Skip to main content

Bioremediation of Heavy Metals from Saline Water Using Hypersaline Dissimilatory Sulfate-Reducing Bacteria

  • Chapter
  • First Online:
Marine Pollution and Microbial Remediation

Abstract

Salt pans are man-made ecosystems which are fed by the tidal influx of seawater through the estuaries. Most heavy metal contaminants from industries and anthropogenic processes dissolve in water and thus gain entry into the sea. Heavy metals are high-density metallic chemicals that are potentially toxic at low concentrations and present a danger to human and environmental health. The removal of these metals by general physical separation techniques is a crucial issue and chemical treatment is not always environmentally friendly. Biological methods provide an alternative to heavy metal remediation. In the present study, hypersaline dissimilatory sulfate-reducing bacteria (SRB) were found to remediate barium, calcium, cadmium, cobalt, copper, iron, magnesium, molybdenum, zinc, mercury, nickel, and lead metals from saline waters. SRB produce H2S by utilizing sulfate as electron acceptor, which helps in oxidizing organic matter, and reactive H2S precipitates dissolved heavy metals as their metal sulfides and thus play an important role in detoxifying saline waters. Among the 11 heavy metals found in the adjoining estuarine seawater, 9 metals were detected in the salt pan water of Ribandar, Goa. Fe, Mn, and Pb were observed in dissolved and particulate form, whereas Hg and Sb were absent. In the salt manufacturing process, the brine starts crystallizing the salt and metal concentrations increase by 103 fold in brine and 104 in salt crystals. SRB precipitate almost 50 % concentrations of the dissolved metals (from the overlying salt pan water) as their metal sulfides, which gradually get deposited in the underlying salt pan sediments. Hypersaline SRB show optimal sulfate-reducing activity from 80 to 115 psu and are thus potential bioremediators in salt pan ecosystems and in turn have an application in detoxifying industrial effluents containing heavy metals. This study assesses the role of hypersaline SRB strains isolated from salt pans in remediating heavy metal containing saline waters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelouas A, Lutze W, Nuttall HE (1999) Uranium contamination in the subsurface: characterization and remediation. In: Burns PC, Finch R (eds) Uranium: mineralogy, geochemistry and the environment, vol 38, Reviews in mineralogy., pp 433–473

    Google Scholar 

  • Abdelouas A, Lutze W, Gong W et al (2000) Biological reduction of uranium in groundwater and subsurface soil. Sci Total Environ 250:21–35

    Article  CAS  Google Scholar 

  • Adeniji A (2004) EPA report: bioremediation of arsenic, chromium, lead, and mercury

    Google Scholar 

  • Amacher MC, Brown RW, Kotuby-Amacher J, Willis A (1993) Adding sodium hydroxide to study metal removal in a stream affected by acid mine drainage. USDA-FS, Research Paper INT- 465

    Google Scholar 

  • Atlas RM, Bartha R (1997) Microbial ecology: fundamentals and applications. The Benjamin/Cumming Publishing Company, Redwood City

    Google Scholar 

  • Attri K, Kerkar S (2011) Seasonal assessment of heavy metal pollution in tropical mangrove sediments (Goa, India). J Ecobiotechnol 3:9–15

    CAS  Google Scholar 

  • Attri K, Kerkar S, LokaBharathi PA (2011) Ambient iron concentration regulates the sulfate reducing activity in the mangrove swamps of Divar, Goa, India. Estuar Coast Shelf Sci 95:156–164

    Article  CAS  Google Scholar 

  • Banfield JF, Welch SA, Zhang H, Ebert TT, Penn RL (2000) Crystal growth and microstructural evolution of FeOOH biomineralization products. Science 289:751–754

    Article  CAS  Google Scholar 

  • Boopathy R, Gurgas M, Ullian J, Manning JF (1998) Metabolism of explosive compounds by sulfate reducing bacteria. Curr Microbiol 37:127–131

    Article  CAS  Google Scholar 

  • Canfield DE, Des Marais DJ (1993) Biogeochemical cycles of carbon, sulfur, and free oxygen in a microbial mat. Geochim Cosmochim Acta 57:3971–3984

    Article  CAS  Google Scholar 

  • Caumette P, Matheron R, Raymond K, Relexans JC (1994) Microbial mats in the hypersaline ponds of Mediterranean salterns (Salins-de-Giraud, France). FEMS Microbiol Ecol 13:273–286

