Skip to main content

Fundamentals of Membrane Processes

  • Chapter
  • First Online:
Fundamentals of Membrane Bioreactors

Abstract

Scepticism related to climate change has given way in the past few years as evidence of the impact of climate change has increased. There are fears that adverse environmental transformations, including the reduction in the availability or quality of natural resources such as water and land, can lead to conflicts. The human security of communities whose livelihoods depend heavily on these resources is likely to be destabilized. Farmers and herders of West Africa fall into this category. Conflicts regularly occur between these groups and the projected impacts of climate change, which include more irregular rainfall and hence less access to freshwater resources, could fuel the violence further. However, social, economic and political factors can mitigate the environmental impacts of climate change and their potential for causing conflict. Research into reducing climate-change-related conflict through political levers, the focus of this study, is not yet very profuse. This introductory chapter sets out the objectives of this study, namely, the identification of political factors that could contribute to conflict reduction in the climate-change-impacted settings of West Africa. The approach adopted involves defining a theoretical model to support the argument and then testing hypotheses on the potential of political factors for conflict reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albrecht W, Weigel T, Schossig-Tiedemann M, Kneifel K, Peinemann KV, Paul D (2001) Formation of hollow fiber membranes from poly(ether imide) at wet phase inversion using binary mixtures of solvents for the preparation of the dope. J Membr Sci 192(1–2):217–230. doi:10.1016/S0376-7388(01)00504-X

    Article  CAS  Google Scholar 

  • Arthanareeswaran G, Sriyamuna Devi TK, Raajenthiren M (2008) Effect of silica particles on cellulose acetate blend ultrafiltration membranes: Part I. Sep Purif Technol 64(1):38–47

    Article  CAS  Google Scholar 

  • Bae TH, Tak TM (2005a) Effect of TiO2 nanoparticles on fouling mitigation of ultrafiltration membranes for activated sludge filtration. J Membr Sci 249(1–2):1–8

    CAS  Google Scholar 

  • Bae TH, Tak TM (2005b) Interpretation of fouling characteristics of ultrafiltration membranes during the filtration of membrane bioreactor mixed liquor. J Membr Sci 264(1–2):151–160

    Article  CAS  Google Scholar 

  • Baker R (2012) Membrane technology and application, 3rd edn. Wiley, United Kingdom

    Book  Google Scholar 

  • Barth C, Gonçalves MC, Pires ATN, Roeder J, Wolf BA (2000) Asymmetric polysulfone and polyethersulfone membranes: effects of thermodynamic conditions during formation on their performance. J Membr Sci 169(2):287–299

    Article  CAS  Google Scholar 

  • Barzin J, Feng C, Khulbe KC, Matsuura T, Madaeni SS, Mirzadeh H (2004) Characterization of polyethersulfone hemodialysis membrane by ultrafiltration and atomic force microscopy. J Membr Sci 237(1–2):77–85

    Article  CAS  Google Scholar 

  • Belfer S, Fainchtain R, Purinson Y, Kedem O (2000) Surface characterization by FTIR-ATR spectroscopy of polyethersulfone membranes-unmodified, modified and protein fouled. J Membr Sci 172(1–2):113–124

    Article  CAS  Google Scholar 

  • Bhattacharjee S, Johnston GM (2002) A model of membrane fouling by salt precipitation from multicomponent ionic mixtures in crossflow nanofiltration. Environ Eng Sci 19(6):399–412

    Article  CAS  Google Scholar 

  • Bolong N, Ismail AF, Salim MR, Rana D, Matsuura T (2009) Development and characterization of novel charged surface modification macromolecule to polyethersulfone hollow fiber membrane with polyvinylpyrrolidone and water. J Membr Sci 331(1–2):40–49

    Article  CAS  Google Scholar 

  • Boom RM, Wienk IM, Den Van, Boomgaard T, Smolders CA (1992) Microstructures in phase inversion membranes. Part 2. The role of a polymeric additive. J Membr Sci 73(2–3):277–292

    Article  CAS  Google Scholar 

  • Boussu K, Van der Bruggen B, Volodin A, Van Haesendonck C, Delcour JA, Van der Meeren P, Vandecasteele C (2006) Characterization of commercial nanofiltration membranes and comparison with self-made polyethersulfone membranes. Desalination 191(1–3):245–253

    Article  CAS  Google Scholar 

  • Buch PR, Jagan Mohan D, Reddy AVR (2008) Preparation, characterization and chlorine stability of aromatic-cycloaliphatic polyamide thin film composite membranes. J Membr Sci 309(1–2):36–44

    Article  CAS  Google Scholar 

  • Buonomenna M, Choi S, Galiano F, Drioli E (2011) Membranes prepared via phase inversion. In: Basile A, Gallucci F (eds) Membranes for membrane reactors, preparation, optimization and selection, 1st edn. Wiley, UK, pp 475–490

    Chapter  Google Scholar 

  • Cadotte J, Petersen R (1981) Thin film reverse osmosis membranes: origin, development, and recent advances. In: Synthetic membranes, ACS symposium series 153, vol 1, pp 305–325

    Google Scholar 

  • Cejka J, Corna HV, Corma A, Schuth F (2007) Introduction to zeolite science and practise, studies in surface science and catalysis. Elsevier

    Google Scholar 

  • Celik E, Choi H (2011) Carbon nanotube/polyethersulfone composite membranes for water filtration. In: ACS Symposium Series, vol 1078

    Google Scholar 

  • Celik E, Liu L, Choi H (2011a) Protein fouling behavior of carbon nanotube/polyethersulfone composite membranes during water filtration. Water Res 45(16):5287–5294

    Article  CAS  Google Scholar 

  • Celik E, Park H, Choi H, Choi H (2011b) Carbon nanotube blended polyethersulfone membranes for fouling control in water treatment. Water Res 45(1):274–282

    Article  CAS  Google Scholar 

  • Chaturvedi BK, Ghosh AK, Ramachandhran V, Trivedi MK, Hanra MS, Misra BM (2001) Preparation, characterization and performance of polyethersulfone ultrafiltration membranes. Desalination 133(1):31–40

    Article  CAS  Google Scholar 

  • Cheryan M (1998) Ultrafiltration and microfiltration handbook. Technomic Publishing Company Inc, USA

    Google Scholar 

  • Daraei P, Madaeni SS, Ghaemi N, Khadivi MA, Astinchap B, Moradian R (2013a) Enhancing antifouling capability of PES membrane via mixing with various types of polymer modified multi-walled carbon nanotube. J Membr Sci 444:184–191

    Article  CAS  Google Scholar 

  • Daraei P, Madaeni SS, Ghaemi N, Khadivi MA, Astinchap B, Moradian R (2013b) Fouling resistant mixed matrix polyethersulfone membranes blended with magnetic nanoparticles: study of magnetic field induced casting. Sep Purif Technol 109:111–121

    Article  CAS  Google Scholar 

  • Daraei P, Madaeni SS, Ghaemi N, Khadivi MA, Rajabi L, Derakhshan AA, Seyedpour F (2013c) PAA grafting onto new acrylate-alumoxane/PES mixed matrix nano-enhanced membrane: preparation, characterization and performance in dye removal. Chem Eng J 221:111–123

    Article  CAS  Google Scholar 

  • Fan XJ, Urbain V, Qian Y, Manem J (1996) Nitrification and mass balance with a membrane bioreactor for municipal wastewater treatment. Water Sci Technol 34. doi:10.1016/0273-1223(96)00502-1

  • Gallucci F, Basile A, Hai F (2011a) Membranes for membrane reactors: preparation, optimization and selection, 1st edn. Wiley, UK

    Google Scholar 

  • Gallucci F, Basile A, Hai FI (2011b) Introduction—a review of membrane reactors. In: Membranes for membrane reactors: preparation, optimization and selection. Wiley, Chichester, pp 1–61. doi:10.1002/9780470977569.ch

  • Gallucci F, Tosti S, Basile A (2008) Pd-Ag tubular membrane reactors for methane dry reforming: a reactive method for CO2 consumption and H2 production. J Membr Sci 317(1–2):96–105. doi:10.1016/j.memsci.2007.03.058

    Article  CAS  Google Scholar 

  • Gerlach G, Baumann K, Buchhold R, Naklal A (1998) German Patent D E 19853732

    Google Scholar 

  • Guan R, Zou H, Lu D, Gong C, Liu Y (2005) Polyethersulfone sulfonated by chlorosulfonic acid and its membrane characteristics. Eur Polym J 41(7):1554–1560

    Article  CAS  Google Scholar 

  • Hancock LF, Fagan SM, Ziolo MS (2000) Hydrophilic, semipermeable membranes fabricated with poly(ethylene oxide)-polysulfone block copolymer. Biomaterials 21(7):725–733

    Article  CAS  Google Scholar 

  • Hoek EMV, Elimelech M (2003) Cake-enhanced concentration polarization: a new fouling mechanism for salt-rejecting membranes. Environ Sci Technol 37(24):5581–5588

    Article  CAS  Google Scholar 

  • Hoek EMV, Kim AS, Elimelech M (2002) Influence of crossflow membrane filter geometry and shear rate on colloidal fouling in reverse osmosis and nanofiltration separations. Environ Eng Sci 19(6):357–372

    Article  CAS  Google Scholar 

  • Huang J, Zhang K, Wang K, Xie Z, Ladewig B, Wang H (2012) Fabrication of polyethersulfone-mesoporous silica nanocomposite ultrafiltration membranes with antifouling properties. J Membr Sci 423–424:362–370

    Article  CAS  Google Scholar 

  • Huang ZQ, Chen ZY, Guo XP, Zhang Z, Guo CL (2006) Structures and separation properties of PAN-Fe3O4 ultrafiltration membranes prepared under an orthogonal magnetic field. Ind Eng Chem Res 45(23):7905–7912

    Article  CAS  Google Scholar 

  • Ismail AF, Hassan AR (2007) Effect of additive contents on the performances and structural properties of asymmetric polyethersulfone (PES) nanofiltration membranes. Sep Purif Technol 55(1):98–109

    Article  CAS  Google Scholar 

  • Jahanshahi M, Rahimpour A, Peyravi M (2010) Developing thin film composite poly(piperazine-amide) and poly(vinyl-alcohol) nanofiltration membranes. Desalination 257(1–3):129–136

    Article  CAS  Google Scholar 

  • Jeong BH, Hoek EMV, Yan Y, Subramani A, Huang X, Hurwitz G, Ghosh AK, Jawor A (2007) Interfacial polymerization of thin film nanocomposites: a new concept for reverse osmosis membranes. J Membr Sci 294(1–2):1–7

    Article  CAS  Google Scholar 

  • Jian P, Yahui H, Yang W, Linlin L (2006) Preparation of polysulfone-Fe3O4 composite ultrafiltration membrane and its behavior in magnetic field. J Membr Sci 284(1–2):9–16

    Article  CAS  Google Scholar 

  • Judd S (2006) Principles and applications of membrane bioreactors in water and waste water treatment, 1st edn. Elsevier, UK

    Google Scholar 

  • Judd S, Robinson R, Holdner J, Vazquez HA, Jefferson B (2004) Impact of membrane material on membrane bioreactor permeability. In: Proceedings of the water environment-membrane technology conference, Seoul, Korea

    Google Scholar 

  • Kesting R (1971) Synthetic polymeric membranes. McGraw-Hill, New York

    Google Scholar 

  • Khayet M, García-Payo MC (2009) X-Ray diffraction study of polyethersulfone polymer, flat-sheet and hollow fibers prepared from the same under different gas-gaps. Desalination 245(1–3):494–500

    Article  CAS  Google Scholar 

  • Khulbe KC, Feng C, Matsuura T, Kapantaidakis GC, Wessling M, Koops GH (2003) Characterization of polyethersulfone-polyimide hollow fiber membranes by atomic force microscopy and contact angle goniometery. J Membr Sci 226(1–2):63–73. doi:10.1016/j.memsci.2003.08.011

    Article  CAS  Google Scholar 

  • Khulbe KC, Feng CY, Matsuura T (2010) Surface modification of synthetic polymeric membranes for filtration and gas separation. Recent Pat Chem Eng 3(1):1–16

    Article  CAS  Google Scholar 

  • Khulbe KC, Matsuura T, Singh S, Lamarche G, Noh SH (2000) Study on fouling of ultrafiltration membrane by electron spin resonance. J Membr Sci 167(2):263–273

    Article  CAS  Google Scholar 

  • Kim IC, Choi JG, Tak TM (1999) Sulfonated polyethersulfone by heterogeneous method and its membrane performances. J Appl Polym Sci 74(8):2046–2055

    Article  CAS  Google Scholar 

  • Koh M, Clark MM, Howe KJ (2005) Filtration of lake natural organic matter: adsorption capacity of a polypropylene microfilter. J Membr Sci 256(1–2):169–175

    CAS  Google Scholar 

  • Kosaraju P, Sirkar K (2008) Interfacially polymerized thin film comopsite membranes on microporous polypropylene supports for solvent-resistant nanofiltration. Membr Sci 321:155–161

