Skip to main content

Superparamagnetic Iron Oxide Nanoparticles

  • Chapter
  • First Online:
MRI Contrast Agents

Abstract

Thanks to their unique properties, inorganic nanostructures have become the center of modern material science. Among existing nanomaterials, magnetic iron oxide nanoparticles (IONP) have attracted a lot of interest. These nanoparticles are suitable for many technological applications such as contrast agent for magnetic resonance imaging. When comparing to molecular MRI probes (Gd-based organic complexes), IONP present many advantages such as a better sensitivity, a poor toxicity, and the possibility to easily modify their surface to develop some properties as multimodality, modulable half-life or specificity. However, one must stress that these properties are related to IONP’s composition, shape and stability (physical and chemical). In that paper, we will introduce some concepts related to IONP’s physico-chemical properties, the synthetic ways to obtain such structures and we will finish with some concepts governing their stability and surface modification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Corot C, Robert P, Idee J-M, Port M (2006) Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev 58:1471–1504

    Article  Google Scholar 

  2. Laurent S, Forge D, Port M et al (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physico-chemical characterizations and biological applications. Chem Rev 108:2064–2110

    Article  Google Scholar 

  3. Yu M, Jeong Y, Park J et al (2008) Drug-loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo. Angew Chem Int Ed Engl 47:5362–5365

    Article  Google Scholar 

  4. Duguet E, Mornet S, Portier J (2004) Aqueous dispersions of magnetic iron oxide particles, surface modified by covalently grafting amino groups, useful as MRI contrast agents stable against agglomeration at neutral pH. French patent FR2855315

    Google Scholar 

  5. Bragg WH (1915) The structure of magnetite and the spinels. Nature 95:561

    Article  Google Scholar 

  6. Fleet ME (1986) The structure of magnetite: symmetry of cubic spinels. J Sol State Chem 62(1):75–82

    Article  Google Scholar 

  7. Evrim Umut. (2013). Surface modification of nanoparticles used in biomedical applications, modern surface engineering treatments. In Aliofkhazraei M (ed) ISBN: 978-953-51-1149-8, doi:10.5772/55746 (InTech)

  8. Vestal CR, Zhang ZJ (2008) J Am Chem Soc 124:14312–14313

    Article  Google Scholar 

  9. Gnanaprakash G, Panneerselvam G, Antony MP et al (2007) J Appl Phys 102:054305

    Article  Google Scholar 

  10. Rondinone AJ, Samia ACS, Zhang ZJ (1999) J Phys Chem 103:6876–6880

    Article  Google Scholar 

  11. Frenkel J, Doefman J (1930) Spontaneous and induced magnetisation in ferromagnetic bodies. Nature 126:274–275

    Article  MATH  Google Scholar 

  12. Tartaj P, Serna CJ (2003) Synthesis of monodisperse superparamagnetic Fe/Silica nanospherical composites. J Am Chem Soc 125(51):15754–15755

    Article  Google Scholar 

  13. Roch A, Gossuin Y, Muller RN, Gillis P (2005) Superparamagnetic colloid suspensions: water magnetic relaxation and clustering. J Magn Magn Mater 293(1):532–539

    Article  Google Scholar 

  14. Dormann JL, Fiorani D, Tronc E (2007) Magnetic relaxation in fine-particle systems. Adv Chem Phys, pp 283–494

    Google Scholar 

  15. Laurent S, Forge D, Port M et al (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108(6):2064–2110

    Article  Google Scholar 

  16. Gossuin Y, Hocq A Gillis P et al (2009) Magnetic resonance relaxation properties of superparamagnetic particles. Wiley Interdisciplinary Rev Nanomed Nanobiotechnol 1(3):299–310

    Article  Google Scholar 

  17. Pérez N, Guardia N, Roca P et al (2008) Surface anisotropy broadening of the energy barrier distribution in magnetic nanoparticles. Nanotechnology 19(47):475704

    Article  Google Scholar 

  18. Roch A, Gillis P, Ouakssim A, Muller RN (1999) Proton magnetic relaxation in superparamagnetic aqueous colloids: a new tool for the investigation of ferrite crystal anisotropy. J Magn Magn Mater 201(13):77–79

    Article  Google Scholar 

  19. Roch A, Muller RN, Gillis P (1999) Theory of proton relaxation induced by superparamagnetic particles. J Chem Phys 110(11):5403–5411

    Article  Google Scholar 

  20. Freed JH (1978) Dynamic effects of pair correlation functions on spin relaxation by translational diffusion in liquids. II. Finite jumps and independent T1 processes. J Chem Phys 68(9):4034–4037

    Article  MathSciNet  Google Scholar 

  21. Ayant Y, Belorizky E, Aluzon J, Gallice J (1975) Calcul des densités spectrales résultant d’un mouvement aléatoire de translation en relaxation par interaction dipolaire magnétique dans les liquides. Journal de Physique France 36(10):991–1004

    Article  Google Scholar 

  22. Gao J, Gu H, Xu B (2009) Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications. Acc Chem Res 42(8):1097–1107

    Article  Google Scholar 

  23. Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18):3995–4021

    Article  Google Scholar 

  24. Reiss G, Hutten A (2005) Magnetic nanoparticles: applications beyond data storage. Nat Mater 4(10):725726

    Article  Google Scholar 

  25. Carrillo AI, Serrano E, Luque R, García-Martínez J (2013) Microwave-assisted catalysis by iron oxide nanoparticles on MCM-41: effect of the support morphology. Appl Catal A Gen 453:383–390

    Article  Google Scholar 

  26. Moodley P, Scheijen FJE, Niemantsverdriet JW, Thüne PC (2010) Iron oxide nanoparticles on flat oxidic surfaces—Introducing a new model catalyst for Fischer-Tropsch catalysis. Catal Today 154(1–2):142–148

    Article  Google Scholar 

  27. Huang S-H, Juang R-S (2011) Biochemical and biomedical applications of multifunctional magnetic nanoparticles: a review. J Nanoparticle Res 13(10):4411–4430

    Article  Google Scholar 

  28. Reddy LH, Arias JL, Nicolas J, Couvreur P (2012) Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem Rev 112(11):5818–5878

    Article  Google Scholar 

  29. Mahmoudi M, Sant S, Wang B, Laurent S, Sen T (2011) Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. Adv Drug Del Rev 63:24–46

    Article  Google Scholar 

  30. Mersmann A (2001) Crystallization technology handbook, 2nd edn. Marcel Dekker Inc., New York, Basel

    Book  Google Scholar 

  31. Massart R (1981) Preparation of aqueous magnetic liquids in alkaline and acidic media. Magnetics IEEE Trans 17(2):1247–1248

    Article  Google Scholar 

  32. Sugimoto T, Matijević E (1980) Formation of uniform spherical magnetite particles by crystallization from ferrous hydroxide gels. J Coll Interface Sci 74(1):227–243

    Article  Google Scholar 

  33. Babes L, Denizot B, Tanguy G (1999) Synthesis of iron oxide nanoparticles used as MRI contrast agents: a parametric study. J Coll Interface Sci 212(2):474–482

    Article  Google Scholar 

  34. Pereira C, Pereira AM, Fernandes C et al (2012) Superparamagnetic MFe2O4 (M = Fe Co, Mn) nanoparticles: tuning the particle size and magnetic properties through a vovel one-step coprecipitation route. Chem Mater 24(8):1496–1504

    Article  Google Scholar 

  35. Karaagac O, Kockar H (2012) Effect of synthesis parameters on the properties of superparamagnetic iron oxide nanoparticles. J Superconductivity Novel Magn 25(8):2777–2781

    Article  Google Scholar 

  36. Gupta AK, Curtis ASG (2004) Lactoferrin and ceruloplasmin derivatized superparamagnetic iron oxide nanoparticles for targeting cell surface receptors. Biomaterials 25(15):3029–3040

    Article  Google Scholar 

  37. Kim DK, Zhang Y, Voitet W et al (2001) Synthesis and characterization of surfactant-coated superparamagnetic monodispersed iron oxide nanoparticles. J Magn Magn Mater 225(1–2):30–36

    Article  Google Scholar 

  38. Tartaj P, Morales MP, Veintemillas-Verdaguer S et al (2006) Handbook of magnetic materials. North-Holland, Elsevier, p 403

    Google Scholar 

  39. LaMer VK, Dinegar RH (1950) Theory, production and mechanism of formation of monodispersed hydrosols. J Am Chem Soc 72(11):4847–4854

    Article  Google Scholar 

  40. Malik MA, Wani MY, Hashim MA (2011) Microemulsion method: a novel route to synthesize organic and inorganic nanomaterials. 1st nano update. Arabian J Chem 5(4):397–417

    Google Scholar 

  41. Massart R (1981) Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans Magn 17:1247–1248

    Article  Google Scholar 

  42. Massart R, Cabuil V (1987) Effect of some parameters on the formation of colloidal magnetite in alkaline medium: Yield and particle size control. J Chem Phys 84:967–973

    Google Scholar 

  43. Jolivet JP, Froidefond C, Pottier A et al (2004) Magnetic iron oxide nanoparticles: synthesis and applications. J Mater Chem 14(21):3281–3288

    Article  Google Scholar 

  44. Jolivet JP, Vassiere L, Chaeneac C, Tronc E (1997) Mater Res Soc Symp Proc 432:145

    Article  Google Scholar 

  45. Massart R, Roger J, Cabuil V (1995) New trends in chemistry of magnetic colloids: polar and non polar magnetic fluids, emulsions, capsules and vesicles. Braz J Phys 2:135–141

    Google Scholar 

  46. Jolivet JP, Belleville P, Tronc E, Livage J (1992) Influence of Fe(II) on the formation of the spinel iron-oxide in alkaline-medium. Clays Clay Miner 40:531–539

    Article  Google Scholar 

  47. Qui X (2000) Synthesis and characterization of magnetic nano particles. Chin J Chem 18:834–837

    Google Scholar 

  48. Wu K, Kuo P, Yao Y, Tsai EH (2001) Magnetic and optical properties of Fe3O4 nanoparticle ferrofluids prepared by coprecipitation technique. IEEE Trans Magn 37:2651–2653

    Article  Google Scholar 

  49. Tang J, Myers M, Bosnick KA, Brus LE (2003) Magnetite Fe3O4 nanocrystals: spectroscopic observations of aqueous oxidation kinetics. J Phys Chem B 107:7501–7506

    Article  Google Scholar 

  50. Sato T, Haneda K, Seki M, Iijima T (1990) Morphology and magnetic properties of ultrafine ZnFe2O4 particles. Appl Phys A 50:13–16

    Article  Google Scholar 

  51. Alves CR, Aquino R, Sousa MH et al (2004) Low temperature experimental investigation of finite-size and surface effects in CuFe2O4 nanoparticles of ferrofluids. J Metastable Nanocryst Mater 20:694–699

    Article  Google Scholar 

  52. Jolivet JP, Chaneac C, Tronc E (2004) Iron oxide chemistry. From molecular clusters to extended solid networks. Chem Commun 5:481–483

    Google Scholar 

  53. Mao Z, Kang E, Wang S et al (2006) Synthesis of magnetite octahedrons from iron powders through a mild hydrothermal method. Mater Res Bull 41:2226–2231

    Article  Google Scholar 

  54. Zhu H, Yang D, Zhu L (2007) Hydrothermal growth and characterization of magnetite (Fe3O4) thin films. Surf Coat Technol 201:5870–5874

    Article  Google Scholar 

  55. Willard MA, Kurihara LK, Carpenter EE et al (2004) Encyclopedia of nanoscience and nanotechnology. American Scientific Publishers, Stevenson Ranch, p 815252

    Google Scholar 

  56. Chen D, Xu R (1998) Hydrothermal synthesis and characterization of nanocrystalline Fe3O4 powders. Mater Res Bull 33:1015–1021

    Article  Google Scholar 

  57. Zheng YH, Cheng Y, Bao F, Wang YS (2006) Synthesis and magnetic properties of Fe3O4 nanoparticles. Mater Res Bull 41(3):525–529

    Article  Google Scholar 

  58. Hyeon T, Lee SS, Park J, Chung Y, Na HB (2001) Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J Am Chem Soc 123:12798–12801

    Article  Google Scholar 

  59. Sun S, Zeng H, Robinson DB et al (2003) Monodisperse MFe2O4 (M = Fe Co, Mn) nanoparticles. J Am Chem Soc 126:179–273

    Google Scholar 

  60. Woo K, Hong J, Ahn JP (2005) Synthesis and surface modification of hydrophobic magnetite to processible magnetite@silica-propylamine. J Magn Magn Mater 293:177–181

    Article  Google Scholar 

  61. Park J, Lee E, Hwang NM et al (2005) One-nanometer-scale size-controlled synthesis of monodisperse magnetic iron oxide nanoparticles. Angew Chem Inter Ed 44(19):2873–2877

    Article  Google Scholar 

  62. Li Z, Sun Q, Gao M (2004) Preparation of water-soluble magnetite nanocrystals from hydrated ferric salts in 2-pyrrolidone: mechanism leading to Fe3O4. Angew Chem Inter Ed 44(1):123–126

    Article  MathSciNet  Google Scholar 

  63. Wan J, Cai W, Feng J et al (2007) In situ decoration of carbon nanotubes with nearly monodisperse magnetite nanoparticles in liquid polyols. J Mater Chem 17:1188–1192

    Article  Google Scholar 

  64. Jun YW, Huh YM, Choi JS et al (2005) Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. J Am Chem Soc 127(16):5732–5733

    Article  Google Scholar 

  65. Amara D, Felner I, Nowik I, Margel S (2009) Synthesis and characterization of Fe and FeO4 nanoparticles by thermal decomposition of triiron dodecacarbonyl. Coll Surf A Physicochem Eng Aspects 339:106–110

    Article  Google Scholar 

  66. Caruntu D, Remond Y, Chou NH, Jun MJ (2002) Reactivity of 3d transition metal cations in diethylene glycol solutions. Synthesis of transition metal ferrites with the structure of discrete nanoparticles complexed with long-chain carboxylate anions. Inorg Chem 41:6137–6146

    Article  Google Scholar 

  67. Caruntu D, Caruntu G, Yuxi C et al (2004) Synthesis of variable-sized nanocrystals of Fe3O4 with high surface reactivity. Chem Mater 16:5527–5534

    Article  Google Scholar 

  68. Li Z, Chen H, Bao H, Gao M (2004) One-pot reaction to synthesize water-soluble magnetite nanocrystals. Chem Mater 16:1391–1393

    Article  Google Scholar 

  69. Li Z, Wei L, Gao M, Lei H (2005) One-pot reaction to synthesize biocompatible magnetite nanoparticles. Adv Mater 17:1001–1005

    Article  Google Scholar 

  70. Hu F, Wei L, Zhou Z, Ran Y, Li Z, Gao M (2006) Preparation of biocompatible magnetite nanocrystals for in vivo magnetic resonance detection of cancer. Adv Mater 18:2552–2556

    Google Scholar 

  71. Adireddy S, Lin C, Palshin V (2009) Size-controlled synthesis of quasi-monodisperse transition-metal ferrite nanocrystals in fatty alcohol solutions. J Phys Chem C 113:20800–20811

    Article  Google Scholar 

  72. Jun Y-W, Lee J-H, Cheon J (2008) Chemical design of nanoparticle probes for high-performance magnetic resonance imaging. Angew Chem Inter Ed 47:5122–5135

    Article  Google Scholar 

  73. Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021

    Article  Google Scholar 

  74. Lam UT, Mammucari R, Suzuki K, Foster NR (2008) Processing of iron oxide nanoparticles by supercritical fluids. Ind Eng Chem Res 47(3):599–614

    Article  Google Scholar 

  75. Tavakoli A, Sohrabi M, Kargari A (2007) A review of methods for synthesis of nanostructured metals with emphasis on iron compounds. Chem Papers 61(3):151–170

    Article  Google Scholar 

  76. Del Monte F, Morales MP, Levy D et al (1997) Formation of γ-Fe2O3 isolated nanoparticles in a silica matrix. Langmuir 13:3627–3634

    Article  Google Scholar 

  77. Niznansky D, Rehspringer JL, Drillon M (1994) Preparation of magnetic nanoparticles (gamma-Fe2O3) in the silica matrix. IEEE Trans Magn 30:821–823

    Article  Google Scholar 

  78. Bentivegna F, Ferré J, Nyvlt M et al (1998) Magnetically textured y-Fe2O3 nanoparticles in a silica gel matrix: structural and magnetic properties. J Appl Phys 83:7776–7786

    Article  Google Scholar 

  79. Pileni MP (1993) Reverse micelles as microreactors. J Phys Chem 97(27):6961–6973

    Article  Google Scholar 

  80. Lawrence MJ, Rees GD (2000) Microemulsion-based media as novel drug delivery systems. Adv Drug Del Rev 45(1):89–121

    Article  Google Scholar 

  81. Fendler JH (1987) Atomic and molecular clusters in membrane mimetic chemistry. Chem Rev 87:877–899

    Article  Google Scholar 

  82. Sugimoto T (1987) Preparation of monodispersed colloidal particles. Adv Coll Interface Sci 28:65–108

    Article  Google Scholar 

  83. Vidal-Vidal J, Rivas J, López-Quintela MA (2006) Synthesis of monodisperse maghemite nanoparticles by the microemulsion method. Colloid Surf A, pp 44–51

    Google Scholar 

  84. Jézéquel D, Guenot J, Jouini N, Fiévet F (1995) Submicrometer zinc-oxide nanoparticles—Elaboration in polyol medium and morphological characteristics. J Mater Res 10:77–83

    Article  Google Scholar 

  85. Fievet F, Fievet-Vincent F, Lagier JP et al (1992) Preparation de particules monodisperses de cobalt et de nickel de taille micronique et submicronique. J Phys IV 02(C3):91

    Google Scholar 

  86. Tzitzios VK, Petridis D, Zafiropoulou I et al (2005) Synthesis and characterization of L10 FePt nanoparticles from Pt–Fe3O4 core-shell nanoparticle. J Magn Magn Mater 294(2):95–98

    Article  Google Scholar 

  87. Joseyphus RJ, Kodama D, Matsumoto T et al (2007) Role of polyol in the synthesis of Fe particles. J Magn Magn Mater 310(2):2393–2395

    Article  Google Scholar 

  88. Cai W, Wan J (2007) Facile synthesis of superparamagnetic magnetite nanoparticles in liquid polyols. J Coll Interface Sci 305:366–370

    Article  Google Scholar 

  89. Pascal C, Pascal JL, Favier F et al (1999) Electrochemical synthesis for the control of γ-Fe2O3 nanoparticle size. Morphology, microstructure, and magnetic behavior. Chem Mater 11:141–147

    Article  Google Scholar 

  90. Veintemillas-Vendaguer S, Morales MP, Bomati-Miguel O et al (2004) Colloidal dispersions of maghemite nanoparticles produced by laser pyrolysis with application as NMR contrast agents. J Phys 37:2054–2059