    Article  CAS  Google Scholar 

  • Coleman ML, Hedrick BD et al (1993) Reduction of Fe(III) in sediments by sulfate reducing bacteria. Nature 361:436–438

    Article  CAS  Google Scholar 

  • Drzyzga O, El Mamouni R, Agathos SN, Gottschal JC (2002) Dehalogenation of chlorinated ethenes and immobilization of Nickel in anaerobic sediment column under sulfidogenic conditions. Environ Sci Technol 36:2630–2635

    Article  CAS  Google Scholar 

  • Eccles H (1995) Removal of heavy metals from effluent streams – why select a biological process? Int Biodeterior Biodegrad 5:5–16

    Article  Google Scholar 

  • Ehrlich HL (1999) Microbes as geologic agents: their role in mineral formation. Geomicrobiol J 16:135–153

    Article  Google Scholar 

  • Ellwood DC, Hill MJ, Watson JHP (1992) Pollution control using microorganisms and magnetic separation. In: Fry JC, Gadd GM, Herbert RA, Jones CW, Watson-Craik IA (eds) Microbial control of pollution. Soc Gen Microbiol, symposium no.48. Cambridge university press, Cambridge, pp 89–112

    Google Scholar 

  • Gibson SA, Suflita JM (1990) Anaerobic degradation of 1,4,5-trichlorophenoxyacetic acid in samples from a methanogenic aquifer: stimulation by short-chain organic acid and alcohols. Appl Environ Microbiol 53:254–260

    Google Scholar 

  • Goldhaber MB, Kaplan IR (1974) The sulfur cycle. In: Goldberg ED (ed) The sea, vol 5, Marine Chemistry. Wiley, New York, pp 469–655

    Google Scholar 

  • Groudev S, Georgiev P, Spasova I, Komnitsas K (2001) Bioremediation of a soil contaminated with radioactive elements. Hydrometallurgy 59:311–318

    Article  CAS  Google Scholar 

  • Harithsa S, Kerkar S, Loka Bharathi PA (2002) Mercury and lead tolerance in hypersaline sulfate-reducing bacteria. Mar Pollut Bull 44:726–732

    Article  CAS  Google Scholar 

  • Hatchikian EC (1972) Mechanism d’oxido-reduction chez les bacteries sulfato-reductrices. Thesis Marseilles

    Google Scholar 

  • Jalali K, Baldwin SA (2000) The role of sulphate reducing bacteria in copper removal from aqueous sulphate solutions. Water Res 34:797–806

    Article  CAS  Google Scholar 

  • Jang A, Kim SM, Kim SY, Lee SG, Kim IS (2001) Effect of heavy metal (Cu, Pb, and Ni) on the compositions of EPS in biofilms. Water Sci Technol 43(6):59–66

    Google Scholar 

  • Jorgensen BB (1982) Mineralization of organic matter in the sea bed: the role of sulphate reduction. Nature 296:643–645

    Article  Google Scholar 

  • Kaewsarn P (2002) Biosorption of copper(II) from aqueous solutions by pre-treated biomass of marine algae Padina sp. Chemosphere 47(10):1081–1085

    Article  CAS  Google Scholar 

  • Kaksonen AH, Riekkola-vanhanen M-L, Puhakka JA (2003) Optimization of metal sulphide precipitation in fluidized-bed treatment of acidic wastewater. Water Res 37:255–266

    Article  CAS  Google Scholar 

  • Kerkar S (2004) Ecology of hypersaline microorganisms. In: Ramaiah N (ed) Marine microbiology facets & opportunities. NIO Goa, India, pp 53–67

    Google Scholar 

  • Kerkar S, Fernandes MS (2013) A comparative assessment of Goan natural solar salt and its adequacy in iodine content and nutritive value. Int Food Res J 20:2317–2321

    Google Scholar 

  • Kerkar S, LokaBharathi PA (2007) Stimulation of sulphate reducing activity at salt – saturation in the salterns of Ribandar, Goa. India. Geomicrobiol J 24:101–110

    Article  CAS  Google Scholar 

  • Kerkar S, LokaBharathi PA (2011) G model revisited: seasonal changes in kinetics of sulphate reducing activity in the saltern of Ribandar, Goa, India. Geomicrobiology 28:187–197