    Article  CAS  Google Scholar 

  • Kumar R et al (2006) Nucl Instr Meth Phys Res 248B: 279–283

    Google Scholar 

  • Lau WJ, Ismail AF, Misdan N, Kassim MA (2012) A recent progress in thin film composite membrane: a review. Desalination 287:190–199

    Article  CAS  Google Scholar 

  • Lee S, Kim J, Lee CH (1999) Analysis of CaSO4 scale formation mechanism in various nanofiltration modules. J Membr Sci 163(1):63–74

    Article  CAS  Google Scholar 

  • Lee S, Lee CH (2000) Effect of operating conditions on CaSO4 scale formation mechanism in nanofiltration for water softening. Water Res 34(15):3854–3866

    Article  CAS  Google Scholar 

  • Leo CP, Ahmad Kamil NH, Junaidi MUM, Kamal SNM, Ahmad AL (2013) The potential of SAPO-44 zeolite filler in fouling mitigation of polysulfone ultrafiltration membrane. Sep Purif Technol 103:84–91

    Article  CAS  Google Scholar 

  • Leo CP, Cathie Lee WP, Ahmad AL, Mohammad AW (2012) Polysulfone membranes blended with ZnO nanoparticles for reducing fouling by oleic acid. Sep Purif Technol 89:51–56

    Article  CAS  Google Scholar 

  • Li B, Zhao W, Su Y, Jiang Z, Dong X, Liu W (2009a) Enhanced desulfurization performance and swelling resistance of asymmetric hydrophilic pervaporation membrane prepared through surface segregation technique. J Membr Sci 326(2):556–563

    Article  CAS  Google Scholar 

  • Li JF, Xu ZL, Yang H, Yu LY, Liu M (2009b) Effect of TiO2 nanoparticles on the surface morphology and performance of microporous PES membrane. Appl Surf Sci 255(9):4725–4732

    Article  CAS  Google Scholar 

  • Li Y, Cao C, Chung TS, Pramoda KP (2004) Fabrication of dual-layer polyethersulfone (PES) hollow fiber membranes with an ultrathin dense-selective layer for gas separation. J Membr Sci 245(1–2):53–60

    Article  CAS  Google Scholar 

  • Li Y, Chung TS, Xiao Y (2008) Superior gas separation performance of dual-layer hollow fiber membranes with an ultrathin dense-selective layer. J Membr Sci 325(1):23–27

    Article  CAS  Google Scholar 

  • Liang S, Xiao K, Mo Y, Huang X (2012) A novel ZnO nanoparticle blended polyvinylidene fluoride membrane for anti-irreversible fouling. J Membr Sci 394–395:184–192

    Article  CAS  Google Scholar 

  • Lin YS (2001) Microporous and dense inorganic membranes: current status and prospective. Sep Purif Technol 25(1–3):39–55. doi:10.1016/S1383-5866(01)00089-2

    Article  CAS  Google Scholar 

  • Liu SX, Kim JT (2011) Characterization of surface modification of polyethersulfone membrane. J Adhes Sci Technol 25(1–3):193–212

    Article  CAS  Google Scholar 

  • Livari AE, Aroujalian A, Raisi A, Fathizadeh M (2012) The effect of TiO2 nanoparticles on PES UF membrane fouling in water oil separation. Process Eng 44:1783–1785

    Google Scholar 

  • Lu Y, Yu S, Chai B (2005) Preparation of PVDF ultrafiltration membrane modified by nano-sized alumina(Al2O3) and its antifouling research. Polymer 46:7701–7706

    Article  CAS  Google Scholar 

  • Luo ML, Zhao JQ, Tang W, Pu CS (2005) Hydrophilic modification of poly(ether sulfone) ultrafiltration membrane surface by self-assembly of TiO2 nanoparticles. Appl Surf Sci 249(1–4):76–84

    Article  CAS  Google Scholar 

  • Luonsi A, Laitinen N, Beyer K, Levänen E, Poussade Y, Nyström M (2002) Separation of CTMP mill-activated sludge with ceramic membranes. Desalination 146(1–3):399–404

    Article  CAS  Google Scholar 

  • Machado PST, Habert AC, Borges CP (1999) Membrane formation mechanism based on precipitation kinetics and membrane morphology: Flat and hollow fiber polysulfone membranes. J Membr Sci 155(2):171–183

    Article  CAS  Google Scholar 

  • Madaeni SS, Rahimpour A (2005a) Effect of type of solvent and non-solvents on morphology and performance of polysulfone and polyethersulfone ultrafiltration membranes for milk concentration. Polym Adv Technol 16(10):717–724

