Skip to main content

Part of the book series: SpringerBriefs in Computer Science ((BRIEFSCOMPUTER))

Abstract

In the last chapter of this book, we give a brief summary of what has been discussed in previous chapters. We also point out important research efforts that are currently underway as well as future research challenges that need to be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. I.F. Akyildiz, J.M. Jornet, The internet of nano-things. IEEE Wirel. Commun. 17(6), 58–63 (2010)

    Article  Google Scholar 

  2. I.F. Akyildiz, M. Pierobon, S. Balasubramaniam, Y. Koucheryavy, The internet of bio-nano things. IEEE Commun. Mag. 53(3), 32–40 (2015)

    Article  Google Scholar 

  3. N.A. Ali, M. Abu-Elkheir, Internet of nano-things healthcare applications: Requirements, opportunities, and challenges, in Proceedings of the IEEE 11th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob) (2015), pp. 9–14

    Google Scholar 

  4. S. Balasubramaniam, J. Kangasha, Realizing the internet of nano things: challenges, solutions, and applications. Computer 46(2), 62–68 (2013)

    Article  Google Scholar 

  5. Y. Chen, P. Kosmas, P.S. Anwar, L. Huang, A touch-communication framework for drug delivery based on a transient microbot system. IEEE Trans. Nanobiosci. 14(4), 397–408 (2015)

    Article  Google Scholar 

  6. Y. Chen, T. Nakano, P. Kosmas, C. Yuen, A.V. Vasilakos, M. Asvial, Green touchable nanorobotic sensor networks. IEEE Commun. Mag. (2016) (to appear)

    Google Scholar 

  7. U.A.K. Chude-Okonkwo, R. Malekian, B.T.S. Maharaj, Molecular communication model for targeted drug delivery in multiple disease sites with diversely expressed enzymes. IEEE Trans. NanoBiosci. 15(3), 230–245 (2016)

    Article  Google Scholar 

  8. F. Dressler, S. Fischer, Connecting in-body nano communication with body area networks: challenges and opportunities of the internet of nano things. Nano Commun. Netw. 6(2), 29–38 (2015)

    Article  Google Scholar 

  9. A.W. Eckford, T. Furubayashi, T. Nakano, Rna as a nanoscale data transmission medium: Error analysis, in Proceedings of the 16th International Conference on Nanotechnology Conference (IEEE NANO 2016) (2016)

    Google Scholar 

  10. M. Femminella, G. Reali, A.V. Vasilakos, A molecular communications model for drug delivery. IEEE Trans. Nanobiosci. 14(8), 935–945 (2015)

    Article  Google Scholar 

  11. P. Friedl, D. Gilmour, Collective cell migration in morphogenesis, regeneration and cancer. Nat. Rev. Mol. Cell Biol. 10(7), 445–457 (2009)

    Article  Google Scholar 

  12. T. Furubayashi, T. Nakano, A. Eckford, Y. Okaie, T. Yomo, Packet fragmentation and reassembly in molecular communication. IEEE Trans. NanoBiosci. 15(3), 284–288 (2016)

    Article  Google Scholar 

  13. T. Furubayashi, T. Nakano, A. Eckford, T. Yomo, Reliable end-to-end molecular communication with packet replication and retransmission, in Proceedings of the IEEE Global Communications Conference (GLOBECOM) (2015), pp. 1–6

    Google Scholar 

  14. S. Iwasaki, J. Yang, A.O. Abraham, J.L. Hagad, T. Obuchi, T. Nakano, Modeling multi-target detection and gravitation by intelligent self-organizing bioparticles, in Proceedings of the IEEE Global Communications Conference (GLOBECOM) (2016)

    Google Scholar 

  15. M. Kuscu, B. Akan, Modeling and analysis of sinw biofet as molecular antenna for bio-cyber interfaces towards the internet of bio-nanothings, in Proceedings of the IEEE World Forum on Internet of Things (WF-IoT) (2015)

    Google Scholar 

  16. L. Laer, M. Kloppstech, C. Schofl, T.J. Sejnowski, G. Brabant, K. Prank, Noise enhanced hormonal signal transduction through intracellular calcium oscillations. Biophys. Chem. 91, 157–166 (2001)

    Article  Google Scholar 

  17. T. Nakano, A. Eckford, T. Haraguchi, Molecular Communication (Cambridge University Press, Cambridge, 2013)

    Google Scholar 

  18. T. Nakano, S. Kobayashi, T. Suda, Y. Okaie, Y. Hiraoka, T. Haraguchi, Externally controllable molecular communication. IEEE J. Sel. Areas Commun. (JSAC) 32(12), 1–15 (2014)

    Article  Google Scholar 

  19. T. Nakano, S. Kobayashi, T. Suda, Y. Okaie, Y. Hiraoka, T. Haraguchi, Externally controllable molecular communication systems for pattern formation, in Proceedings of the 1st ACM International Conference on Nanoscale Computing and Communication (2014)

    Google Scholar 

  20. T. Nakano, M.J. Moore, Y. Okaie, A. Enomoto, T. Suda, Cooperative drug delivery through molecular communication among biological nanomachines, in IEEE International Workshop on Molecular and Nanoscale Communications (MoNaCom) (2013), pp. 809–812

    Google Scholar 

  21. T. Nakano, T. Suda, Y. Okaie, M.J. Moore, A.V. Vasilakos, Molecular communication among biological nanomachines: a layered architecture and research issues. IEEE Trans. NanoBiosci. 13(3), 169–197 (2014)

    Article  Google Scholar 

  22. T. Nakano, S. Kobayashi, T. Koujin, C.-H. Chan, Y.-H. Hsu, Y. Okaie, T. Obuchi, T. Hara, Y. Hiraoka, T. Haraguchi, Leader-follower based target detection model for mobile molecular communication networks, in Proceedings of the IEEE International workshop on Signal Processing advances in Wireless Communications (SPAWC) (2016)

    Google Scholar 

  23. T. Obuchi, Y. Okaie, T. Nakano, T. Hara, S. Nishio, Inbody mobile bionanosensor networks through non-diffusion-based molecular communication, in IEEE International Conference on Communications (ICC 2015) (2016), pp. 1078–1084

    Google Scholar 

  24. Y. Okaie, T. Nakano, T. Hara, K. Hosoda, Y. Hiraoka, S. Nishio, Cooperative target tracking by a bacterium-based mobile sensor network. IEEE Trans. NanoBiosci. 13(3), 1–11 (2014)

    Article  Google Scholar 

  25. N.R. Raz, M.R. Akbarzadeh-T, M. Tafaghodi, Bioinspired nanonetworks for targeted cancer drug delivery. IEEE Trans. NanoBiosci. 14(8), 894–906 (2015)

    Google Scholar 

  26. Y. Sasaki, Y. Shioyama, W. J. Tian, J. Kikuchi, S. Hiyama, Y. Moritani, T. Suda, A nanosensory device fabricated on a liposome for detection of chemical signals. Biotechnol. Bioeng. 105(1) (2010)

    Google Scholar 

  27. A.S. Tanenbaum, D.J. Wetherall, Computer Networks, 5th edn.. (Prentice Hall, Upper Saddle, 2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yutaka Okaie .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Okaie, Y., Nakano, T., Hara, T., Nishio, S. (2016). Conclusion. In: Target Detection and Tracking by Bionanosensor Networks. SpringerBriefs in Computer Science. Springer, Singapore. https://doi.org/10.1007/978-981-10-2468-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2468-9_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2467-2

  • Online ISBN: 978-981-10-2468-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics