Skip to main content

Acyl Homoserine Lactone-Producing Rhizobacteria Elicit Systemic Resistance in Plants

  • Chapter
  • First Online:
Microbial-mediated Induced Systemic Resistance in Plants

Abstract

N-acyl homoserine lactone (AHLs) produced by bacteria play a unique role in altering the expression of plant defence genes. AHL signals are constitutively produced by the vast majority of the rhizosphere and other groups of bacteria; and also varied levels of plant response are elicited through different types of AHL signals. Moreover, the defence mechanism of AHL-induced ISR is distinct from other bacterial compound-mediated plant response. It was also evident that the response of plants to bacterial AHLs may depend on plant species and chemical structure of AHLs. However, the question of how plants perceive the AHLs and distinguish between those molecules remains open. To date, no information is available either about plant AHL receptors or how plant cells can incorporate AHL signal molecules. Even though plants produce compounds similar to AHL signals, the precise source, structure and biological significance of these AHL mimics from plants are currently unknown. The specificity of plant mimics to stimulate or inhibit different types of AHL signals needs to be addressed. A thorough understanding of how plants perceive and respond to AHLs needs to be investigated. Copious questions remain to be addressed for the better understanding of quorum sensing of bacteria and trans-kingdom interactions of AHLs with plant cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Atkinson S, Williams P (2009) Quorum sensing and social networking in the microbial world. J R Soc Interface 6:959–978

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bai X, Todd CD, Desikan R, Yang Y, Hu X (2012) N-3-oxodecanoyl-L-homoserine-lactone activates auxin-induced adventitious root formation via hydrogen peroxide- and nitric oxide-dependent cyclic GMP signaling in mung bean. Plant Physiol 158:725–736

    CAS  PubMed  Google Scholar 

  • Barriuso J, Ramos Solano B, Fray RG, Camara M, Hartmann A, Gutierrez Manero FJ (2008) Transgenic tomato plants alter quorum sensing in plant growth-promoting rhizobacteria. Plant Biotechnol J 6:442–452

    CAS  PubMed  Google Scholar 

  • Bassler BL (1999) How bacteria talk to each other: regulation of gene expression. Curr Opin Microbiol 2:582–587

    CAS  PubMed  Google Scholar 

  • Bauer WD, Mathesius U (2004) Plant responses to bacterial quorum sensing signals. Curr Opin Plant Biol 7:429–433

    CAS  PubMed  Google Scholar 

  • Beckers GJM, Jaskiewicz M, Liu Y, Underwood WR, He SY, Zhang S, Conrath U (2009) Mitogen-activated protein kinases 3 and 6 are required for full priming of stress responses in Arabidopsis thaliana. Plant Cell 21:944–953

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berendsen RL, Pieterse CMJ, Bakker PAHM (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486

    CAS  PubMed  Google Scholar 

  • Berg G, Roskot N, Steidle A, Eberl L, Zock A, Smalla K (2002) Plant-dependent genotypic and phenotypic diversity of antagonistic rhizobacteria isolated from different Verticillium host plants. Appl Environ Microbiol 68:3328–3338

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boyer M, Wisniewski-Dye F (2009) Cell-cell signalling in bacteria: not simply a matter of quorum. FEMS Microbiol Ecol 70:1–19

    CAS  PubMed  Google Scholar 

  • Case RJ, Labbate M, Kjelleberg S (2008) AHL-driven quorum-sensing circuits: their frequency and function among the Proteobacteria. ISME J 2:345–349

    CAS  PubMed  Google Scholar 

  • Cha C, Gao P, Chen YC, Shaw PD, Farrand SK (1998) Production of acyl-homoserine lactone quorum-sensing signals by Gram-negative plant-associated bacteria. Mol Plant Microbe Interact 11:1119–1129

    CAS  PubMed  Google Scholar 

  • Chin-A-Woeng TFC, Thomas-Oates JE, Lugtenberg BJJ, Bloemberg GV (2001) Introduction of the phzH gene of Pseudomonas chlororaphis PCL1391 extends the range of biocontrol ability of phenazine-1-carboxylic acid-producing Pseudomonas spp. strains. Mol Plant Microbe Interact 14:1006–1015

    CAS  PubMed  Google Scholar 

  • Choudhary DK, Prakash A, Johri BN (2007) Induced systemic resistance (ISR) in plants: mechanism of action. Indian J Microbiol 47:289–297

    CAS  PubMed  Google Scholar 

  • Churchill MEA, Chen LL (2011) Structural basis of acyl homoserine lactone dependent signaling. ACS Chem Rev 111:68–85

    CAS  Google Scholar 

  • DAngelo-Picard C, Faure D, Penot I, Dessaux Y (2005) Diversity of N-acyl homoserine lactone-producing and degrading bacteria in soil and tobacco rhizosphere. Environ Microbiol 7:1796–1808

    CAS  PubMed  Google Scholar 

  • De Maeyer K, D’aes J, Hua GKH, Perneel M, Vanhaecke L, Noppe H, Hofte M (2011) N-acyl homoserine lactone quorum sensing signalling in antagonistic phenazine-producing Pseudomonas isolates from the red cocoyam rhizosphere. Microbiology 157:459–479

    PubMed  Google Scholar 

  • De Vleesschauwer D, Hofte M (2009) Rhizobacteria-induced systemic resistance. Adv Bot Res 51:223–281

    Google Scholar 

  • DeAngelis KM, Lindow SE, Firestone MK (2008) Bacterial quorum sensing and nitrogen cycling in rhizosphere soil. FEMS Microbiol Ecol 6:197–207

    Google Scholar 

  • Degrassi G, Devescovi G, Solis R, Steindler L, Venturi V (2007) Oryza sativa rice plants contain molecules that activate different quorum-sensing N-acyl homoserine lactone biosensors and are sensitive to the specific AiiA lactonase. FEMS Microbiol Lett 269:213–220

    CAS  PubMed  Google Scholar 

  • Eberl L, Winson MK, Sternberg C, Stewart GS, Christiansen G, Chhabra SR, Bycroft B, Williams P, Molin S, Givskov M (1996) Involvement of N-acyl-L-hormoserine lactone autoinducers in controlling the multicellular behaviour of Serratia liquefaciens. Mol Microbiol 20:127–136

    CAS  PubMed  Google Scholar 

  • Elasri M, Delorme S, Lemanceau P, Stewart G, Laue B, Glickmann E, Oger PM, Dessaux Y (2001) Acyl-homoserine lactone production is more common among plant-associated Pseudomonas spp. than among soilborne Pseudomonas spp. Appl Environ Microbiol 67:1198–1209

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fuqua C, Greenberg EP (2002) Listening in on bacteria: acyl homoserine lactone signalling. Nat Rev Mol Cell Biol 3:685–695

    CAS  PubMed  Google Scholar 

  • Fuqua C, Winans SC (1994) A luxR-LuxI type regulatory system activates Agrobacterium Ti plasmid conjugal transfer in the presence of a plant tumor metabolite. J Bacteriol 176:2796–2806

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fuqua C, Winans SC, Greenberg EP (1996) Census and consensus in bacterial ecosystems: the LuxR-LuxI family of quorum-sensing transcriptional regulators. Annu Rev Microbiol 50:727–751

    CAS  PubMed  Google Scholar 

  • Fuqua C, Parsek MR, Greenberg EP (2001) Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Annu Rev Genet 35:439–468

    CAS  PubMed  Google Scholar 

  • Gao M, Teplitski M, Robinson JB, Bauer WD (2003) Production of substances by Medicago truncatula that affect bacterial quorum sensing. Mol Plant Microbe Interact 16:827–834

    CAS  PubMed  Google Scholar 

  • Gelencser Z, Choudhary KS, Coutinho BG, Hudaiberdiev S, Galbats B, Venturi V, Pongor S (2012) Classifying the topology of AHL-driven quorum sensing circuits in Proteobacterial genomes. Sensors 12:5432–5444

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gera C, Srivastava S (2006) Quorum-sensing: the phenomenon of microbial communication. Curr Sci 90:566–677

    Google Scholar 

  • Gonzalez JE, Keshavan ND (2006) Messing with bacterial quorum-sensing. Microbiol Mol Biol Rev 70:859–875

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez JE, Marketon MM (2003) Quorum sensing in nitrogen-fixing rhizobia. Microbiol Mol Biol Rev 67:574–592

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gotz C, Fekete A, Gebefuegi I, Forczek ST, Fuksova K, Li X, Englmann M, Gryndler M, Hartmann A, Matucha M, Schmitt-Kopplin P, Schröder P (2007) Uptake, degradation and chiral discrimination of N-acyl-D/L-homoserine lactones by barley (Hordeum vulgare) and yam bean (Pachyrhizus erosus) plants. Anal Bioanal Chem 389:1447–1457

    PubMed  Google Scholar 

  • Gotz-Rosch C, Sieper T, Fekete A, Schmitt-Kopplin P, Hartmann A, Schroder P (2015) Influence of bacterial N-acyl-homoserine lactones on growth parameters, pigments, antioxidative capacities and the xenobiotic phase II detoxification enzymes in barley and yam bean. Front Plant Sci 6:205

    PubMed  PubMed Central  Google Scholar 

  • Gray KM, Garey JR (2001) The evolution of bacterial LuxI and LuxR quorum sensing regulators. Microbiology 147:2379–2387

    CAS  PubMed  Google Scholar 

  • Hartmann A, Gantner S, Schuhegger R, Steidle A, Durr C, Schmid M, Eberl L, Dazzo FB, Langebartels C (2004) N-acyl-homoserine lactones of rhizosphere bacteria trigger systemic resistance in tomato plants. In: Lugtenberg B, Tikhonovich I, Provorov N (eds) Biology of molecular plant-microbe interactions, vol 4. MPMI, St. Paul, pp 554–556

    Google Scholar 

  • Hartmann A, Rothballer M, Hense BA, Schroder P (2014) Bacterial quorum sensing compounds are important modulators of microbe-plant interactions. Front Plant Sci 5:131

    PubMed  PubMed Central  Google Scholar 

  • Hawkes CV, DeAngelis KM, Firestone MK (2007) Root interactions with soil microbial communities and processes. In: Cardon Z, Whitbeck J (eds) The rhizosphere. Elsevier, New York, pp 1–31

    Google Scholar 

  • Heil M, Bostock RM (2002) Induced systemic resistance (ISR) against pathogens in the context of induced plant defenses. Ann Bot 89:503–512

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hernández-Reyes C, Schenk ST, Neumann C, Kogel KH, Schikora A (2014) N-acyl-homoserine lactones-producing bacteria protect plants against plant and human pathogens. Microb Biotechnol 7:580–588

    PubMed  PubMed Central  Google Scholar 

  • Horng YT, Deng SC, Daykin M, Soo PC, Wei JR, Luh KT, Ho SW, Swift S, Lai HC, Williams P (2002) The LuxR family protein SpnR functions as a negative regulator of N-acylhomoserine lactone-dependent quorum sensing in Serratia marcescens. Mol Microbiol 45:1655–1671

    CAS  PubMed  Google Scholar 

  • Hosni T, Moretti C, Devescovi G, Suarez-Moreno ZR, Fatmi MB, Guarnaccia C, Pongor S, Onofri A, Buonaurio R, Venturi V (2011) Sharing of quorum-sensing signals and role of interspecies communities in a bacterial plant disease. ISME J 5:1857–1870

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang YL, Zeng YH, Yu ZL, Zhang J (2013) Distribution and diversity of acyl homoserine lactone producing bacteria from four different soils. Curr Microbiol 66:10–15