    Article  CAS  Google Scholar 

  • Madaeni SS, Rahimpour A (2005b) Preparation of polyethersulfone ultrafiltration membranes for milk concentration and effects of additives on their morphology and performance. Chin J Polym Sci (English Edition) 23(5):539–548

    Article  CAS  Google Scholar 

  • Marchese J, Ponce M, Ochoa NA, Prádanos P, Palacio L, Hernández A (2003) Fouling behaviour of polyethersulfone UF membranes made with different PVP. J Membr Sci 211(1):1–11

    Article  CAS  Google Scholar 

  • Maximous N, Nakhla G, Wan W, Wong K (2010) Performance of a novel ZrO2/PES membrane for wastewater filtration. J Membr Sci 352(1–2):222–230

    Article  CAS  Google Scholar 

  • Moghimifar V, Raisi A, Aroujalian A (2014) Surface modification of polyethersulfone ultrafiltration membranes by corona plasma-assisted coating TiO2 nanoparticles. J Membr Sci 461:69–80

    Article  CAS  Google Scholar 

  • Mulder M (1984) Basic principles of membrane technology, 1st edn. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Mulder M (1997) Basic principles of membrane technology, 2nd edn. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Nair PK, Cardoso J, Gomez Daza O, Nair MTS (2001) Polyethersulfone foils as stable transparent substrates for conductive copper sulfide thin film coatings. Thin Solid Films 401(1–2):243–250

    Article  CAS  Google Scholar 

  • Nunes S, Peinemann K (2001) Membrane technology. Wiley, Weinheim

    Book  Google Scholar 

  • Nunes S, Peinemann K (2006) Membrane technology. Wiley, Weinheim

    Book  Google Scholar 

  • Nunes S, Peinemann K (2010) Membranes for water treatment, 4th edn. Wiley, Weinheim

    Google Scholar 

  • Oh SJ, Kim N, Lee YT (2009) Preparation and characterization of PVDF/TiO2 organic-inorganic composite membranes for fouling resistance improvement. J Membr Sci 345(1–2):13–20

    Article  CAS  Google Scholar 

  • Peyravi M, Rahimpour A, Jahanshahi M (2012) Thin film composite membranes with modified polysulfone supports for organic solvent nanofiltration. J Membr Sci 423–424:225–237

    Article  CAS  Google Scholar 

  • Rahimpour A (2011) Preparation and modification of nano-porous polyimide (PI) membranes by UV photo-grafting process: ultrafiltration and nanofiltration performance. Korean J Chem Eng 28(1):261–266

    Article  CAS  Google Scholar 

  • Rahimpour A, Jahanshahi M, Peyravi M, Khalili S (2011) Interlaboratory study of highly permeable thin film composite polyamide nanofiltration membrane. Polym Adv Technol 23:884–893

    Article  CAS  Google Scholar 

  • Rahimpour A, Madaeni SS (2007) Polyethersulfone (PES)/cellulose acetate phthalate (CAP) blend ultrafiltration membranes: preparation, morphology, performance and antifouling properties. J Membr Sci 305(1–2):299–312

    Article  CAS  Google Scholar 

  • Rahimpour A, Madaeni SS (2010) Improvement of performance and surface properties of nano-porous polyethersulfone (PES) membrane using hydrophilic monomers as additives in the casting solution. J Membr Sci 360(1–2):371–379

    Article  CAS  Google Scholar 

  • Rahimpour A, Madaeni SS, Mansourpanah Y (2007a) The effect of anionic, non-ionic and cationic surfactants on morphology and performance of polyethersulfone ultrafiltration membranes for milk concentration. J Membr Sci 296(1–2):110–121

    Article  CAS  Google Scholar 

  • Rahimpour A, Madaeni SS, Mansourpanah Y (2007b) High performance polyethersulfone UF membrane for manufacturing spiral wound module: preparation, morphology, performance, and chemical cleaning. Polym Adv Technol 18(5):403–410

    Article  CAS  Google Scholar 

  • Rahimpour A, Madaeni SS, Mansourpanah Y (2010a) Fabrication of polyethersulfone (PES) membranes with nano-porous surface using potassium perchlorate (KClO4) as an additive in the casting solution. Desalination 258(1–3):79–86

    Article  CAS  Google Scholar 

  • Rahimpour A, Madaeni SS, Mansourpanah Y (2010b) Nano-porous polyethersulfone (PES) membranes modified by acrylic acid (AA) and 2-hydroxyethylmethacrylate (HEMA) as additives in the gelation media. J Membr Sci 364(1–2):380–388