    Google Scholar 

  91. Alexandrescu R, Morjan I, Voicu I et al (2005) Combining resonant/non-resonant processes: nanometer-scale iron-based material preparation via CO2 laser pyrolysis. Appl Surf Sci 248(1–4):138–146

    Article  Google Scholar 

  92. Bautista MC, Bomati-Miguel O, Moraleset MP et al (2005) Surface characterisation of dextran-coated iron oxide nanoparticles prepared by laser pyrolysis and coprecipitation. J Magn Magn Mater 293:20–27

    Article  Google Scholar 

  93. Puntes VF, Krishnan KM, Alivisatos AP (2002) Synthesis of colloidal cobalt nanoparticles with controlled size and shapes. Top Catal 19:145–148

    Article  Google Scholar 

  94. Rotstein HG, Tannenbaum R (2002) Cluster coagulation and growth limited by surface interactions with polymers. J Phys Chem B 106:146–151

    Article  Google Scholar 

  95. Mukh-Qasem RA, Gedanken A (2005) Sonochemical synthesis of stable hydrosol of Fe3O4 nanoparticles. J Coll Interface Sci 284(2):489–494

    Article  Google Scholar 

  96. Kim EH, Lee HS, Kwak BK, Kim BK (2005) Synthesis of ferrofluid with magnetic nanoparticles by sonochemical method for MRI contrast agent. J Magn Magn Mater 289:328–330

    Article  Google Scholar 

  97. Cosgrove T (2010). In: Cosgrove T (ed) Colloid science: principles, methods and applications. Wiley, USA

    Google Scholar 

  98. Derjaguin B (1940) On the repulsive forces between charged colloid particles and on the theory of slow coagulation and stability of lyophobe sols. Trans Faraday Soc 35:203–215

    Article  Google Scholar 

  99. Derjaguin B, Landau L (1993) Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Progr Surf Sci 43(1–4):30–59

    Article  Google Scholar 

  100. Derjaguin BV (1993) Some new aspects of and conclusions on theory of stability of colloids and their experimental verification. Progr Surf Sci 43(1–4):115–121

    Article  Google Scholar 

  101. Derjaguin BV, Voropayeva TN, Kabanov BN, Titiyevskaya AS (1993) Surface forces and the stability of colloids and disperse systems. Progr Surf Sci 43(1–4):83–105

    Article  Google Scholar 

  102. Verwey EJW (1935) The electrical double layer and the stability of lyophobic colloids. Chem Rev 16(3):363415

    Article  Google Scholar 

  103. Verwey EJW (1947) Theory of the stability of lyophobic colloids. J Phys Coll Chem 51(3):631–636

    Article  Google Scholar 

  104. Verwe EJW, Overbeek JTG (1955) Theory of the stability of lyophobic colloids. J Coll Sci 10(2):224–225

    Article  Google Scholar 

  105. Wu I, Risalvato FG, Ke F-S et al (2012) Electrochemical reduction of carbon dioxide I. Effects of the electrolyte on the selectivity and activity with Sn electrode. J. Electrochem Soc 159(7):F353–F359

    Google Scholar 

  106. Leong YK, Ong BC (2003) Critical zeta potential and the Hamaker constant of oxides in water. Powder Technol 134(3):249–254

    Article  Google Scholar 

  107. Hogg R, Healy TW, Fuerstenau DW (1966) Mutual coagulation of colloidal dispersions. Trans Faraday Soc 62:1638–1651

    Article  Google Scholar 

  108. Boström M, Williams D, Ninham B (2001) Specific ion effects: Why DLVO theory fails for biology and colloid systems. Phys Rev Lett 87(16):168103

    Article  Google Scholar 

  109. Parks GA, De Bruyn PL (1962) The zero point of charge of oxide 1. J Phys Chem 66(6):967973

    Article  Google Scholar 

  110. Haines RI, Owen DG, Vandergraaf TT (1987) Technetium-iron oxide reactions under anaerobic conditions: a Fourier transform infrared, FTIR study. Nucl J Can 1(1):32–37

    Google Scholar 

  111. Milonjić SK, Kopečni MM, Ilić ZE (1983) The point of zero charge and adsorption properties of natural magnetite. J Radioanal Chem 78(1):15–24

    Article  Google Scholar 

  112. Tewari PH, McLean AW (1972) Temperature dependence of point of zero charge of alumina and magnetite. J Coll Inter Sci 40(2):267–272

    Article  Google Scholar 

  113. Jolivet JP, Tronc E, Chanéac C (2000) Synthesis of iron oxide- and metal-based nanomaterials. Eur Phys J App Phys 10:167–172

    Article  Google Scholar 

  114. Anandarajah A, Chen J (1994) Double-layer repulsive force between two inclined platy particles according to the Gouy-Chapman theory. J Coll Interface Sci 168(1):111–117

    Article  Google Scholar 

  115. Baldelli S (2008) Surface structure at the ionic liquid–electrified metal interface. Acc Chem Res 41(3):421–431

    Article  Google Scholar 

  116. Bohinc K, Shrestha A, Brumen M, May S (2012) Poisson-Helmholtz-Boltzmann model of the electric double layer: analysis of monovalent ionic mixtures. Phys Rev E 85(3):031130

    Article  Google Scholar 

  117. Hu Y (1998) Effects of an inner Helmholtz layer on the dielectric dispersion of colloidal suspensions. Langmuir 14(2):271–276

    Article  Google Scholar 

  118. Yates DE, Levine S, Healy TW (1974) Site-binding model of the electrical double layer at the oxide/water interface. J Chem Soc Faraday Trans 1 Phys Chem Cond Phases 70:18071818

    Google Scholar 

  119. Usui S (2004) Interaction between dissimilar double layers with like signs under charge regulation on the basis of the Gouy–Chapman–Stern–Grahame model. J Colloid Interface Sci 280(1):113–119

    Article  Google Scholar 

  120. Devanathan MAV, Tilak BVKSRA (1965) The structure of the electrical double layer at the metal-solution interface. Chem Rev 65(6):635–684

    Article  Google Scholar 

  121. Kuchibhatla S, Karakoti AS, Sea S (2005) Colloidal stability by surface modification. JOM 57(12):52–56

    Article  Google Scholar 

  122. Napper DH (1970) Colloid stability. Ind Eng Chem Prod Res Dev 9(4):467477

    Article  Google Scholar 

  123. Napper DH, Netschey A (1971) Studies of the steric stabilization of colloidal particles. J Coll Interface Sci 37(3):528–535

    Article  Google Scholar 

  124. Napper DH (1977) Steric stabilization. J Coll Interface Sci 58(2):390–407

    Article  Google Scholar 

  125. Roca AG, Costo R, Rebolledo AF et al (2009) Progress in the preparation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 42(22):224002

    Article  Google Scholar 

  126. Lee H, Yu MK, Park S, Moon S et al (2007) Thermally cross-linked superparamagnetic iron oxide nanoparticles: synthesis and application as a dual imaging probe for cancer in vivo. J Am Chem Soc 129(42):12739–12745

    Article  Google Scholar 

  127. De Palma R, Peeters S, Van Bael MJ et al (2007) Silane ligand exchange to make hydrophobic superparamagnetic nanoparticles water-dispersible. Chem Mater 19(7):1821–1831

    Article  Google Scholar 

  128. Kohler N, Fryxell GE, Zhang M (2004) A bifunctional poly(ethylene glycol) silane immobilized on metallic oxidebased nanoparticles for conjugation with cell targeting agents. J Am Chem Soc 126(23):72067211

    Article  Google Scholar 

  129. Larsen EKU, Nielsen T, Wittenborn T et al (2009) Size-dependent accumulation of PEGylated silanecoated magnetic iron oxide nanoparticles in murine tumors. ACS Nano 3(7):1947–1951

    Article  Google Scholar 

  130. Ninjbadgar T, Brougham DF (2011) Epoxy ring opening phase transfer as a general route to water dispersible superparamagnetic Fe3O4 nanoparticles and their application as positive MRI contrast agents. Adv Funct Mater 21(24):4769–4775

    Article  Google Scholar 

  131. Pinho SLC, Laurent S, Rocha J et al (2011) Relaxometric studies of γ-Fe2O3@SiO2 core shell nanoparticles: when the coating matters. J Phys Chem C 116(3):2285–2291

    Article  Google Scholar 

  132. Carpenter EE, Sangregorio C, O’Connor CJ (1999) Effects of shell thickness on blocking temperature of nanocomposites of metal particles with gold shells. IEEE Trans Magn 35(5):3496–3498

    Article  Google Scholar 

  133. Maleki H, Simchi A, Imani M, Costa BFO (2012) Size-controlled synthesis of superparamagnetic iron oxide nanoparticles and their surface coating by gold for biomedical applications. J Magn Magn Mater 324(23):3997–4005

    Article  Google Scholar 

  134. Boyer C, Whittaker MR, Bulmus V et al (2010) The design and utility of polymer-stabilized iron-oxide nanoparticles for nanomedicine applications. NPG Asia Mater 2:23–30

    Article  Google Scholar 

  135. Forge D, Roch A, Laurent S et al (2008) Optimization of the synthesis of superparamagnetic contrast agents by the design of experiments method. J Phys Chem C 112(49):19178–19185

    Article  Google Scholar 

  136. Dias AMGC, Hussain A, Marcos AS, Roque ACA (2011) A biotechnological perspective on the application of iron oxide magnetic colloids modified with polysaccharides. Biotechn Adv 29(1):142–155

    Article  Google Scholar 

  137. Chanana M, Mao WD (2009) Using polymers to make up magnetic nanoparticles for biomedicine. J Biomed Nanotechnol 5(6):652–668

    Article  Google Scholar 

  138. Yun Tack L, Kyoungja W, Kyu-Sil C (2008) Preparation of water-dispersible and biocompatible iron oxide nanoparticles for MRI agent. IEEE Trans Nanotechnol 7(2):111–114

    Article  Google Scholar 

  139. Bautista CM, Bomati-Miguel O, Del Puerto MM et al (2005) Surface characterisation of dextrancoated iron oxide nanoparticles prepared by laser pyrolysis and coprecipitation. J Magn Magn Mater 293(1):20–27

    Article  Google Scholar 

  140. Easo SL, Mohanan PV (2013) Dextran stabilized iron oxide nanoparticles: synthesis, characterization and in vitro studies. Carbohydr Polym 92(1):726–732

    Article  Google Scholar 

  141. Rosen JE, Chan L, Shieh D-B, Gu FX (2012) Iron oxide nanoparticles for targeted cancer imaging and diagnostics. Nanomed Nanotechnol Biol Med 8(3):275–290

    Article  Google Scholar 

  142. Weissleder R, Hahn PF, Stark DD et al (1987) MR imaging of splenic metastases: ferrite-enhanced detection in rats. Am J Roentgenol 149(4):723–726

    Article  Google Scholar 

  143. Weissleder R, Stark DD, Engelstad BL et al (1989) Superparamagnetic iron oxide: pharmacokinetics and toxicity. Am J Roentgenol 152(1):167–173

    Article  Google Scholar 

  144. Corot C, Robert P, Idée J-M, Port M (2006) Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Del Rev 58(14):1471–1504

    Article  Google Scholar 

  145. Josephson L, Tung C-H, Moore A, Weissleder R (1999) High-efficiency intracellular magnetic labeling with novel superparamagnetic-Tat peptide conjugates. Bioconjugate Chem 10(2):186–191

    Article  Google Scholar 

  146. McCarthy JR, Weissleder R (2008) Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv Drug Del Rev 60(11):1241–1251

    Article  Google Scholar 

  147. Deng J, He J, Zheng J-S et al (2012) Preparation and application of amino- and dextran-modified superparamagnetic iron oxide nanoparticles. Part Sci Technol 31(3):241–247

    Article  Google Scholar 

  148. Duguet E, Vasseur S, Mornet S et al (2006) Towards a versatile platform based on magnetic nanoparticles for in vivo applications. Bull Mater Sci 29(6):581–586

    Article  Google Scholar 

  149. Mornet S, Portier J, Duguet E (2005) A method for synthesis and functionalization of ultrasmall superparamagnetic covalent carriers based on maghemite and dextran. J Magn Magn Mater 293(1):127–134

    Article  Google Scholar 

  150. Chaleawlert-Umpon S, Mayen V, Manotham K, Pimpha N (2010) Preparation of iron oxide-entrapped chitosan nanoparticles for stem cell labeling. J Biomater Sci Polym Ed 21(11):1515–1532

    Article  Google Scholar 

  151. Szpak A, Kania G, Skórka T et al (2012) Stable aqueous dispersion of superparamagnetic iron oxide nanoparticles protected by charged chitosan derivatives. J Nanoparticle Res 15(1):1–11

