Skip to main content

Roles of RUNX in Hypoxia-Induced Responses and Angiogenesis

  • Chapter
  • First Online:
RUNX Proteins in Development and Cancer

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 962))

Abstract

During the past two decades, Runt domain transcription factors (RUNX1, 2, and 3) have been investigated in regard to their function, structural elements, genetic variants, and roles in normal development and pathological conditions. The Runt family proteins are evolutionarily conserved from Drosophila to mammals, emphasizing their physiological importance. A hypoxic microenvironment caused by insufficient blood supply is frequently observed in developing organs, growing tumors, and tissues that become ischemic due to impairment or blockage of blood vessels. During embryonic development and tumor growth, hypoxia triggers a stress response that overcomes low-oxygen conditions by increasing erythropoiesis and angiogenesis and triggering metabolic changes. This review briefly introduces hypoxic conditions and cellular responses, as well as angiogenesis and its related signaling pathways, and then describes our current knowledge on the functions and molecular mechanisms of Runx family proteins in hypoxic responses, especially in angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

VEGF:

vascular endothelial growth factor

HIF:

hypoxia-inducible factor

PTM:

post-translational modification

CBFβ:

core binding factor β

PHD:

prolyl hydroxylase

pVHL:

von Hippel Lindau

FIH:

factor inhibiting HIF

PI3K:

phosphatidylinositol 3-kinase

MAPK:

mitogen-activated protein kinase

PKB:

protein kinase B

mTOR:

mammalian target of rapamycin

ERK:

extracellular signal-regulated kinase

S6 K:

S6 kinase

eIF-4E:

eukaryotic translational initiation factor 4E

4E–BP1:

eIF-4E-binding protein

MNK:

MAP kinase interacting kinase

VPF:

vascular permeability factor

HRE:

hypoxia-responsive element

PlGF:

placental growth factor

VEGFR:

VEGF-receptor

EC:

endothelial cell

eNOS:

endothelial nitric oxide

FAK:

focal adhesion kinase

Ang:

angiopoietin

PECAM:

platelet-endothelial cell-adhesion molecule

bFGF:

basic fibroblast growth factor

GM-CSF:

granulocyte macrophage-colony stimulating factor

EPC:

endothelial progenitor cell

CAC:

circulating angiogenic cell

TIMP:

tissue inhibitor of metalloproteinase

IGFBP-3:

insulin-like growth factor-binding protein-3

AGM:

aorta-gonad mesonephros

HSC:

hematopoietic stem cell

HSPC:

hematopoietic stem and progenitor cell

AML:

acute myeloid leukemia

C/EBPα:

CCAAT/enhancer-binding protein α

DNMT:

DNA methyltransferases

ER:

endoplasmic reticulum

UPR:

unfolded protein response

TRAIL:

tumor necrosis factor-related apoptosis-inducing ligand

HDAC:

histone deacetylase

ODDD:

oxygen-dependent degradation domain

HBME:

bone marrow endothelial cell

MMP:

matrix metalloproteinase

HMT:

histone methyltransferase

BRD:

bromodomain

MVD:

microvascular density

vWF:

von Willebrand factor

Dll4:

Delta-like 4

Egr-3:

early growth response-3

References

  • Altieri, D. C. (2008). Survivin, cancer networks and pathway-directed drug discovery. Nature Reviews Cancer, 8(1), 61–70. doi:10.1038/nrc2293.

    Article  CAS  PubMed  Google Scholar 

  • Bae, S. C., & Choi, J. K. (2004). Tumor suppressor activity of RUNX3. Oncogene, 23(24), 4336–4340. doi:10.1038/sj.onc.1207286.

    Article  CAS  PubMed  Google Scholar 

  • Balkwill, F. R., Capasso, M., & Hagemann, T. (2012). The tumor microenvironment at a glance. Journal of Cell Science, 125(Pt 23), 5591–5596. doi:10.1242/jcs.116392.

    Article  CAS  PubMed  Google Scholar 

  • Barbetti, V., Tusa, I., Cipolleschi, M. G., Rovida, E., & Dello Sbarba, P. (2013). AML1/ETO sensitizes via TRAIL acute myeloid leukemia cells to the pro-apoptotic effects of hypoxia. Cell Death & Disease, 4, e536. doi:10.1038/cddis.2013.49.

    Article  CAS  Google Scholar 

  • Barnes, G. L., Hebert, K. E., Kamal, M., Javed, A., Einhorn, T. A., Lian, J. B., et al. (2004). Fidelity of Runx2 activity in breast cancer cells is required for the generation of metastases-associated osteolytic disease. Cancer Research, 64(13), 4506–4513. doi:10.1158/0008-5472.can-03-3851.

    Article  CAS  PubMed  Google Scholar 

  • Batchelor, T. T., Gerstner, E. R., Emblem, K. E., Duda, D. G., Kalpathy-Cramer, J., Snuderl, M., et al. (2013). Improved tumor oxygenation and survival in glioblastoma patients who show increased blood perfusion after cediranib and chemoradiation. Proceedings of the National Academy of Sciences of the United States of America, 110(47), 19059–19064. doi:10.1073/pnas.1318022110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergers, G., & Benjamin, L. E. (2003). Tumorigenesis and the angiogenic switch. Nature Reviews. Cancer, 3(6), 401–410. doi:10.1038/nrc1093.

    Article  CAS  PubMed  Google Scholar 

  • Bosch-Marce, M., Okuyama, H., Wesley, J. B., Sarkar, K., Kimura, H., Liu, Y. V., et al. (2007). Effects of aging and hypoxia-inducible factor-1 activity on angiogenic cell mobilization and recovery of perfusion after limb ischemia. Circulation Research, 101(12), 1310–1318. doi:10.1161/CIRCRESAHA.107.153346.

    Article  CAS  PubMed  Google Scholar 

  • Bridges, E. M., & Harris, A. L. (2011). The angiogenic process as a therapeutic target in cancer. Biochemical Pharmacology, 81(10), 1183–1191. doi:10.1016/j.bcp.2011.02.016.

    Article  CAS  PubMed  Google Scholar 

  • Bronckers, A. L., Sasaguri, K., Cavender, A. C., D’Souza, R. N., & Engelse, M. A. (2005). Expression of Runx2/Cbfa1/Pebp2alphaA during angiogenesis in postnatal rodent and fetal human orofacial tissues. Journal of Bone and Mineral Research: the Official Journal of the American Society for Bone and Mineral Research, 20(3), 428–437. doi:10.1359/JBMR.041118.