    Article  CAS  Google Scholar 

  • Rahimpour A, Madaeni SS, Taheri AH, Mansourpanah Y (2008) Coupling TiO2 nanoparticles with UV irradiation for modification of polyethersulfone ultrafiltration membranes. J Membr Sci 313(1–2):158–169

    Article  CAS  Google Scholar 

  • Rahimpour A, Madaeni SS, Zereshki S, Mansourpanah Y (2009) Preparation and characterization of modified nano-porous PVDF membrane with high antifouling property using UV photo-grafting. Appl Surf Sci 255(16):7455–7461

    Article  CAS  Google Scholar 

  • Razali NF, Mohammad AW, Hilal N, Leo CP, Alam J (2013) Optimisation of polyethersulfone/polyaniline blended membranes using response surface methodology approach. Desalination 311:182–191

    Article  CAS  Google Scholar 

  • Razmjou A, Mansouri J, Chen V (2011a) The effects of mechanical and chemical modification of TiO2 nanoparticles on the surface chemistry, structure and fouling performance of PES ultrafiltration membranes. J Membr Sci 378(1–2):73–84

    Article  CAS  Google Scholar 

  • Razmjou A, Mansouri J, Chen V, Lim M, Amal R (2011b) Titania nanocomposite polyethersulfone ultrafiltration membranes fabricated using a low temperature hydrothermal coating process. J Membr Sci 380(1–2):98–113

    Article  CAS  Google Scholar 

  • Samtleben W, Dengler C, Reinhardt B, Nothdurft A, Lemke HD (2003) Comparison of the new polyethersulfone high-flux membrane DIAPES® HF800 with conventional high-flux membranes during on-line haemodiafiltration. Nephrol Dial Transplant 18(11):2382–2386

    Article  CAS  Google Scholar 

  • Sawada I, Fachrul R, Ito T, Ohmukai Y, Maruyama T, Matsuyama H (2012) Development of a hydrophilic polymer membrane containing silver nanoparticles with both organic antifouling and antibacterial properties. J Membr Sci 387–388(1):1–6

    Article  CAS  Google Scholar 

  • Scott JA, Neilson DJ, Liu W, Boon PN (1998) A dual function membrane bioreactor system for enhanced aerobic remediation of high-strength industrial waste. Water Sci Technol 38(4–5):413–420

    Google Scholar 

  • Seidel A, Elimelech M (2002) Coupling between chemical and physical interactions in natural organic matter (NOM) fouling of nanofiltration membranes: implications for fouling control. J Membr Sci 203(1–2):245–255

    Article  CAS  Google Scholar 

  • Seman MA, Khayet M, Hilal N (2012) Development of anti-fouling properties and performance of nanofiltration membranes by interfacial polymerization and photografting In: Hilal N, Khayet M, Wright B (eds) Membrane modification technology and applications. Boca Raton, Taylor & Francis Group: CRC press, pp 119–153

    Google Scholar 

  • Shi Q, Su Y, Zhao W, Li C, Hu Y, Jiang Z, Zhu S (2008) Zwitterionic polyethersulfone ultrafiltration membrane with superior antifouling property. J Membr Sci 319(1–2):271–278

    Article  CAS  Google Scholar 

  • Shin SJ, Kim JP, Kim HJ, Jeon JH, Min BR (2005) Preparation and characterization of polyethersulfone microfiltration membranes by a 2-methoxyethanol additive. Desalination 186(1–3):1–10

    Article  CAS  Google Scholar 

  • Song YQ, Sheng J, Wei M, Yuan XB (2000) Surface modification of polysulfone membranes by lowtemperature plasma-graft poly(ethylene glycol) onto polysulfone membranes. J Appl Polym Sci 78(5):979–985

    Article  CAS  Google Scholar 

  • Strathmann, H (1989) Economical evaluation of membrane technology In: Cecille L, Toussaint JC (eds) Future industrial prospects of membrane processes. Elsevier, London & New York, pp 41–55

    Google Scholar 

  • Strathmann H (2000) Introduction to membrane science and technology. Wiley-VCH, Weinheim

    Google Scholar 

  • Strathmann H (2011) Introduction to membrane science and technology. Wiley-VCH, Weinheim

    Google Scholar 

  • Strathmann H, Giorno L, Drioli E (2006) An introduction to membrane science and technology. In: Consiglio Nazionale delle Ricerche, Rome