    CAS  PubMed  Google Scholar 

  • Huse H, Whiteley M (2011) 4-Quinolones: smart phones of the microbial world. Chem Rev 111:152–159

    CAS  PubMed  Google Scholar 

  • Jin G, Liu F, Ma H, Hao S, Zhao Q, Bian Z, Jia Z, Song S (2012) Two G-protein-coupled-receptor candidates, Cand2 and Cand7, are involved in Arabidopsis root growth mediated b y the bacterial quorum-sensing signals N-acyl-homoserine lactones. Biochem Biophys Res Commun 417:991–995

    CAS  PubMed  Google Scholar 

  • Joseph CM, Phillips DA (2003) Metabolites from soil bacteria affect plant water relations. Plant Physiol Biochem 41:189–192

    CAS  Google Scholar 

  • Kaplan HB, Greenberg EP (1985) Diffusion of autoinducer is involved in regulation of the Vibrio fischeri luminescence system. J Bacteriol 163:1210–1214

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura N (2014) Metagenomic approaches to understanding phylogenetic diversity in quorum sensing. Virulence 5:433–442

    PubMed  PubMed Central  Google Scholar 

  • Kloepper JW, Ryu C-M, Zhang SA (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259–1266

    CAS  PubMed  Google Scholar 

  • Lerat E, Moran NA (2004) The evolutionary history of quorum-sensing systems in bacteria. Mol Biol Evol 21:903–913

    CAS  PubMed  Google Scholar 

  • Liu X, Bimerew M, Ma Y, Muller H, Ovadis M, Eberl L, Berg G, Chernin L (2007) Quorum-sensing signaling is required for production of the antibiotic pyrrolnitrin in a rhizospheric biocontrol strain of Serratia plymuthica. FEMS Microbiol Lett 270:299–305

    CAS  PubMed  Google Scholar 

  • Liu F, Bian Z, Jia Z, Zhao Q, Song S (2012) The GCR1 and GPA1 participate in promotion of Arabidopsis primary root elongation induced by N-acyl-homoserine lactones, the bacterial quorum-sensing signals. Mol Plant Microbe Interact 25:677–683

    CAS  PubMed  Google Scholar 

  • Lv D, Ma A, Tang X, Bai Z, Qi H, Zhuang G (2013) Profile of the culturable microbiome capable of producing acyl-homoserine lactone in the tobacco phyllosphere. J Environ Sci 25:357–366

    Google Scholar 

  • Mae A, Montesano M, Koiv V, Palva ET (2001) Transgenic plants producing the bacterial pheromone N-acyl-homoserine lactone exhibit enhanced resistance to the bacterial phytopathogen Erwinia carotovora. Mol Plant Microbe Interact 14:1035–1042

    CAS  PubMed  Google Scholar 

  • Mathesius U, Mulders S, Gao MS, Teplitski M, Caetano-Anolles G, Rolfe BG, Bauer WD (2003) Extensive and specific responses of a eukaryote to bacterial quorum-sensing signals. Proc Natl Acad Sci U S A 100:1444–1449

    CAS  PubMed  PubMed Central  Google Scholar 

  • Montillet JL, Leonhardt N, Mondy S, Tranchimand S, Rumeau D, Boudsocq M, Garcia AV, Douki T, Bigeard J, Lauriere C, Chevalier A, Castresana C, Hirt H (2013) An abscisic acid-independent oxylipin pathway controls stomatal closure and immune defense in Arabidopsis. PLoS Biol 11, e1001513

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ortiz-Castro R, Martinez-Trujillo M, Lopez-Bucio J (2008) N-acyl-L-homoserine lactones: a class of bacterial quorum-sensing signals alter post-embryonic root development in Arabidopsis thaliana. Plant Cell Environ 31:1497–1509

    CAS  PubMed  Google Scholar 

  • Ortiz-Castro R, Contreras-Cornejo HA, Macias-Rodriguez L, Lopez-Bucio J (2009) The role of microbial signals in plant growth and development. Plant Signal Behav 4:701–712