    Article  CAS  Google Scholar 

  • Brubaker, K. D., Vessella, R. L., Brown, L. G., & Corey, E. (2003). Prostate cancer expression of runt-domain transcription factor Runx2, a key regulator of osteoblast differentiation and function. The Prostate, 56(1), 13–22. doi:10.1002/pros.10233.

    Article  CAS  PubMed  Google Scholar 

  • Cai, X., Gao, L., Teng, L., Ge, J., Oo, Z. M., Kumar, A. R., et al. (2015). Runx1 deficiency decreases ribosome biogenesis and confers stress resistance to hematopoietic stem and progenitor cells. Cell Stem Cell, 17(2), 165–177. doi:10.1016/j.stem.2015.06.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carmeliet, P. (2003). Blood vessels and nerves: Common signals, pathways and diseases. Nature Reviews. Genetics, 4(9), 710–720. doi:10.1038/nrg1158.

    Article  CAS  PubMed  Google Scholar 

  • Carmeliet, P., & Jain, R. K. (2000). Angiogenesis in cancer and other diseases. Nature, 407(6801), 249–257. doi:10.1038/35025220.

    Article  CAS  PubMed  Google Scholar 

  • Carmeliet, P., De Smet, F., Loges, S., & Mazzone, M. (2009). Branching morphogenesis and antiangiogenesis candidates: Tip cells lead the way. Nature Reviews. Clinical Oncology, 6(6), 315–326. doi:10.1038/nrclinonc.2009.64.

    Article  CAS  PubMed  Google Scholar 

  • Chen, H., Yan, Y., Davidson, T. L., Shinkai, Y., & Costa, M. (2006). Hypoxic stress induces dimethylated histone H3 lysine 9 through histone methyltransferase G9a in mammalian cells. Cancer Research, 66(18), 9009–9016. doi:10.1158/0008-5472.CAN-06-0101.

    Article  CAS  PubMed  Google Scholar 

  • Chen, M. J., Yokomizo, T., Zeigler, B. M., Dzierzak, E., & Speck, N. A. (2009). Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter. Nature, 457(7231), 887–891. doi:10.1038/nature07619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, M. W., Hua, K. T., Kao, H. J., Chi, C. C., Wei, L. H., Johansson, G., et al. (2010). H3K9 histone methyltransferase G9a promotes lung cancer invasion and metastasis by silencing the cell adhesion molecule Ep-CAM. Cancer Research, 70(20), 7830–7840. doi:10.1158/0008-5472.CAN-10-0833.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Y., Wei, X., Guo, C., Jin, H., Han, Z., Han, Y., et al. (2011). Runx3 suppresses gastric cancer metastasis through inactivation of MMP9 by upregulation of TIMP-1. International Journal of Cancer Journal international du cancer, 129(7), 1586–1598. doi:10.1002/ijc.25831.

    Article  CAS  PubMed  Google Scholar 

  • Chen, F., Bai, J., Li, W., Mei, P., Liu, H., Li, L., et al. (2013). RUNX3 suppresses migration, invasion and angiogenesis of human renal cell carcinoma. PloS One, 8(2), e56241. doi:10.1371/journal.pone.0056241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, F., Wang, M., Bai, J., Liu, Q., Xi, Y., Li, W., & Zheng, J. (2014). Role of RUNX3 in suppressing metastasis and angiogenesis of human prostate cancer. PloS One, 9(1), e86917. doi:10.1371/journal.pone.0086917.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chimge, N. O., & Frenkel, B. (2013). The RUNX family in breast cancer: Relationships with estrogen signaling. Oncogene, 32(17), 2121–2130. doi:10.1038/onc.2012.328.

    Article  CAS  PubMed  Google Scholar 

  • Delafontaine, P., Song, Y. H., & Li, Y. (2004). Expression, regulation, and function of IGF-1, IGF-1R, and IGF-1 binding proteins in blood vessels. Arteriosclerosis, Thrombosis, and Vascular Biology, 24(3), 435–444. doi:10.1161/01.ATV.0000105902.89459.09.

    Article  CAS  PubMed  Google Scholar 

  • Descalzi Cancedda, F., Melchiori, A., Benelli, R., Gentili, C., Masiello, L., Campanile, G., et al. (1995). Production of angiogenesis inhibitors and stimulators is modulated by cultured growth plate chondrocytes during in vitro differentiation: Dependence on extracellular matrix assembly. European Journal of Cell Biology, 66(1), 60–68.

    CAS  PubMed  Google Scholar 

  • Dong, C., Wu, Y., Yao, J., Wang, Y., Yu, Y., Rychahou, P. G., et al. (2012). G9a interacts with Snail and is critical for Snail-mediated E-cadherin repression in human breast cancer. The Journal of Clinical Investigation, 122(4), 1469–1486. doi:10.1172/JCI57349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ducy, P., Zhang, R., Geoffroy, V., Ridall, A. L., & Karsenty, G. (1997). Osf2/Cbfa1: A transcriptional activator of osteoblast differentiation. Cell, 89(5), 747–754.

    Article  CAS  PubMed  Google Scholar 

  • Dunwoodie, S. L. (2009). The role of hypoxia in development of the Mammalian embryo. Developmental Cell, 17(6), 755–773. doi:10.1016/j.devcel.2009.11.008.

    Article  CAS  PubMed  Google Scholar 

  • Eilken, H. M., & Adams, R. H. (2010). Dynamics of endothelial cell behavior in sprouting angiogenesis. Current Opinion in Cell Biology, 22(5), 617–625. doi:10.1016/j.ceb.2010.08.010.

    Article  CAS  PubMed  Google Scholar 

  • Eklund, L., & Saharinen, P. (2013). Angiopoietin signaling in the vasculature. Experimental Cell Research, 319(9), 1271–1280. doi:10.1016/j.yexcr.2013.03.011.

    Article  CAS  PubMed  Google Scholar 

  • Endo, T., Ohta, K., & Kobayashi, T. (2008). Expression and function of Cbfa-1/Runx2 in thyroid papillary carcinoma cells. The Journal of Clinical Endocrinology and Metabolism, 93(6), 2409–2412. doi:10.1210/jc.2007-2805.

    Article  CAS  PubMed  Google Scholar 

  • Erlebacher, A., Filvaroff, E. H., Gitelman, S. E., & Derynck, R. (1995). Toward a molecular understanding of skeletal development. Cell, 80(3), 371–378.

    Article  CAS  PubMed  Google Scholar 

  • Fagiani, E., & Christofori, G. (2013). Angiopoietins in angiogenesis. Cancer Letters, 328(1), 18–26. doi:10.1016/j.canlet.2012.08.018.