    Google Scholar 

  • Su Y, Mu C, Li C, Jiang Z (2009a) Antifouling property of a weak polyelectrolyte membrane based on poly(acrylonitrile) during protein ultrafiltration. Ind Eng Chem Res 48(6):3136–3141

    Article  CAS  Google Scholar 

  • Su YL, Cheng W, Li C, Jiang Z (2009b) Preparation of antifouling ultrafiltration membranes with poly(ethylene glycol)-graft-polyacrylonitrile copolymers. J Membr Sci 329(1–2):246–252

    Article  CAS  Google Scholar 

  • Tang B, Huo Z, Wu P (2008) Study on a novel polyester composite nanofiltration membrane by interfacial polymerization of triethanolamine (TEOA) and trimesoyl chloride (TMC). I. Preparation, characterization and nanofiltration properties test of membrane. J Membr Sci 320(1–2):198–205

    Article  CAS  Google Scholar 

  • Tsuru T, Izumi S, Yoshioka T, Asaeda M (2000a) Temperature effect on transport performance by inorganic nanofiltration membranes. AIChE J 46(3):565–574

    Article  CAS  Google Scholar 

  • Tsuru T, Sudou T, Kawahara SI, Yoshioka T, Asaeda M (2000b) Permeation of liquids through inorganic nanofiltration membranes. J Colloid Interface Sci 228(2):292–296

    Article  CAS  Google Scholar 

  • Tullis RH, Duffin RP, Zech M, Ambrus JL Jr (2002) Affinity hemodialysis for antiviral therapy. I. Removal of HIV-1 from cell culture supernatants, plasma, and blood. Ther Apheresis 6(3):213–220

    Article  Google Scholar 

  • Ulbricht M (2006) Advanced functional polymer membranes. Polymer 47(7):2217–2262

    Article  CAS  Google Scholar 

  • Ulbricht M, Schuster O, Ansorge W, Ruetering M, Steiger P (2007) Influence of the strongly anisotropic cross-section morphology of a novel polyethersulfone microfiltration membrane on filtration performance. Sep Purif Technol 57(1):63–73

    Article  CAS  Google Scholar 

  • Unger RE, Peters K, Huang Q, Funk A, Paul D, Kirkpatrick CJ (2005) Vascularization and gene regulation of human endothelial cells growing on porous polyethersulfone (PES) hollow fiber membranes. Biomaterials 26(17):3461–3469. doi:10.1016/j.biomaterials.2004.09.047

    Article  CAS  Google Scholar 

  • Van der Bruggen B, Braeken L, Vandecasteele C (2002a) Evaluation of parameters describing flux decline in nanofiltration of aqueous solutions containing organic compounds. Desalination 147(1–3):281–288

    Article  Google Scholar 

  • Van der Bruggen B, Braeken L, Vandecasteele C (2002b) Flux decline in nanofiltration due to adsorption of organic compounds. Sep Purif Technol 29(1):23–31

    Article  Google Scholar 

  • van Veen HM, Bracht M, Hamoen E, Alderliesten PT (1996) Chapter 14 Feasibility of the application of porous inorganic gas separation membranes in some large-scale chemical processes. Membr Sci Technol 4

    Google Scholar 

  • Wang Y, Su Y, Sun Q, Ma X, Ma X, Jiang Z (2006a) Improved permeation performance of Pluronic F127-polyethersulfone blend ultrafiltration membranes. J Membr Sci 282(1–2):44–51

    Article  CAS  Google Scholar 

  • Wang YQ, Su YL, Ma XL, Sun Q, Jiang ZY (2006b) Pluronic polymers and polyethersulfone blend membranes with improved fouling-resistant ability and ultrafiltration performance. J Membr Sci 283(1–2):440–447

    Article  CAS  Google Scholar 

  • Wang YQ, Wang T, Su YL, Peng FB, Wu H, Jiang ZY (2006c) Protein-adsorption-resistance and permeation property of polyethersulfone and soybean phosphatidylcholine blend ultrafiltration membranes. J Membr Sci 270(1–2):108–114

    CAS  Google Scholar 

  • Werner C, Jacobasch HJ, Reichelt G (1995) Surface characterization of hemodialysis membranes based on streaming potential measurements. J Biomater Sci Polym Ed 7(1):61–76

    Article  CAS  Google Scholar 

  • Wu H (2012) Improving the anti-fouling and fouling release of PVDF UF membrane by chemically modified SiO2 nanoparticles. New South Wales, Sydney, Australia

    Google Scholar 

  • Xu ZL, Qusay FA (2004) Polyethersulfone (PES) hollow fiber ultrafiltration membranes prepared by PES/non-solvent/NMP solution. J Membr Sci 233(1–2):101–111

    Article  CAS  Google Scholar 

  • Yamamura H, Kimura K, Watanabe Y (2007a) Mechanism involved in the evolution of physically irreversible fouling in microfiltration and ultrafiltration membranes used for drinking water treatment. Environ Sci Technol 41(19):6789–6794

    Article  CAS  Google Scholar 

  • Yamamura H, Okimoto K, Kimura K, Watanabe Y (2007b) Influence of calcium on the evolution of irreversible fouling in microfiltration/ultrafiltration membranes. J Water Supply Res Technol—AQUA 56(6–7):425–434

    Article  CAS  Google Scholar 

  • Yang Y, Zhang H, Wang P, Zheng Q, Li J (2007) The influence of nano-sized TiO2 fillers on the morphologies and properties of PSF UF membrane. J Membr Sci 288(1–2):231–238

    Article  CAS  Google Scholar 

  • Yu LY, Shen HM, Xu ZL (2009a) PVDF-TiO2 composite hollow fiber ultrafiltration membranes prepared by TiO2 sol-gel method and blending method. J Appl Polym Sci 113(3):1763–1772

    Article  CAS  Google Scholar 

  • Yu LY, Xu ZL, Shen HM, Yang H (2009b) Preparation and characterization of PVDF-SiO2 composite hollow fiber UF membrane by sol-gel method. J Membr Sci 337(1–2):257–265

    Article  CAS  Google Scholar 

  • Yu Y, Seo S, Kim IC, Lee S (2011) Nanoporous polyethersulfone (PES) membrane with enhanced flux applied in forward osmosis process. J Membr Sci 375(1–2):63–68. doi:10.1016/j.memsci.2011.02.019

    Article  CAS  Google Scholar 

  • Zhao C, Liu T, Lu Z, Cheng L, Huang J (2001) An evaluation of a polyethersulfone hollow fiber plasma separator by animal experiment. Artif Organs 25:3–60

    Google Scholar 

  • Zhao C, Liu X, Rikimaru S, Nomizu M, Nishi N (2003a) Surface characterization of polysulfone membranes modified by DNA immobilization. J Membr Sci 214(2):179–189

    Article  CAS  Google Scholar 

  • Zhao C, Xue J, Ran F, Sun S (2013) Modification of polyethersulfone membranes—A review of methods. Prog Mater Sci 58(1):76–150

    Article  CAS  Google Scholar 

  • Zhao Q, Qian J, An Q, Zhu Z, Zhang P, Bai Y (2008) Studies on pervaporation characteristics of polyacrylonitrile-b-poly(ethylene glycol)-b-polyacrylonitrile block copolymer membrane for dehydration of aqueous acetone solutions. J Membr Sci 311(1–2):284–293

    CAS  Google Scholar 

  • Zhao ZP, Wang Z, Wang SC (2003b) Formation, charged characteristic and BSA adsorption behavior of carboxymethyl chitosan/PES composite MF membrane. J Membr Sci 217(1–2):151–158

    Article  CAS  Google Scholar 

  • Zhenxin Z, Matsuura T (1991) Discussions on the formation mechanism of surface pores in reverse osmosis, ultrafiltration, and microfiltration membranes prepared by phase inversion process. J Colloid Interface Sci 147(2):307–315

    Article  Google Scholar 

  • Zhu J, Guo N, Zhang Y, Yu L, Liu J (2014) Preparation and characterization of negatively charged PES nanofiltration membrane by blending with halloysite nanotubes grafted with poly (sodium 4-styrenesulfonate) via surface-initiated ATRP. J Membr Sci 465:91–99

    Article  CAS  Google Scholar 

  • Zoppi RA, Soares CGA (2002) Hybrids of poly(ethylene oxide-b-amide-6) and ZrO2 sol-gel: Preparation, characterization, and application in processes of membranes separation. Adv Polym Technol 21(1):2–16

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bradley Ladewig .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Ladewig, B., Al-Shaeli, M.N.Z. (2017). Fundamentals of Membrane Processes. In: Fundamentals of Membrane Bioreactors. Springer Transactions in Civil and Environmental Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-10-2014-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2014-8_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2013-1

  • Online ISBN: 978-981-10-2014-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics