. Infect. Dis. 180, 1939–1949 (1990)

    Article  Google Scholar 

  61. S. Ravikumar, R. Gokulakrishnan, P. Boomi, In vitro antibacterial activity of the metal oxide nanoparticles against urinary tract infectious bacterial pathogens. Asian Pac. J. Trop. Dis. 2, 85–89 (2012)

    Article  Google Scholar 

  62. M. Eshad, J. Lellouche, S. Matalon, A. Gedanken, E. Banin, Sonochemical coating of ZnO and CuO nanoparticles inhibit Streptococcus mutans biofilm formation on teeth model. Langmuir 28, 12288–12295 (2012)

    Article  Google Scholar 

  63. R. Hernandez-Delgadillo, D. Velasco-Arias, D. Diaz, K. Arevalo-Niño, M. Garza-Enriquez et al., Zero valent bismuth nanoparticles inhibit Streptococcus mutans growth and formation of biofilm. Int. J. Nanomed. 7, 2109–2113 (2012)

    Google Scholar 

  64. J.F. Hernández-Sierra, F. Ruiz, D.C. Pena, F. Martínez-Gutiérrez, A.E. Martínez et al., The antimicrobial sensitivity of Streptococcus mutans to nanoparticles of silver, zinc oxide, and gold. Nanomed 3, 237–240 (2008)

    Article  Google Scholar 

  65. J. Lellouche, A. Friedman, A. Gedanken, E. Banin, Antibacterial and antibiofilm properties of yttrium fluoride nanoparticles. Int. J Nanomed. 7, 5611–5624 (2012)

    Google Scholar 

  66. K. Ali, S. Dwivedi, A. Azam, Q. Saquib, M.S. Al-Said, A.A. Alkhedhairy, J. Musarrat, Aloe vera extract functionalized zinc oxide nanoparticles as nanoantibiotics against multi-drug resistant clinical bacterial isolates. J. Coll. Interface Sci. 472, 145–156 (2016)

    Article  Google Scholar 

  67. K. Ali, B. Ahmed, S. Dwivedi, Q. Saquib, A.A. Al-Khedhairy, J. Musarrat, Microwave accelerated green synthesis of stable silver nanoparticles with Eucalyptus globulus leaf extract and their antibacterial and antibiofilm activity on clinical isolates. PLoS ONE 10(7), e0131178 (2015)

    Article  Google Scholar 

  68. S. Dwivedi, R. Wahab, F. Khan, Y.K. Mishra, J. Musarrat, A.A. Al-Khedhairy, Reactive oxygen species mediated bacterial biofilm inhibition via zinc oxide nanoparticles and their statistical determination. PLoS ONE 9(11), e111289 (2014)

    Article  Google Scholar 

  69. M.J. Hajipour, K.M. Fromm, A.A. Ashkarran, D.J. Aberasturi, I.R. Larramendi, T. Rojo, V. Serpooshan, Parak Wj, M. Mahmoudi, Antibacterial properties of nanoparticles. Trends Biotechnol. 30, 499–511 (2012)

    Article  Google Scholar 

  70. H. Park, H.-J. Park, J.A. Kim, S.H. Lee, Jh Kim, J. Yoon, T.H. Park, Inactivation of Pseudomonas aeruginosa PA01 biofilms by hyperthermia using super paramagnetic nanoparticles. J. Microbiol. Methods 84, 41–45 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ameer Azam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Azam, A., Arshad, M., Dwivedi, S., Ashraf, M.T. (2017). Antibacterial Applications of Nanomaterials. In: Khan, Z. (eds) Recent Trends in Nanomaterials. Advanced Structured Materials, vol 83. Springer, Singapore. https://doi.org/10.1007/978-981-10-3842-6_6

Download citation

Publish with us

Policies and ethics