    Article  CAS  PubMed  Google Scholar 

  • Ferrara, N., Carver-Moore, K., Chen, H., Dowd, M., Lu, L., O’Shea, K. S., et al. (1996). Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature, 380(6573), 439–442. doi:10.1038/380439a0.

    Article  CAS  PubMed  Google Scholar 

  • Ferrara, N., Gerber, H. P., & LeCouter, J. (2003). The biology of VEGF and its receptors. Nature Medicine, 9(6), 669–676. doi:10.1038/nm0603-669.

    Article  CAS  PubMed  Google Scholar 

  • Folkman, J. (1997). Angiogenesis and angiogenesis inhibition: An overview. EXS, 79, 1–8.

    CAS  PubMed  Google Scholar 

  • Friedman, A. D. (2002). Runx1, c-Myb, and C/EBPalpha couple differentiation to proliferation or growth arrest during hematopoiesis. Journal of Cellular Biochemistry, 86(4), 624–629. doi:10.1002/jcb.10271.

    Article  CAS  PubMed  Google Scholar 

  • Fu, Y., Chang, A. C., Fournier, M., Chang, L., Niessen, K., & Karsan, A. (2011). RUNX3 maintains the mesenchymal phenotype after termination of the Notch signal. The Journal of Biological Chemistry, 286(13), 11803–11813. doi:10.1074/jbc.M111.222331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gacche, R. N. (2015). Compensatory angiogenesis and tumor refractoriness. Oncogenesis, 4, e153. doi:10.1038/oncsis.2015.14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao, X. N., Yan, F., Lin, J., Gao, L., Lu, X. L., Wei, S. C., et al. (2015). AML1/ETO cooperates with HIF1alpha to promote leukemogenesis through DNMT3a transactivation. Leukemia, 29(8), 1730–1740. doi:10.1038/leu.2015.56.

    Article  CAS  PubMed  Google Scholar 

  • Gerber, H. P., McMurtrey, A., Kowalski, J., Yan, M., Keyt, B. A., Dixit, V., & Ferrara, N. (1998). Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3′-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. The Journal of Biological Chemistry, 273(46), 30336–30343.

    Article  CAS  PubMed  Google Scholar 

  • Gerber, H. P., Vu, T. H., Ryan, A. M., Kowalski, J., Werb, Z., & Ferrara, N. (1999). VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nature Medicine, 5(6), 623–628. doi:10.1038/9467.

    Article  CAS  PubMed  Google Scholar 

  • Gerhardt, H., Golding, M., Fruttiger, M., Ruhrberg, C., Lundkvist, A., Abramsson, A., et al. (2003). VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. The Journal of Cell Biology, 161(6), 1163–1177. doi:10.1083/jcb.200302047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giaccia, A. J., Simon, M. C., & Johnson, R. (2004). The biology of hypoxia: The role of oxygen sensing in development, normal function, and disease. Genes & Development, 18(18), 2183–2194. doi:10.1101/gad.1243304.

    Article  CAS  Google Scholar 

  • Gomes, I., Sharma, T. T., Edassery, S., Fulton, N., Mar, B. G., & Westbrook, C. A. (2002). Novel transcription factors in human CD34 antigen-positive hematopoietic cells. Blood, 100(1), 107–119.

    Article  CAS  PubMed  Google Scholar 

  • Harris, A. L. (2002). Hypoxia – a key regulatory factor in tumour growth. Nature Reviews. Cancer, 2(1), 38–47. doi:10.1038/nrc704.

    Article  CAS  PubMed  Google Scholar 

  • Hellstrom, M., Phng, L. K., Hofmann, J. J., Wallgard, E., Coultas, L., Lindblom, P., et al. (2007). Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature, 445(7129), 776–780. doi:10.1038/nature05571.

    Article  PubMed  CAS  Google Scholar 

  • Helmlinger, G., Yuan, F., Dellian, M., & Jain, R. K. (1997). Interstitial pH and pO2 gradients in solid tumors in vivo: High-resolution measurements reveal a lack of correlation. Nature Medicine, 3(2), 177–182.

    Article  CAS  PubMed  Google Scholar 

  • Hirschi, K. K., Ingram, D. A., & Yoder, M. C. (2008). Assessing identity, phenotype, and fate of endothelial progenitor cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 28(9), 1584–1595. doi:10.1161/ATVBAHA.107.155960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hockel, M., Schlenger, K., Aral, B., Mitze, M., Schaffer, U., & Vaupel, P. (1996). Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Research, 56(19), 4509–4515.

    CAS  PubMed  Google Scholar 

  • Huang, Y., Du, K. M., Xue, Z. H., Yan, H., Li, D., Liu, W., et al. (2003). Cobalt chloride and low oxygen tension trigger differentiation of acute myeloid leukemic cells: Possible mediation of hypoxia-inducible factor-1alpha. Leukemia, 17(11), 2065–2073. doi:10.1038/sj.leu.2403141.

    Article  CAS  PubMed  Google Scholar 

  • Huang, C., Ida, H., Ito, K., Zhang, H., & Ito, Y. (2007). Contribution of reactivated RUNX3 to inhibition of gastric cancer cell growth following suberoylanilide hydroxamic acid (vorinostat) treatment. Biochemical Pharmacology, 73(7), 990–1000. doi:10.1016/j.bcp.2006.12.013.

    Article  CAS  PubMed  Google Scholar 

  • Isner, J. M., & Asahara, T. (1999). Angiogenesis and vasculogenesis as therapeutic strategies for postnatal neovascularization. The Journal of Clinical Investigation, 103(9), 1231–1236. doi:10.1172/JCI6889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito, Y. (1999). Molecular basis of tissue-specific gene expression mediated by the runt domain transcription factor PEBP2/CBF. Genes to Cells: Devoted to Molecular & Cellular Mechanisms, 4(12), 685–696.

    Article  CAS  Google Scholar 

  • Ito, Y. (2004). Oncogenic potential of the RUNX gene family: ‘Overview’. Oncogene, 23(24), 4198–4208. doi:10.1038/sj.onc.1207755.

    Article  CAS  PubMed  Google Scholar 

  • Iwatani, K., Fujimoto, T., & Ito, T. (2010). Cyclin D1 blocks the anti-proliferative function of RUNX3 by interfering with RUNX3-p300 interaction. Biochemical and Biophysical Research Communications, 400(3), 426–431. doi:10.1016/j.bbrc.2010.08.094.

    Article  CAS  PubMed  Google Scholar 

  • Iwatsuki, K., Tanaka, K., Kaneko, T., Kazama, R., Okamoto, S., Nakayama, Y., et al. (2005). Runx1 promotes angiogenesis by downregulation of insulin-like growth factor-binding protein-3. Oncogene, 24(7), 1129–1137. doi:10.1038/sj.onc.1208287.

    Article  CAS  PubMed  Google Scholar 

  • Iyama, K., Ninomiya, Y., Olsen, B. R., Linsenmayer, T. F., Trelstad, R. L., & Hayashi, M. (1991). Spatiotemporal pattern of type X collagen gene expression and collagen deposition in embryonic chick vertebrae undergoing endochondral ossification. The Anatomical Record, 229(4), 462–472. doi:10.1002/ar.1092290405.

    Article  CAS  PubMed  Google Scholar 

  • Jain, R. K. (2005). Normalization of tumor vasculature: An emerging concept in antiangiogenic therapy. Science, 307(5706), 58–62. doi:10.1126/science.1104819.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, Y., Xue, Z. H., Shen, W. Z., Du, K. M., Yan, H., Yu, Y., et al. (2005). Desferrioxamine induces leukemic cell differentiation potentially by hypoxia-inducible factor-1 alpha that augments transcriptional activity of CCAAT/enhancer-binding protein-alpha. Leukemia, 19(7), 1239–1247. doi:10.1038/sj.leu.2403734.

    Article  CAS  PubMed  Google Scholar 

  • Kalev-Zylinska, M. L., Horsfield, J. A., Flores, M. V., Postlethwait, J. H., Vitas, M. R., Baas, A. M., et al. (2002). Runx1 is required for zebrafish blood and vessel development and expression of a human RUNX1-CBF2T1 transgene advances a model for studies of leukemogenesis. Development (Cambridge, England), 129(8), 2015–2030.

    CAS  Google Scholar 

  • Kalev-Zylinska, M. L., Horsfield, J. A., Flores, M. V., Postlethwait, J. H., Chau, J. Y., Cattin, P. M., et al. (2003). Runx3 is required for hematopoietic development in zebrafish. Developmental Dynamics: An Official Publication of the American Association of the Anatomists, 228(3), 323–336. doi:10.1002/dvdy.10388.

    Article  CAS  Google Scholar 

  • Kayed, H., Jiang, X., Keleg, S., Jesnowski, R., Giese, T., Berger, M. R., et al. (2007). Regulation and functional role of the Runt-related transcription factor-2 in pancreatic cancer. British Journal of Cancer, 97(8), 1106–1115. doi:10.1038/sj.bjc.6603984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, M. S., Kwon, H. J., Lee, Y. M., Baek, J. H., Jang, J. E., Lee, S. W., et al. (2001). Histone deacetylases induce angiogenesis by negative regulation of tumor suppressor genes. Nature Medicine, 7(4), 437–443. doi:10.1038/86507.

    Article  PubMed  Google Scholar 

  • Kimura, A., Inose, H., Yano, F., Fujita, K., Ikeda, T., Sato, S., et al. (2010). Runx1 and Runx2 cooperate during sternal morphogenesis. Development (Cambridge, England), 137(7), 1159–1167. doi:10.1242/dev.045005.

    Article  CAS  Google Scholar 

  • Komori, T., Yagi, H., Nomura, S., Yamaguchi, A., Sasaki, K., Deguchi, K., et al. (1997). Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell, 89(5), 755–764.

    Article  CAS  PubMed  Google Scholar 

  • Kuettner, K. E., & Pauli, B. U. (1983). Inhibition of neovascularization by a cartilage factor. Ciba Foundation Symposium, 100, 163–173.

    CAS  PubMed  Google Scholar 

  • Kurokawa, M., & Hirai, H. (2003). Role of AML1/Runx1 in the pathogenesis of hematological malignancies. Cancer Science, 94(10), 841–846.

    Article  CAS  PubMed  Google Scholar 

  • Kwon, T. G., Zhao, X., Yang, Q., Li, Y., Ge, C., Zhao, G., & Franceschi, R. T. (2011). Physical and functional interactions between Runx2 and HIF-1alpha induce vascular endothelial growth factor gene expression. Journal of Cellular Biochemistry, 112(12), 3582–3593. doi:10.1002/jcb.23289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lane, S. W., Williams, D. A., & Watt, F. M. (2014). Modulating the stem cell niche for tissue regeneration. Nature Biotechnology, 32(8), 795–803. doi:10.1038/nbt.2978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le, X. F., Groner, Y., Kornblau, S. M., Gu, Y., Hittelman, W. N., Levanon, D., et al. (1999). Regulation of AML2/CBFA3 in hematopoietic cells through the retinoic acid receptor alpha-dependent signaling pathway. The Journal of Biological Chemistry, 274(31), 21651–21658.

    Article  CAS  PubMed  Google Scholar 

  • Lee, Y. M., Jeong, C. H., Koo, S. Y., Son, M. J., Song, H. S., Bae, S. K., et al. (2001). Determination of hypoxic region by hypoxia marker in developing mouse embryos in vivo: A possible signal for vessel development. Developmental Dynamics, 220(2), 175–186. doi:10.1002/1097-0177(20010201)220:2<175::AID-DVDY1101>3.0.CO;2-F.

    Article  CAS  PubMed  Google Scholar 

  • Lee, J. W., Bae, S. H., Jeong, J. W., Kim, S. H., & Kim, K. W. (2004). Hypoxia-inducible factor (HIF-1)alpha: Its protein stability and biological functions. Experimental & Molecular Medicine, 36(1), 1–12. doi:10.1038/emm.2004.1.

    Article  Google Scholar 

  • Lee, S. H., Kim, J., Kim, W. H., & Lee, Y. M. (2009). Hypoxic silencing of tumor suppressor RUNX3 by histone modification in gastric cancer cells. Oncogene, 28(2), 184–194. doi:10.1038/onc.2008.377.

    Article  CAS  PubMed  Google Scholar 

  • Lee, S. H., Che, X., Jeong, J. H., Choi, J. Y., Lee, Y. J., Lee, Y. H., et al. (2012). Runx2 protein stabilizes hypoxia-inducible factor-1alpha through competition with von Hippel-Lindau protein (pVHL) and stimulates angiogenesis in growth plate hypertrophic chondrocytes. The Journal of Biological Chemistry, 287(18), 14760–14771. doi:10.1074/jbc.M112.340232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, J. M., Lee, D. J., Bae, S. C., & Jung, H. S. (2013a). Abnormal liver differentiation and excessive angiogenesis in mice lacking Runx3. Histochemistry and Cell Biology, 139(5), 751–758. doi:10.1007/s00418-013-1077-x.

    Article  CAS  PubMed  Google Scholar 

  • Lee, Y. S., Lee, J. W., Jang, J. W., Chi, X. Z., Kim, J. H., Li, Y. H., et al. (2013b). Runx3 inactivation is a crucial early event in the development of lung adenocarcinoma. Cancer Cell, 24(5), 603–616. doi:10.1016/j.ccr.2013.10.003.

    Article  PubMed  CAS  Google Scholar 

  • Lee, J. M., Kwon, H. J., Lai, W. F., & Jung, H. S. (2014a). Requirement of Runx3 in pulmonary vasculogenesis. Cell and Tissue Research, 356(2), 445–449. doi:10.1007/s00441-014-1816-x.

    Article  CAS  PubMed  Google Scholar 

  • Lee, S. H., Bae, S. C., Kim, K. W., & Lee, Y. M. (2014b). RUNX3 inhibits hypoxia-inducible factor-1alpha protein stability by interacting with prolyl hydroxylases in gastric cancer cells. Oncogene, 33(11), 1458–1467. doi:10.1038/onc.2013.76.

    Article  CAS  PubMed  Google Scholar 

  • Levanon, D., Negreanu, V., Bernstein, Y., Bar-Am, I., Avivi, L., & Groner, Y. (1994). AML1, AML2, and AML3, the human members of the runt domain gene-family: cDNA structure, expression, and chromosomal localization. Genomics, 23(2), 425–432. doi:10.1006/geno.1994.1519.

    Article  CAS  PubMed  Google Scholar 

  • Levanon, D., Bettoun, D., Harris-Cerruti, C., Woolf, E., Negreanu, V., Eilam, R., et al. (2002). The Runx3 transcription factor regulates development and survival of TrkC dorsal root ganglia neurons. The EMBO Journal, 21(13), 3454–3463. doi:10.1093/emboj/cdf370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, Q. L., Ito, K., Sakakura, C., Fukamachi, H., Inoue, K., Chi, X. Z., et al. (2002). Causal relationship between the loss of RUNX3 expression and gastric cancer. Cell, 109(1), 113–124.

    Article  CAS  PubMed  Google Scholar 

  • Lian, J. B., Balint, E., Javed, A., Drissi, H., Vitti, R., Quinlan, E. J., et al. (2003). Runx1/AML1 hematopoietic transcription factor contributes to skeletal development in vivo. Journal of Cellular Physiology, 196(2), 301–311. doi:10.1002/jcp.10316.

    Article  CAS  PubMed  Google Scholar 

  • Lim, M., Zhong, C., Yang, S., Bell, A. M., Cohen, M. B., & Roy-Burman, P. (2010). Runx2 regulates survivin expression in prostate cancer cells. Laboratory Investigation; A Journal of Technical Methods and Pathology, 90(2), 222–233. doi:10.1038/labinvest.2009.128.

    Article  CAS  PubMed  Google Scholar 

  • Linggi, B., Muller-Tidow, C., van de Locht, L., Hu, M., Nip, J., Serve, H., et al. (2002). The t(8;21) fusion protein, AML1 ETO, specifically represses the transcription of the p14(ARF) tumor suppressor in acute myeloid leukemia. Nature Medicine, 8(7), 743–750. doi:10.1038/nm726.

    Article  CAS  PubMed  Google Scholar 

  • Liu, S., Ye, D., Guo, W., Yu, W., He, Y., Hu, J., et al. (2015). G9a is essential for EMT-mediated metastasis and maintenance of cancer stem cell-like characters in head and neck squamous cell carcinoma. Oncotarget, 6(9), 6887–6901. doi:10.18632/oncotarget.3159.

    Article  PubMed  PubMed Central  Google Scholar 

  • Look, A. T. (1997). Oncogenic transcription factors in the human acute leukemias. Science (New York, N.Y.), 278(5340), 1059–1064.

    Article  CAS  Google Scholar 

  • Lotem, J., Levanon, D., Negreanu, V., Bauer, O., Hantisteanu, S., Dicken, J., & Groner, Y. (2015). Runx3 at the interface of immunity, inflammation and cancer. Biochimica et Biophysica Acta, 1855(2), 131–143. doi:10.1016/j.bbcan.2015.01.004.

    CAS  PubMed  Google Scholar 

  • Lu, H., Ouyang, W., & Huang, C. (2006). Inflammation, a key event in cancer development. Molecular Cancer Research: MCR, 4(4), 221–233. doi:10.1158/1541-7786.MCR-05-0261.

    Article  PubMed  CAS  Google Scholar 

  • Maes, C., Carmeliet, G., & Schipani, E. (2012). Hypoxia-driven pathways in bone development, regeneration and disease. Nature Reviews. Rheumatology, 8(6), 358–366. doi:10.1038/nrrheum.2012.36.

    Article  CAS  PubMed  Google Scholar 

  • Majmundar, A. J., Wong, W. J., & Simon, M. C. (2010). Hypoxia-inducible factors and the response to hypoxic stress. Molecular Cell, 40(2), 294–309. doi:10.1016/j.molcel.2010.09.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marmigere, F., Montelius, A., Wegner, M., Groner, Y., Reichardt, L. F., & Ernfors, P. (2006). The Runx1/AML1 transcription factor selectively regulates development and survival of TrkA nociceptive sensory neurons. Nature Neuroscience, 9(2), 180–187. doi:10.1038/nn1631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McIntyre, A., & Harris, A. L. (2015). Metabolic and hypoxic adaptation to anti-angiogenic therapy: a target for induced essentiality. EMBO Molecular Medicine, 7(4), 368–379. doi:10.15252/emmm.201404271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehta, S., Hughes, N. P., Buffa, F. M., Li, S. P., Adams, R. F., Adwani, A., et al. (2011). Assessing early therapeutic response to bevacizumab in primary breast cancer using magnetic resonance imaging and gene expression profiles. Journal of the National Cancer Institute. Monographs, 2011(43), 71–74. doi:10.1093/jncimonographs/lgr027.

    Article  PubMed  CAS  Google Scholar 

  • Mendoza-Villanueva, D., Deng, W., Lopez-Camacho, C., & Shore, P. (2010). The Runx transcriptional co-activator, CBFbeta, is essential for invasion of breast cancer cells. Molecular Cancer, 9, 171. doi:10.1186/1476-4598-9-171.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mierke, C. T. (2013). The role of focal adhesion kinase in the regulation of cellular mechanical properties. Physical Biology, 10(6), 065005. doi:10.1088/1478-3975/10/6/065005.

    Article  PubMed  CAS  Google Scholar 

  • Miyoshi, H., Shimizu, K., Kozu, T., Maseki, N., Kaneko, Y., & Ohki, M. (1991). t(8;21) breakpoints on chromosome 21 in acute myeloid leukemia are clustered within a limited region of a single gene, AML1. Proceedings of the National Academy of Sciences of the United States of America, 88(23), 10431–10434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murray, P. D. F. (1932). The development in vitro of the blood of the eearly chick embryo. Proceedings of the Royal Society of London Series B, Containing Papers of a Biological Character, 111(773), 497–521.

    Article  CAS  Google Scholar 

  • Namba, K., Abe, M., Saito, S., Satake, M., Ohmoto, T., Watanabe, T., & Sato, Y. (2000). Indispensable role of the transcription factor PEBP2/CBF in angiogenic activity of a murine endothelial cell MSS31. Oncogene, 19(1), 106–114. doi:10.1038/sj.onc.1203257.

    Article  CAS  PubMed  Google Scholar 

  • Ninomiya, Y., Gordon, M., van der Rest, M., Schmid, T., Linsenmayer, T., & Olsen, B. R. (1986). The developmentally regulated type X collagen gene contains a long open reading frame without introns. The Journal of Biological Chemistry, 261(11), 5041–5050.

    CAS  PubMed  Google Scholar 

  • Nishikawa, S. I., Nishikawa, S., Kawamoto, H., Yoshida, H., Kizumoto, M., Kataoka, H., & Katsura, Y. (1998). In vitro generation of lymphohematopoietic cells from endothelial cells purified from murine embryos. Immunity, 8(6), 761–769.

    Article  CAS  PubMed  Google Scholar 

  • North, T., Gu, T. L., Stacy, T., Wang, Q., Howard, L., Binder, M., et al. (1999). Cbfa2 is required for the formation of intra-aortic hematopoietic clusters. Development (Cambridge, England), 126(11), 2563–2575.

    CAS  Google Scholar 

  • Okuda, T., van Deursen, J., Hiebert, S. W., Grosveld, G., & Downing, J. R. (1996). AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell, 84(2), 321–330.

    Article  CAS  PubMed  Google Scholar 

  • Otto, F., Thornell, A. P., Crompton, T., Denzel, A., Gilmour, K. C., Rosewell, I. R., et al. (1997). Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell, 89(5), 765–771.

    Article  CAS  PubMed  Google Scholar 

  • Parmar, K., Mauch, P., Vergilio, J. A., Sackstein, R., & Down, J. D. (2007). Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proceedings of the National Academy of Sciences of the United States of America, 104(13), 5431–5436. doi:10.1073/pnas.0701152104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng, Z., Wei, D., Wang, L., Tang, H., Zhang, J., Le, X., et al. (2006). RUNX3 inhibits the expression of vascular endothelial growth factor and reduces the angiogenesis, growth, and metastasis of human gastric cancer. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 12(21), 6386–6394. doi:10.1158/1078-0432.CCR-05-2359.

    Article  CAS  Google Scholar 

  • Peng, Z. G., Zhou, M. Y., Huang, Y., Qiu, J. H., Wang, L. S., Liao, S. H., et al. (2008). Physical and functional interaction of Runt-related protein 1 with hypoxia-inducible factor-1alpha. Oncogene, 27(6), 839–847. doi:10.1038/sj.onc.1210676.

    Article  CAS  PubMed  Google Scholar 

  • Pratap, J., Javed, A., Languino, L. R., van Wijnen, A. J., Stein, J. L., Stein, G. S., & Lian, J. B. (2005). The Runx2 osteogenic transcription factor regulates matrix metalloproteinase 9 in bone metastatic cancer cells and controls cell invasion. Molecular and Cellular Biology, 25(19), 8581–8591. doi:10.1128/mcb.25.19.8581-8591.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pratap, J., Lian, J. B., Javed, A., Barnes, G. L., van Wijnen, A. J., Stein, J. L., & Stein, G. S. (2006). Regulatory roles of Runx2 in metastatic tumor and cancer cell interactions with bone. Cancer Metastasis Reviews, 25(4), 589–600. doi:10.1007/s10555-006-9032-0.

    Article  CAS  PubMed  Google Scholar 

  • Pratap, J., Wixted, J. J., Gaur, T., Zaidi, S. K., Dobson, J., Gokul, K. D., et al. (2008). Runx2 transcriptional activation of Indian Hedgehog and a downstream bone metastatic pathway in breast cancer cells. Cancer Research, 68(19), 7795–7802. doi:10.1158/0008-5472.can-08-1078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rey, S., & Semenza, G. L. (2010). Hypoxia-inducible factor-1-dependent mechanisms of vascularization and vascular remodelling. Cardiovascular Research, 86(2), 236–242. doi:10.1093/cvr/cvq045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabin, F. R. (1920). Studies on the origin of blood vessels and of red corpuscles as seen in the living blastoderm of the chick during the second day of incubation. Contributions to Embryology, 9, 213–262.

    Google Scholar 

  • Schipani, E., Ryan, H. E., Didrickson, S., Kobayashi, T., Knight, M., & Johnson, R. S. (2001). Hypoxia in cartilage: HIF-1alpha is essential for chondrocyte growth arrest and survival. Genes & Development, 15(21), 2865–2876. doi:10.1101/gad.934301.

    CAS  Google Scholar 

  • Semenza, G. L. (2001). Hypoxia-inducible factor 1: Oxygen homeostasis and disease pathophysiology. Trends in Molecular Medicine, 7(8), 345–350.

    Article  CAS  PubMed  Google Scholar 

  • Semenza, G. L. (2003). Targeting HIF-1 for cancer therapy. Nature Reviews. Cancer, 3(10), 721–732. doi:10.1038/nrc1187.

    Article  CAS  PubMed  Google Scholar 

  • Semenza, G. L. (2010). Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene, 29(5), 625–634. doi:10.1038/onc.2009.441.

    Article  CAS  PubMed  Google Scholar 

  • Semenza, G. L. (2014). Oxygen sensing, hypoxia-inducible factors, and disease pathophysiology. Annual Review of Pathology, 9, 47–71. doi:10.1146/annurev-pathol-012513-104720.

    Article  CAS  PubMed  Google Scholar 

  • Senger, D. R., Galli, S. J., Dvorak, A. M., Perruzzi, C. A., Harvey, V. S., & Dvorak, H. F. (1983). Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science, 219(4587), 983–985.

    Article  CAS  PubMed  Google Scholar 

  • Shi, Q., Le, X., Abbruzzese, J. L., Peng, Z., Qian, C. N., Tang, H., et al. (2001). Constitutive Sp1 activity is essential for differential constitutive expression of vascular endothelial growth factor in human pancreatic adenocarcinoma. Cancer Research, 61(10), 4143–4154.

    CAS  PubMed  Google Scholar 

  • Shio, S., Kodama, Y., Ida, H., Shiokawa, M., Kitamura, K., Hatano, E., et al. (2011). Loss of RUNX3 expression by histone deacetylation is associated with biliary tract carcinogenesis. Cancer Science, 102(4), 776–783. doi:10.1111/j.1349-7006.2011.01848.x.

    Article  CAS  PubMed  Google Scholar 

  • Siewert, J. R., Bottcher, K., Stein, H. J., & Roder, J. D. (1998). Relevant prognostic factors in gastric cancer: Ten-year results of the German gastric cancer study. Annals of Surgery, 228(4), 449–461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simon, M. C., & Keith, B. (2008). The role of oxygen availability in embryonic development and stem cell function. Nature Reviews. Molecular Cell Biology, 9(4), 285–296. doi:10.1038/nrm2354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sitkovsky, M., & Lukashev, D. (2005). Regulation of immune cells by local-tissue oxygen tension: HIF1 alpha and adenosine receptors. Nature Reviews Immunology, 5(9), 712–721. doi:10.1038/nri1685.

    Article  CAS  PubMed  Google Scholar 

  • Smith, N., Dong, Y., Lian, J. B., Pratap, J., Kingsley, P. D., van Wijnen, A. J., et al. (2005). Overlapping expression of Runx1(Cbfa2) and Runx2(Cbfa1) transcription factors supports cooperative induction of skeletal development. Journal of Cellular Physiology, 203(1), 133–143. doi:10.1002/jcp.20210.

    Article  CAS  PubMed  Google Scholar 

  • Sorensen, A. G., Emblem, K. E., Polaskova, P., Jennings, D., Kim, H., Ancukiewicz, M., et al. (2012). Increased survival of glioblastoma patients who respond to antiangiogenic therapy with elevated blood perfusion. Cancer Research, 72(2), 402–407. doi:10.1158/0008-5472.CAN-11-2464.

    Article  CAS  PubMed  Google Scholar 

  • Speck, N. A., & Gilliland, D. G. (2002). Core-binding factors in haematopoiesis and leukaemia. Nature Reviews Cancer, 2(7), 502–513. doi:10.1038/nrc840.

    Article  CAS  PubMed  Google Scholar 

  • Starke, R. D., Ferraro, F., Paschalaki, K. E., Dryden, N. H., McKinnon, T. A., Sutton, R. E., et al. (2011). Endothelial von Willebrand factor regulates angiogenesis. Blood, 117(3), 1071–1080. doi:10.1182/blood-2010-01-264507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stricker, S., Fundele, R., Vortkamp, A., & Mundlos, S. (2002). Role of Runx genes in chondrocyte differentiation. Developmental Biology, 245(1), 95–108. doi:10.1006/dbio.2002.0640.

    Article  CAS  PubMed  Google Scholar 

  • Suda, T., & Takakura, N. (2001). Role of hematopoietic stem cells in angiogenesis. International Journal of Hematology, 74(3), 266–271.

    Article  CAS  PubMed  Google Scholar 

  • Suehiro, J., Hamakubo, T., Kodama, T., Aird, W. C., & Minami, T. (2010). Vascular endothelial growth factor activation of endothelial cells is mediated by early growth response-3. Blood, 115(12), 2520–2532. doi:10.1182/blood-2009-07-233478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, L., Vitolo, M., & Passaniti, A. (2001). Runt-related gene 2 in endothelial cells: Inducible expression and specific regulation of cell migration and invasion. Cancer Research, 61(13), 4994–5001.

    CAS  PubMed  Google Scholar 

  • Sun, L., Vitolo, M. I., Qiao, M., Anglin, I. E., & Passaniti, A. (2004). Regulation of TGFbeta1-mediated growth inhibition and apoptosis by RUNX2 isoforms in endothelial cells. Oncogene, 23(27), 4722–4734. doi:10.1038/sj.onc.1207589.

    Article  CAS  PubMed  Google Scholar 

  • Sun, X., Wei, L., Chen, Q., & Terek, R. M. (2009). HDAC4 represses vascular endothelial growth factor expression in chondrosarcoma by modulating RUNX2 activity. The Journal of Biological Chemistry, 284(33), 21881–21890. doi:10.1074/jbc.M109.019091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takakura, N., Watanabe, T., Suenobu, S., Yamada, Y., Noda, T., Ito, Y., et al. (2000). A role for hematopoietic stem cells in promoting angiogenesis. Cell, 102(2), 199–209.

    Article  CAS  PubMed  Google Scholar 

  • Tang, J. L., Hou, H. A., Chen, C. Y., Liu, C. Y., Chou, W. C., Tseng, M. H., et al. (2009). AML1/RUNX1 mutations in 470 adult patients with de novo acute myeloid leukemia: Prognostic implication and interaction with other gene alterations. Blood, 114(26), 5352–5361. doi:10.1182/blood-2009-05-223784.

    Article  CAS  PubMed  Google Scholar 

  • Tenen, D. G., Hromas, R., Licht, J. D., & Zhang, D. E. (1997). Transcription factors, normal myeloid development, and leukemia. Blood, 90(2), 489–519.

    CAS  PubMed  Google Scholar 

  • Ter Elst, A., Ma, B., Scherpen, F. J., de Jonge, H. J., Douwes, J., Wierenga, A. T., et al. (2011). Repression of vascular endothelial growth factor expression by the runt-related transcription factor 1 in acute myeloid leukemia. Cancer Research, 71(7), 2761–2771. doi:10.1158/0008-5472.CAN-10-0402.

    Article  CAS  PubMed  Google Scholar 

  • Vega, R. B., Matsuda, K., Oh, J., Barbosa, A. C., Yang, X., Meadows, E., et al. (2004). Histone deacetylase 4 controls chondrocyte hypertrophy during skeletogenesis. Cell, 119(4), 555–566. doi:10.1016/j.cell.2004.10.024.

    Article  CAS  PubMed  Google Scholar 

  • Wada, M., Yazumi, S., Takaishi, S., Hasegawa, K., Sawada, M., Tanaka, H., et al. (2004). Frequent loss of RUNX3 gene expression in human bile duct and pancreatic cancer cell lines. Oncogene, 23(13), 2401–2407. doi:10.1038/sj.onc.1207395.

    Article  CAS  PubMed  Google Scholar 

  • Wai, P. Y., Mi, Z., Gao, C., Guo, H., Marroquin, C., & Kuo, P. C. (2006). Ets-1 and runx2 regulate transcription of a metastatic gene, osteopontin, in murine colorectal cancer cells. The Journal of Biological Chemistry, 281(28), 18973–18982. doi:10.1074/jbc.M511962200.

    Article  CAS  PubMed  Google Scholar 

  • Walenta, S., Wetterling, M., Lehrke, M., Schwickert, G., Sundfor, K., Rofstad, E. K., & Mueller-Klieser, W. (2000). High lactate levels predict likelihood of metastases, tumor recurrence, and restricted patient survival in human cervical cancers. Cancer Research, 60(4), 916–921.

    CAS  PubMed  Google Scholar 

  • Wang, Q., Stacy, T., Binder, M., Marin-Padilla, M., Sharpe, A. H., & Speck, N. A. (1996). Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proceedings of the National Academy of Sciences of the United States of America, 93(8), 3444–3449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Y., Belflower, R. M., Dong, Y. F., Schwarz, E. M., O’Keefe, R. J., & Drissi, H. (2005). Runx1/AML1/Cbfa2 mediates onset of mesenchymal cell differentiation toward chondrogenesis. Journal of Bone and Mineral Research: the Official Journal of the American Society for Bone and Mineral Research, 20(9), 1624–1636. doi:10.1359/jbmr.050516.

    Article  CAS  Google Scholar 

  • Wang, L., Gural, A., Sun, X. J., Zhao, X., Perna, F., Huang, G., et al. (2011). The leukemogenicity of AML1-ETO is dependent on site-specific lysine acetylation. Science (New York, N.Y.), 333(6043), 765–769. doi:10.1126/science.1201662.

    Article  CAS  Google Scholar 

  • Woolf, E., Xiao, C., Fainaru, O., Lotem, J., Rosen, D., Negreanu, V., et al. (2003). Runx3 and Runx1 are required for CD8 T cell development during thymopoiesis. Proceedings of the National Academy of Sciences of the United States of America, 100(13), 7731–7736. doi:10.1073/pnas.1232420100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie, K., Wei, D., Shi, Q., & Huang, S. (2004). Constitutive and inducible expression and regulation of vascular endothelial growth factor. Cytokine & Growth Factor Reviews, 15(5), 297–324. doi:10.1016/j.cytogfr.2004.04.003.

    Article  CAS  Google Scholar 

  • Yanada, M., Yaoi, T., Shimada, J., Sakakura, C., Nishimura, M., Ito, K., et al. (2005). Frequent hemizygous deletion at 1p36 and hypermethylation downregulate RUNX3 expression in human lung cancer cell lines. Oncology Reports, 14(4), 817–822.

    CAS  PubMed  Google Scholar 

  • Yergeau, D. A., Hetherington, C. J., Wang, Q., Zhang, P., Sharpe, A. H., Binder, M., et al. (1997). Embryonic lethality and impairment of haematopoiesis in mice heterozygous for an AML1-ETO fusion gene. Nature Genetics, 15(3), 303–306. doi:10.1038/ng0397-303.

    Article  CAS  PubMed  Google Scholar 

  • Yopp, A. C., Schwartz, L. H., Kemeny, N., Gultekin, D. H., Gonen, M., Bamboat, Z., et al. (2011). Antiangiogenic therapy for primary liver cancer: Correlation of changes in dynamic contrast-enhanced magnetic resonance imaging with tissue hypoxia markers and clinical response. Annals of Surgical Oncology, 18(8), 2192–2199. doi:10.1245/s10434-011-1570-1.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoshida, C. A., Yamamoto, H., Fujita, T., Furuichi, T., Ito, K., Inoue, K., et al. (2004). Runx2 and Runx3 are essential for chondrocyte maturation, and Runx2 regulates limb growth through induction of Indian hedgehog. Genes & Development, 18(8), 952–963. doi:10.1101/gad.1174704.

    Article  CAS  Google Scholar 

  • Yoshimi, M., Goyama, S., Kawazu, M., Nakagawa, M., Ichikawa, M., Imai, Y., et al. (2012). Multiple phosphorylation sites are important for RUNX1 activity in early hematopoiesis and T-cell differentiation. European Journal of Immunology, 42(4), 1044–1050. doi:10.1002/eji.201040746.

    Article  CAS  PubMed  Google Scholar 

  • Yuan, S. Y., & Rigor, R. R. (2010). Regulation of endothelial barrier function, Integrated systems physiology: From molecule to function to disease. San Rafael: Morgan & Claypool Life Sciences.

    Google Scholar 

  • Yuan, Y., Tang, A. J., Castoreno, A. B., Kuo, S. Y., Wang, Q., Kuballa, P., et al. (2013). Gossypol and an HMT G9a inhibitor act in synergy to induce cell death in pancreatic cancer cells. Cell Death & Disease, 4, e690. doi:10.1038/cddis.2013.191.

    Article  CAS  Google Scholar 

  • Zelzer, E., Glotzer, D. J., Hartmann, C., Thomas, D., Fukai, N., Soker, S., & Olsen, B. R. (2001). Tissue specific regulation of VEGF expression during bone development requires Cbfa1/Runx2. Mechanisms of Development, 106(1–2), 97–106.

    Article  CAS  PubMed  Google Scholar 

  • Zelzer, E., Mamluk, R., Ferrara, N., Johnson, R. S., Schipani, E., & Olsen, B. R. (2004). VEGFA is necessary for chondrocyte survival during bone development. Development, 131(9), 2161–2171. doi:10.1242/dev.01053.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NRF and KSEF grants funded by the Korean government (MSIP) (2012R1A4A1028835 and 2013R1A2A2A01068868).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to You Mie Lee Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Lee, S.H., Manandhar, S., Lee, Y.M. (2017). Roles of RUNX in Hypoxia-Induced Responses and Angiogenesis. In: Groner, Y., Ito, Y., Liu, P., Neil, J., Speck, N., van Wijnen, A. (eds) RUNX Proteins in Development and Cancer. Advances in Experimental Medicine and Biology, vol 962. Springer, Singapore. https://doi.org/10.1007/978-981-10-3233-2_27

Download citation

Publish with us

Policies and ethics