    Google Scholar 

  152. Tsai Z-T, Wang J-F, Kuo H-Y et al (2010) In situ preparation of high relaxivity iron oxide nanoparticles by coating with chitosan: a potential MRI contrast agent useful for cell tracking. J Magn Magn Mater 322(2):208–213

    Article  Google Scholar 

  153. Gaihre B, Khil MS, Lee DR, Kim HY (2009) Gelatin-coated magnetic iron oxide nanoparticles as carrier system: drug loading and in vitro drug release study. Int J Pharm 365(1–2):180–189

    Article  Google Scholar 

  154. Ma H-L, Qi X-R, Maitani Y, Nagai T (2007) Preparation and characterization of superparamagnetic iron oxide nanoparticles stabilized by alginate. Int J Pharm 333(1–2):177–186

    Article  Google Scholar 

  155. Gao F, Cai Y, Zhou J et al (2010) Pullulan acetate coated magnetite nanoparticles for hyper-thermia: preparation, characterization and in vitro experiments. Nano Res 3(1):23–31

    Article  Google Scholar 

  156. Cheng F-Y, Wang SP-H, Su C-H et al (2008) Stabilizer-free poly(lactide-co-glycolide) nanoparticles for multimodal biomedical probes. Biomaterials 29(13):2104–2112

    Article  Google Scholar 

  157. Lee S-J, Jeong J-R, Shin S-C et al (2004) Nanoparticles of magnetic ferric oxides encapsulated with poly(d,l latide-co-glycolide) and their applications to magnetic resonance imaging contrast agent. J Magn Magn Mater 272–276:2432–2433 (Part 3(0))

    Google Scholar 

  158. Mahmoudi M, Simchi A, Imani M et al (2008) Optimal design and characterization of superparamagnetic iron oxide nanoparticles coated with polyvinyl alcohol for targeted delivery and imaging. J Phys Chem B 112(46):14470–14481

    Article  Google Scholar 

  159. Zhou L, He B, Zhang F (2011) Facile one-pot synthesis of iron oxide nanoparticles cross-linked magnetic poly(vinyl alcohol) gel beads for drug delivery. ACS Appl Mater Interfaces 4(1):192–199

    Article  Google Scholar 

  160. Garcia I, Tercjak A, Zafeiropoulos NE et al (2007) Generation of core/shell iron oxide magnetic nanoparticles with polystyrene brushes by atom transfer radical polymerization. J Polym Sci Part A Polym Chem 45(20):4744–4750

    Article  Google Scholar 

  161. Wang Y, Teng X, Wang J-S, Yang H (2003) Solvent-free atom transfer radical polymerization in the synthesis of Fe2O3@polystyrene core–shell nanoparticles. Nano Lett 3(6):789–793

    Article  Google Scholar 

  162. Bae S-J, Park J-A, Lee J-J et al (2009) Ultrasmall iron oxide nanoparticles: synthesis, physicochemical, and magnetic properties. Curr Appl Phys 9(1):19–21

    Article  Google Scholar 

  163. Lee HY, Lim NH, Seo JA et al (2006) Preparation and magnetic resonance imaging effect of polyvinylpyrrolidone-coated iron oxide nanoparticles. J Biomed Mater Res Part B Appl Biomater 79B(1):142–150

    Article  Google Scholar 

  164. Xu Y-Y, Zhou M, Geng H-J et al (2012) A simplified method for synthesis of Fe3O4@PAA nanoparticles and its application for the removal of basic dyes. Appl Surf Sci 258(8):3897–3902

    Article  Google Scholar 

  165. Masotti A, Pitta A, Ortaggi G et al (2009) Synthesis and characterization of polyethylenimine-based iron oxide composites as novel contrast agents for MRI. Magn Reson Mater Phys Biol Med 22(2):77–87

    Article  Google Scholar 

  166. Wang Z, Liu G, Sun J et al (2012) N-alkyl-polyethylenimine stabilized iron oxide nanoparticles as MRI visible transfection agents. J Nanosci Nanotechnol 12(2):879–886

    Article  Google Scholar 

  167. Ge Y, Zhang S, He S et al (2009) Fabrication and characterization of chitosan-poly(acrylic acid) magnetic nanospheres. J Nanosci Nanotechnol 9(2):1287–1290

    Article  Google Scholar 

  168. Fauconnier N, Pons JN, Roger J, Bee A (1997) Thiolation of maghemite nanoparticles by dimercaptosuccinic acid. J Coll Interface Sci 194(2):427–433

    Article  Google Scholar 

  169. Lattuad M, Hatton TA (2006) Functionalization of monodisperse magnetic nanoparticles. Langmuir 23(4):21582168

    Google Scholar 

  170. Maurizi L, Bisht H, Bouyer F, Millot N (2009) Easy route to functionalize iron oxide nanoparticles via long-term stable thiol groups. Langmuir 25(16):8857–8859

    Article  Google Scholar 

  171. Miguel-Sancho N, Bomatí-Miguel O, Colom G et al (2011) Development of stable, water-dispersible, and biofunctionalizable superparamagnetic iron oxide nanoparticles. Chem Mater 23(11):2795–2802

    Article  Google Scholar 

  172. Răcuciu M, Creangă DE, Airinei A (2006) Citric-acid-coated magnetite nanoparticles for biological applications. Eur Phys J 21(2):117–121

    Google Scholar 

  173. Benbenishty-Shamir H, Gilert R, Gotman I et al (2011) Phosphonate-anchored monolayers for antibody binding to magnetic nanoparticles. Langmuir 27(19):12082–12089

    Article  Google Scholar 

  174. Daou TJ, Begin-Colin S, Grenèche JM et al (2007) Phosphate adsorption properties of magnetite-based nanoparticles. Chem Mater 19(18):4494–4505

    Article  Google Scholar 

  175. Daou TJ, Grenèche JM, Pourroy G et al (2008) Coupling agent effect on magnetic properties of functionalized magnetite-based nanoparticles. Chem Mater 20(18):5869–5875

    Article  Google Scholar 

  176. Guerrero G, Mutin PH, Vioux A (2001) Anchoring of phosphonate and phosphinate coupling molecules on titania particles. Chem Mater 13(11):4367–4373

    Article  Google Scholar 

  177. Karimi A, Denizot B, Passirani C et al (2013) In vitro and in vivo evaluation of superparamagnetic iron oxide nanoparticles coated by bisphosphonates: the effects of electrical charge and molecule length. Eur J Pharm Sci 49(2):101–108