    Article  CAS  Google Scholar 

  • Krumholz LR et al (2003) Immobilization of cobalt by sulphate reducing bacteria in subsurface sediments. Geomicrobiol J 20:61–72

    Article  CAS  Google Scholar 

  • Kumar CSR, Joseph MM, Kumar TRG, Renjith KR et al (2010) Spatial variability and contamination of heavy metals in the inter-tidal systems of a tropical environment. Int J Environ Res 4(4):691–700

    Google Scholar 

  • Labrenz M, Banfield JF (2004) Sulfate-reducing bacteria-dominated biofilms that precipitate ZnS in a subsurface circumneutral-pH mine drainage system. Microb Ecol 47:205–217

    CAS  Google Scholar 

  • Labrenz M, Druschel GK, Ebert TT, Gilbert B et al (2000) Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria. Science 290(5497):1744–1747

    Article  CAS  Google Scholar 

  • Leusch A, Holan ZR, Volesky B (1995) Biosorption of heavy metals (Cd, Cu, Ni, Pb, Zn) by chemically-reinforced biomass of marine algae. J Chem Technol Biotechnol 62:279–288

    Article  CAS  Google Scholar 

  • Li JH, Purdy KJ, Takii S, Hayashi H (1999) Seasonal changes in ribosomal RNA of sulphate-reducing bacteria and sulphate reducing activity in a freshwater lake sediment. FEMS Microb Ecol 28:31–39

    Article  CAS  Google Scholar 

  • Lloyd JR (2003) Microbial reduction of metals and radionuclides. FEMS Microbiol Rev 27:411–425

    Article  CAS  Google Scholar 

  • Lovley DR, Coates JD (1997) Bioremediation of metal contamination. Curr Opin Biotechnol 8:285–289

    Article  CAS  Google Scholar 

  • Lovley DR, Roden EE, Phillips EJP, Woodward JC (1993) Enzymatic iron and uranium reduction by sulphate reducing bacteria. Mar Geol 113:41–53

    Article  CAS  Google Scholar 

  • Macaskie LE, Lloyd JR, Thomas RAP, Tolley MR (1996) The use of microorganism for the remediation of solutions contaminated with actinide elements, other nuclides and organic contaminants generated by nuclear fuel cycle activities. Nucl Energy 35:257–271

    CAS  Google Scholar 

  • Madigan MT, Martinko JM, Parker J (eds) (1997) Biology of microorganisms, 8th edn. Prentice Hall Upper Saddle River Press, London

    Google Scholar 

  • Mohan D, Pittman CU (2007) Arsenic removal from water/wastewater using adsorbents—a critical review. J Hazard Mater 142:1–53

    Article  CAS  Google Scholar 

  • Natural and Accelerated Bioremediation Research (NABIR) (2003) Program, Office of Biological and Environmental Research, Office of Science, U.S. Department of Energy. What is Bioremediation. p 9

    Google Scholar 

  • Ollivier B, Caumette P, Garcia JL, Mah RA (1994) Anaerobic bacteria from hypersaline environments. Microbiol Rev 58(1):27–38

    CAS  Google Scholar 

  • Oren A (1999) Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev 63(2):334–348

    CAS  Google Scholar 

  • Pereira F, Kerkar S (2014) Metal detoxification in hypersaline environments. In: 4th National Seminar on Pollution in Urban Industrial Environment, pp 29–37

    Google Scholar 

  • Pereira F, Krishnan KP, Sinha RK, Kerkar S (2012) Insights on metal-microbe interactions in Bacillus sp. and Chromohalobacter sp. from a solar saltern. J Ecobiotechnol 4:14–24

    CAS  Google Scholar 

  • Pereira F, Kerkar S, Krishnan KP (2013) Bacterial response to dynamic metal concentrations in the surface sediments of a solar saltern (Goa, India). Environ Monit Assess 185:3625–3636

    Article  CAS  Google Scholar 

  • Rehman A, Shakoori AR (2001) Heavy metal resistance chlorella spp. isolated from tannery effluents and their role in remediation of hexavalent chromium in industrial wastewater. Bull Environ Contam Toxicol 66:542–546

    Article  CAS  Google Scholar 

  • Ross SM (1994) Retention, transformation and mobility of toxic metals in soils. In: Ross SM (ed) Toxic metals in soil-plant systems. Wiley, Chichester, pp 63–152

    Google Scholar 

  • Rowley MV, Warkentin DD, Yan VT, Piroshco BM (1994) The biosulfide process: integrated biological/chemical acid mine drainage treatment- results of laboratory piloting. Paper presented at the international Land Reclamation and Mine Drainage conference and the Third international conference on the Abatement of Acidic Drainage, Pittsburgh, PA, 24–29 April 1994

    Google Scholar 

  • RSMENR (2002) Rivers State Ministry of Environment and Natural Resources.Interim guidelines and Standards on environmental pollution control and management, pp 39–45

    Google Scholar 

  • Schiewer S, Volesky B (2000) Biosorption processes for heavy metal removal. In: Lovley DR (ed) Environmental microbe – metal interactions. ASM Press, Washington, DC, pp 329–357

    Chapter  Google Scholar 

  • Skyring GW (1987) Sulphate reduction in coastal ecosystems. Geomicrobiol J 5:295–374

    Article  CAS  Google Scholar 

  • Tabak HH, Lens P, Van Hullebusch ED, Dejonghe W (2005) Developments in bioremediation of soils and sediments polluted with metals and radionuclides-1. Microbial processes and mechanisms affecting bioremediation of metal contamination and influencing metal toxicity and transport. Rev Environ Sci Biotechnol 4(3):115–156

    Article  CAS  Google Scholar 

  • Utgikar V, Harmon S, Chaudhary N, Tabak H, Govind R, Haines J (2002) Inhibition of sulphate reducing bacteria by metal sulfide formation in bioremediation of acid mine drainage. Environ Toxicol 17:40–48

    Article  CAS  Google Scholar 

  • Valls M, de Lorenzo V (2002) Exploiting the genetic and biochemical capacities of bacteria for remediation of heavy metal pollution. FEMS Microbiol Rev 26:327–338

    Article  CAS  Google Scholar 

  • Wang J, Tao Y, Zhou JT, Gong XY (2001) Biosorption of chromium(VI) ions from aqueous solution by a novel bacterial exopolymers. Technol Water Treat 27(3):145–147

    CAS  Google Scholar 

  • Watson JHP, Ellwood DC (1994) Biomagnetic separation and extraction process for heavy metals from solution. Miner Eng 7:1017–1028

    Article  CAS  Google Scholar 

  • Watson JHP, Ellwood DC (1988) A biomagnetic separation process for the removal of heavy metal ions from solution, Paper presented at the international conference on control of environmental problems from metal mines, Roros, 20–24 June 1988

    Google Scholar 

  • White C, Gadd GM (1987) Inhibition of H+ efflux and K+ uptake and induction of K+ efflux in yeast by heavy metals. Toxicity Assess 2:437–447

    CAS  Google Scholar 

  • White C, Gadd GM (2000) Copper accumulation by sulphate reducing bacterial biofilm. FEMS Microbiol Lett 183:313–318

    Article  CAS  Google Scholar 

  • White C, Sharman AK, Gadd GM (1998) An integrated microbial process for the bioremediation of soil contaminated with toxic metals. Nat Biotechnol 16(6):572–575

    Article  CAS  Google Scholar 

  • White C, Dennis JS, Gadd GM (2003) A mathematical process model for cadmium bioprecipitation by sulphate reducing bacterial biofilm. Biodegradation 14:139–151

    Article  CAS  Google Scholar 

  • Wu QJ, Song YL, Li FD (1996) Studies of microbial treatment process for wastewater with high concentration of Cr(VI). Technol Water Treat 22(3):165–167

    CAS  Google Scholar 

  • Xu Y, Xiao H, Sun S (2005) Study on anaerobic treatment of wastewater containing hexavalent chromium. J Zhejiang Univ Sci 6B:574–579

    Article  CAS  Google Scholar 

  • Zehnder JBA (ed) (1988) Biology of anaerobic microorganisms. Wiley, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Savita Kerkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Kerkar, S., Ranjan Das, K. (2017). Bioremediation of Heavy Metals from Saline Water Using Hypersaline Dissimilatory Sulfate-Reducing Bacteria. In: Naik, M., Dubey, S. (eds) Marine Pollution and Microbial Remediation. Springer, Singapore. https://doi.org/10.1007/978-981-10-1044-6_2

Download citation

Publish with us

Policies and ethics