    CAS  PubMed  PubMed Central  Google Scholar 

  • Palmer AG, Senechal AC, Mukherjee A, Ane JM, Blackwell HE (2014) Plant responses to bacterial N-acyl L-homoserine lactones are dependent on enzymatic degradation to L-homoserine. ACS Chem Biol 9:1834–1845

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pang Y, Liu X, Ma Y, Chernin L, Berg G, Gao K (2009) Induction of systemic resistance, root colonisation and biocontrol activities of the rhizospheric strain of Serratia plymuthica are dependent on N-acyl homoserine lactones. Eur J Plant Pathol 124:261–268

    CAS  Google Scholar 

  • Pearson JP, Van Delden C, Iglewski BH (1999) Active efflux and diffusion are involved in transport of Pseudomonas aeruginosa cell-to-cell signals. J Bacteriol 181:1203–1210

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perez-Montano F, Jimenez-Guerrero I, Sanchez-Matamoros RC, Lopez-Baena FJ, Ollero FJ, Rodríguez-Carvajal MA, Bellogín RA, Espuny MR (2013) Rice and bean AHL-mimic quorum-sensing signals specifically interfere with the capacity to form biofilms by plant-associated bacteria. Res Microbiol 164:749–760

    CAS  PubMed  Google Scholar 

  • Pierson EA, Wood DW, Cannon JA, Blachere FM, Pierson LS III (1998) Interpopulation signalling via N-acyl-homoserine lactones among bacteria in the wheat rhizosphere. Mol Plant Microbe Interact 11:1078–1084

    CAS  Google Scholar 

  • Pieterse CMJ, Zamioudis C, Berendsen RL, Weller DM, Van Wees SCM, Bakker PAHM (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:347–375

    CAS  PubMed  Google Scholar 

  • Ryu C-M, Hu C-H, Reddy MS, Kloepper JW (2003) Different signaling pathways of induced resistance by rhizobacteria in Arabidopsis thaliana against two pathovars of Pseudomonas syringae. New Phytol 160:413–420

    CAS  PubMed  Google Scholar 

  • Ryu C-M, Farag MA, Hu CH, Reddy MS, Kloepper JW, Pare PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017–1026

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ryu C-M, Choi HK, Lee C-H, Murphy JF, Lee J-K, Kloepper JW (2013) Modulation of quorum sensing in acyl-homoserine lactone-producing or—degrading tobacco plants leads to alteration of induced systemic resistance elicited by the rhizobacterium Serratia marcescens 90–166. Plant Pathol J 29:182–192

    PubMed  PubMed Central  Google Scholar 

  • Schaefer AL, Val DL, Hanzelka BL, Cronan JE, Greenberg EP (1996) Generation of cell-to-cell signals in quorum sensing: acyl homoserine lactone synthase activity of a purified Vibrio fischeri LuxI protein. Proc Natl Acad Sci U S A 93:9505–9509

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schaefer AL, Lappala CR, Morlen RP, Pelletier DA, Lu TYS, Lankford PK, Harwood CS, Greenberg EP (2013) LuxR- and LuxI-type quorum-sensing circuits are prevalent in members of the Populus deltoides microbiome. Appl Environ Microbiol 79:5745–5752

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schenk ST, Schikora A (2015) AHL-priming functions via oxylipin and salicylic acid. Front Plant Sci 5:784

    PubMed  PubMed Central  Google Scholar 

  • Schenk ST, Stein E, Kogel KH, Schikora A (2012) Arabidopsis growth and defense are modulated by bacterial quorum sensing molecules. Plant Signal Behav 7:178–181

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schenk ST, Hernandez-Reyes C, Samans B, Stein E, Neumann C, Schikora M, Reichelt M, Mithofer A, Becker A, Kogel KA, Schikora A (2014) N-Acyl-Homoserine lactone primes plants for cell wall reinforcement and induces resistance to bacterial pathogens via the salicylic acid/oxylipin pathway. Plant Cell 26:2708–2723

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schikora A, Schenk ST, Stein E, Molitor A, Zuccaro A, Kogel KH (2011) N-acyl-homoserine lactone confers resistance toward biotrophic and hemibiotrophic pathogens via altered activation of AtMPK6. Plant Physiol 157:1407–1418

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schuhegger R, Ihring A, Gantner S, Bahnweg G, Knappe C, Vogg G, Hutzler P, Schmid M, Van Breusegem F, Eberl L, Hartmann A, Langebartels C (2006) Induction of systemic resistance in tomato by N-acyl-L-homoserine lactone-producing rhizosphere bacteria. Plant Cell Environ 29:909–918

    CAS  PubMed  Google Scholar 

  • Scott RA, Weil J, Le PT, Williams P, Fray RG, Von Bodman SB, Savka MA (2006) Long-and short-chain plant-produced bacterial N-acyl-homoserine lactones become components of phyllosphere, rhizosphere, and soil. Mol Plant Microbe Interact 19:227–239

    CAS  PubMed  Google Scholar 

  • Sekar J, Prabavathy VR (2014) Novel Phl-producing genotypes of finger millet rhizosphere associated pseudomonads and assessment of their functional and genetic diversity. FEMS Microbiol Ecol 89:32–46

    CAS  PubMed  Google Scholar 

  • Slaughter A, Daniel X, Flors V, Luna E, Hohn B, Mauch-Mani B (2012) Descendants of primed Arabidopsis plants exhibit resistance to biotic stress. Plant Physiol 158:835–843

    CAS  PubMed  Google Scholar 

  • Steidle A, Sigl K, Schuhegger R, Ihring A, Schmid M, Gantner S, Stoffels M, Riedel K, Givskov M, Hartmann A, Langebartels C, Eberl L (2001) Visualization of N-acylhomoserine lactone-mediated cell-cell communication between bacteria colonizing the tomato rhizosphere. Appl Environ Microbiol 67:5761–5770

    CAS  PubMed  PubMed Central  Google Scholar 

  • Steindler L, Bertani I, De Sordi L, Bigirimana J, Venturi V (2008) The presence, type and role of N-acyl homoserine lactone quorum sensing in fluorescent Pseudomonas originally isolated from rice rhizospheres are unpredictable. FEMS Microbiol Lett 288:102–111

    CAS  PubMed  Google Scholar 

  • Swift S, Williams P, Stewart GAB (1999) N-acyl homoserine lactones and quorum sensing are widespread in the proteobacteria. In: Dunny GM, Winans SC (eds) Cell–cell signalling in bacteria. ASM Press, Washington, DC, pp 291–314

    Google Scholar 

  • Taga ME, Bassler BL (2003) Chemical communication among bacteria. Proc Natl Acad Sci U S A 100:14549–14554

    CAS  PubMed  PubMed Central  Google Scholar 

  • Teplitski M, Robinson JB, Bauer WD (2000) Plants secrete substances that mimic bacterial N-acylhomoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. Mol Plant Microbe Interact 13:637–648

    CAS  PubMed  Google Scholar 

  • Thiel V, Kunze B, Verma P, Wagner-Dobler I, Schulz S (2009) New structural variants of homoserine lactones in bacteria. Chembiochem 10:1861–1868

    CAS  PubMed  Google Scholar 

  • Trivedi P, Spann T, Wang N (2011) Isolation and characterization of beneficial bacteria associated with citrus roots in Florida. Microb Ecol 62:324–336

    CAS  PubMed  Google Scholar 

  • Van Houdt R, Givskov M, Michiels CW (2007) Quorum sensing in Serratia. FEMS Microbiol Rev 31:407–424

    PubMed  Google Scholar 

  • Van Wees SCM, Van der Ent S, Pieterse CMJ (2008) Plant immune responses triggered by beneficial microbes. Curr Opin Plant Biol 11:443–448

    PubMed  Google Scholar 

  • Venturi V, Fuqua C (2013) Chemical signaling between plants and plant-pathogenic bacteria. Annu Rev Phytopathol 51:17–37

    CAS  PubMed  Google Scholar 

  • Venturi V, Subramoni S (2009) Future research trends in the major chemical language of bacteria. HFSP J 3:105–116

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vial L, Cuny C, Gluchoff-Fiasson K, Comte G, Oger PM, Faure D, Dessaux Y, Bally R, Wisniewski-Dye F (2006) N-acyl-homoserine lactone-mediated quorum-sensing in Azospirillum: an exception rather than a rule. FEMS Microbiol Ecol 58:155–168

    CAS  PubMed  Google Scholar 

  • Viswanath G (2015) Diversity of N-acyl homoserine lactone (N-AHL) producing rhizobacteria and transcriptional analysis of AHL regulatory genes, phzI/R and its influence on phenazine biosynthetic gene, phzH in Pseudomonas chlororaphis MSSRF QS59 under biotic and abiotic stress conditions. Ph.D. thesis, University of Madras, Chennai, India

    Google Scholar 

  • Viswanath G, Jegan S, Baskaran V, Kathiravan R, Prabavathy VR (2015) Diversity and N-acyl-homoserine lactone production by Gammaproteobacteria associated with Avicennia marina rhizosphere of South Indian mangroves. Syst Appl Microbiol 38:340–345

    CAS  PubMed  Google Scholar 

  • von Rad U, Klein I, Dobrev PI, Kottova J, Zazimalova E, Fekete A, Hartmann A, Schmitt-Kopplin P, Durner J (2008) Response of Arabidopsis thaliana to N-hexanoyl-DL-homoserine lactone, a bacterial quorum sensing molecule produced in the rhizosphere. Planta 229:73–85

    CAS  Google Scholar 

  • Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346

    CAS  PubMed  Google Scholar 

  • Waters CM, Lu W, Rabinowitz JD, Bassler BL (2008) Quorum sensing controls biofilm formation in Vibrio cholerae through modulation of cyclic di-GMP levels and repression of vpsT. J Bacteriol 190:2527–2536

    CAS  PubMed  PubMed Central  Google Scholar 

  • Whitehead NA, Barnard AM, Slater H, Simpson NJ, Salmond GP (2001) Quorum-sensing in Gram-negative bacteria. FEMS Microbiol Rev 25:365–404

    CAS  PubMed  Google Scholar 

  • Wisniewski-Dye F, Downie JA (2002) Quorum-sensing in Rhizobium. Antonie Van Leeuwenhoek 81:397–407

    CAS  PubMed  Google Scholar 

  • Wood DW, Gong F, Daykin MM, Williams P, Pierson LS III (1997) N-acyl-homoserine lactone-mediated regulation of phenazine gene expression by Pseudomonas aureofaciens 30–84 in the wheat rhizosphere. J Bacteriol 179:7663–7670

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zarkani AA, Stein E, Rohrich CR, Schikora M, Evguenieva-Hackenberg E, Degenkolb T, Vilcinskas A, Klug G, Kogel KH, Schikora A (2013) Homoserine lactones influence the reaction of plants to rhizobia. Int J Mol Sci 14:17122–17146

    PubMed  PubMed Central  Google Scholar 

  • Zeng Y, Yu Z, Huang Y (2014) Combination of culture-dependent and-independent methods reveals diverse acyl homoserine lactone-producers from rhizosphere of wetland Plants. Curr Microbiol 68:587–593

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. R Prabavathy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Viswanath, G., Sekar, J., Prabavathy, V.R. (2016). Acyl Homoserine Lactone-Producing Rhizobacteria Elicit Systemic Resistance in Plants. In: Choudhary, D.K., Varma, A. (eds) Microbial-mediated Induced Systemic Resistance in Plants. Springer, Singapore. https://doi.org/10.1007/978-981-10-0388-2_9

Download citation

Publish with us

Policies and ethics