    Article  Google Scholar 

  178. Lalatonne Y, Paris C, Serfaty JM et al (2008) Bis-phosphonates-ultra small superparamagnetic iron oxide nanoparticles: a platform towards diagnosis and therapy. Chem Commun 22:2553–2555

    Article  Google Scholar 

  179. Portet D, Denizot B, Rump E et al (2001) Comparative biodistribution of thin-coated iron oxide nanoparticles TCION: effect of different bisphosphonate coatings. Drug Dev Res 54(4):173–181

    Article  Google Scholar 

  180. Park J-A, Lee J-J, Kim I-S et al (2008) Magnetic and MR relaxation properties of avidin–biotin conjugated superparamagnetic nanoparticles. Coll and Surfaces A Physicochem Eng Aspects 313–314:288–291

    Article  Google Scholar 

  181. Quan Q, Xie J, Gao H et al (2011) HSA coated iron oxide nanoparticles as drug delivery vehicles for cancer therapy. Mol Pharm 8(5):1669–1676

    Article  Google Scholar 

  182. Xie J, Wang J, Niu G et al (2010) Human serum albumin coated iron oxide nanoparticles for efficient cell labeling. Chem Commun 46(3):433–435

    Article  Google Scholar 

  183. Gonzales M, Krishnan KM (2007) Phase transfer of highly monodisperse iron oxide nanocrystals with Pluronic F127 for biomedical applications. J Magn Magn Mater 311(1):59–62

    Article  Google Scholar 

  184. Jain TK, Foy SP, Erokwu B et al (2009) Magnetic resonance imaging of multifunctional pluronic stabilized iron-oxide nanoparticles in tumor-bearing mice. Biomaterials 30(35):6748–6756

    Article  Google Scholar 

  185. Jain TK, Morales MA, Sahoo SK et al (2005) Iron oxide nanoparticles for sustained delivery of anticancer agents. Mol Pharm 2(3):194–205

    Article  Google Scholar 

  186. Morales MA, Jain TK, Labhasetwar V, Leslie-Pelecky DL (2005) Magnetic studies of iron oxide nanoparticles coated with oleic acid and Pluronic block copolymer. J Appl Phys 97(10):10Q903–10Q905

    Article  Google Scholar 

  187. Qin J, Asempah I, Laurent S et al (2009) Injectable superparamagnetic ferrogels for controlled release of hydrophobic drugs. Adv Mater 21(13):1354–1357

    Article  Google Scholar 

  188. Muir BW, Moffat BA, Harbour P et al (2009) Combinatorial discovery of novel amphiphilic polymers for the phase transfer of magnetic nanoparticles. J Phys Chem C 113(38):16615–16624

    Article  Google Scholar 

  189. Park J, Yu MK, Jeong YY et al (2009) Antibiofouling amphiphilic polymer-coated superparamagnetic iron oxide nanoparticles: synthesis, characterization, and use in cancer imaging in vivo. J Mater Chem 19(35):6412–6417

    Article  Google Scholar 

  190. Pimpha N, Chaleawlert-Umpon S, Sunintaboon P (2012) Core/shell polymethyl methacrylate/polyethyleneimine particles incorporating large amounts of iron oxide nanoparticles prepared by emulsifier-free emulsion polymerization. Polymer 53(10):2015–2022

    Article  Google Scholar 

  191. Prakash A, Zhu H, Jones CJ et al (2009) Bilayers as phase transfer agents for nanocrystals prepared in nonpolar solvents. ACS Nano 3(8):2139–2146

    Article  Google Scholar 

  192. William WY, Emmanuel C, Christie MS et al (2006) Aqueous dispersion of monodisperse magnetic iron oxide nanocrystals through phase transfer. Nanotechnology 17(17):4483–4487

    Article  Google Scholar 

  193. Kim J, Lee JE, Lee J et al (2005) Magnetic fluorescent delivery vehicle using uniform mesoporous silica spheres embedded with monodisperse magnetic and semiconductor nanocrystals. J Am Chem Soc 128(3):688–689

    Article  Google Scholar 

  194. Wang X, Chen Y (2008) A new two-phase system for the preparation of nearly monodisperse silver nanoparticles. Mater Lett 62(28):4366–4368

    Article  Google Scholar 

  195. Shen L, Laibinis PE, Hatton TA (1998) Bilayer surfactant stabilized magnetic fluids: synthesis and interactions at interfaces. Langmuir 15(2):447–453

    Article  Google Scholar 

  196. Wooding A, Kilner M, Lambrick DB (1991) Studies of the double surfactant layer stabilization of water-based magnetic fluids. J Coll Interface Sci 144(1):236–242

    Article  Google Scholar 

  197. Deng M, Tu N, Bai F, Wang L (2012) Surface functionalization of hydrophobic nanocrystals with one particle per micelle for bioapplications. Chem Mater 24(13):2592–2597

    Article  Google Scholar 

  198. Thanh NTK, Green LAW (2010) Functionalisation of nanoparticles for biomedical applications. Nano Today 5(3):213–230

    Article  Google Scholar 

  199. Ingram DR, Kotsmar C, Yoon KY et al (2010) Superparamagnetic nanoclusters coated with oleic acid bilayers for stabilization of emulsions of water and oil at low concentration. J Coll Interface Sci 351(1):225–232

    Article  Google Scholar 

  200. Li L, Mak KY, Leung CW et al (2012) Synthesis and characterization of self-assembled monolayer and bilayer carboxyl-group functionalized magnetic nanoparticles. IEEE Trans Magn 48(11):3299–3302

    Article  Google Scholar 

  201. Bittova B, Poltierova-Vejpravova J, Roca AG et al (2010) Effects of coating on magnetic properties in iron oxide nanoparticles. J Phys Conf Ser 200(7):072012

    Article  Google Scholar 

  202. Haddad PS, Martins TM, D’Souza-Li L et al (2008) Structural and morphological investigation of magnetic nanoparticles based on iron oxides for biomedical applications. Mater Sci Eng C 28(4):489–494

    Article  Google Scholar 

  203. Roca AG, Veintemillas-Verdaguer S, Port M et al (2009) Effect of nanoparticle and aggregate size on the relaxometric properties of MR contrast agents based on high quality magnetite nanoparticles. J Phys Chem B 113(19):7033–7039

    Article  Google Scholar 

  204. Salas G, Casado C, Teran FJ et al (2012) Controlled synthesis of uniform magnetite nanocrystals with high-quality properties for biomedical applications. J Mater Chem 22(39):21065–21075

    Article  Google Scholar 

  205. Yihang W, Mengjie S, Zhuang X et al (2011) Ultra-small particles of iron oxide as peroxidase for immunohistochemical detection. Nanotechnology 22(22):225703

    Article  Google Scholar 

  206. Guardia P, Pérez N, Labarta A, Batlle X (2009) Controlled synthesis of iron oxide nanoparticles over a wide size range. Langmuir 26(8):5843–5847

    Article  Google Scholar 

  207. Salgueiriño-Maceira V, Liz-Marzán LM, Farle M (2004) Water-based ferrofluids from FexPt1-x nanoparticles synthesized in organic media. Langmuir 20(16):6946–6950

    Article  Google Scholar 

  208. Taboada E, Rodríguez E, Roig A et al (2007) Relaxometric and magnetic characterization of ultrasmall iron oxide nanoparticles with high magnetization. Evaluation as potential T1 magnetic resonance imaging contrast agents for molecular imaging. Langmuir 23(8):4583–4588

    Article  Google Scholar 

  209. Smolensky ED, Park H-YE, Berquó TS, Pierre VC (2011) Surface functionalization of magnetic iron oxide nanoparticles for MRI applications—Effect of anchoring group and ligand exchange protocol. Contrast Media Mol Imaging 6(4):189–199

    Google Scholar 

  210. Na HB, Palui G, Rosenberg JT et al (2011) Multidentate catechol-based polyethylene glycol oligomers provide enhanced stability and biocompatibility to iron oxide nanoparticles. ACS Nano 6(1):389–399

    Article  Google Scholar 

  211. Peng S, Wang C, Xie J, Sun S (2006) Synthesis and stabilization of monodisperse Fe nanoparticles. J Am Chem Soc 128(33):10676–10677

    Article  Google Scholar 

  212. Xie J, Xu C, Kohler N et al (2007) Controlled PEGylation of monodisperse Fe3O4 nanoparticles for reduced non-specific uptake by macrophage cells. Adv Mater 19(20):3163–3166

    Article  Google Scholar 

  213. Huang G, Zhang C, Li S et al (2009) A novel strategy for surface modification of superparamagnetic iron oxide nanoparticles for lung cancer imaging. J Mater Chem 19(35):6367–6372

    Article  Google Scholar 

  214. Kyoungja W, Hong J (2005) Surface modification of hydrophobic iron oxide nanoparticles for clinical applications. IEEE Trans Magn 41(10):4137–4139

    Article  Google Scholar 

  215. Fang C, Bhattarai N, Sun C, Zhang M (2009) Functionalized nanoparticles with long-term stability in biological media. Small 5(14):1637–1641

    Article  Google Scholar 

  216. Ge J, Hu Y, Biasini M et al (2007) One-step synthesis of highly water-soluble magnetite colloidal nanocrystals. Chem A Eur J 13(25):7153–7161

    Article  Google Scholar 

  217. Lattuada M, Hatton TA (2006) Functionalization of monodisperse magnetic nanoparticles. Langmuir 23(4):2158–2168

    Article  Google Scholar 

  218. Zhang T, Ge J, Hu Y et al (2007) A general approach for transferring hydrophobic nanocrystals into water. Nano Lett 7(10):3203–3207

    Article  Google Scholar 

  219. Tartaj P, González-Carreño T, Serna CJ (2001) Single-step nanoengineering of silica coated maghemite hollow spheres with tunable magnetic properties. Adv Mater 13(21):1620–1624

    Article  Google Scholar 

  220. Huang X, Schmucker A, Dyke J et al (2009) Magnetic nanoparticles with functional silanes: evolution of well-defined shells from anhydride containing silane. J Mater Chem 19(24):4231–4239

    Article  Google Scholar 

  221. Bloemen M, Brullot W, Luong T et al (2012) Improved functionalization of oleic acid-coated iron oxide nanoparticles for biomedical applications. J Nanoparticle Res 14(9):1–10

    Article  Google Scholar 

  222. Darbandi M, Lu W, Fang J, Nann T (2006) Silica encapsulation of hydrophobically ligated PbSe nanocrystals. Langmuir 22(9):4371–4375

    Article  Google Scholar 

  223. Darbandi M, Urban G, Krüger M (2010) A facile synthesis method to silica coated CdSe/ZnS nanocomposites with tuneable size and optical properties. J Coll Interface Sci 351(1):30–34

    Article  Google Scholar 

  224. Masih D, Frank S, Joachim L et al (2012) Nanoscale size effect on surface spin canting in iron oxide nanoparticles synthesized by the microemulsion method. J Phys D Appl Phys 45(19):195001

    Article  Google Scholar 

  225. Selvan ST, Tan TT, Ying JY (2005) Robust, non-cytotoxic, silica-coated CdSe quantum dots with efficient photoluminescence. Adv Mater 17(13):1620–1625

    Article  Google Scholar 

  226. Narita A, Naka K, Chujo Y (2009) Facile control of silica shell layer thickness on hydrophilic iron oxide nanoparticles via reverse micelle method. Coll Surf A Physicochem Eng Aspects 336(1–3):4656

    Google Scholar 

  227. Ding H, Zhang Y, Wang S et al (2012) Fe3O4@SiO2 core/shell nanoparticles: the silica coating regulations with a single-core for different core sizes and shell thicknesses. Chem Mater 24(23):4572–4580

    Article  Google Scholar 

  228. Kim J, Kim HS, Lee N et al (2008) Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. Angew Chem 120(44):8566–8569

    Article  Google Scholar 

  229. Shen R, Camargo PHC, Xia Y, Yang H (2008) Silane-based poly(ethylene glycol) as a primer for surface modification of nonhydrolytically synthesized nanoparticles using the Stöber method. Langmuir 24(19):11189–11195

    Article  Google Scholar 

  230. Dai Q, Lam M, Swanson S et al (2010) Monodisperse cobalt ferrite nanomagnets with uniform silica coatings. Langmuir 26(22):17546–17551

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophie Laurent .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Laurent, S. et al. (2017). Superparamagnetic Iron Oxide Nanoparticles. In: MRI Contrast Agents. SpringerBriefs in Applied Sciences and Technology(). Springer, Singapore. https://doi.org/10.1007/978-981-10-2529-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2529-7_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2527-3

  • Online ISBN: 978-981-10-2529-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics