Skip to main content

Fault Tolerant and Energy Efficient Signal Processing on FPGA Using Evolutionary Techniques

  • Conference paper
  • First Online:
Computational Intelligence, Cyber Security and Computational Models

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 412))

Abstract

In this paper, an energy efficient approach using field-programmable gate array (FPGA) partial dynamic reconfiguration (PDR) is presented to realize autonomous fault recovery in mission-critical (space/defence) signal processing applications at runtime. A genetic algorithm (GA) based on adaptive search space pruning is implemented, for reducing repair time thus increasing availability. The proposed method utilizes dynamic fitness function evaluation, which reduces the test patterns for fitness evaluation. Hence, the scalability issue and large recovery time associated with refurbishment of larger circuits is addressed and improved. Experiments with case study circuits, prove successful repair in minimum number of generations, when compared to conventional GA. In addition, an autonomous self-healing system for FPGA based signal processing system is proposed using the presented pruning based GA for intrinsic evolution with the goal of reduced power consumption and faster recovery time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moore, P., Venayagamoorthy, G.K.: Evolving combinational logic circuits using a hybrid quantum evolution and particle swarm inspired algorithm. In: Proceedings of the 2005 NASA/DoD Conference on Evolvable Hardware, pp. 97–102, Washington (2005)

    Google Scholar 

  2. Oreifej, R.S., Sharma, C.A., DeMara, R.F.: Expediting GA-based evolution using group testing techniques for reconfigurable hardware. In: Proceedings of the IEEE International Conference on Reconfigurable Computing and FPGAs, pp. 1–8, San Louis Potosi (2006)

    Google Scholar 

  3. Al-Haddad, R., Oreifej, R., Ashraf, R.A., DeMara, R.F.: Sustainable modular adaptive redundancy technique emphasizing partial reconfiguration for reduced power consumption. Int. J. Reconfigurable Comput. 2011, 1–12 (2011)

    Google Scholar 

  4. Li, Y., Mitra, S., Gardner, D., Kim, Y., Mintarno, E.: Overcoming early-life failure and aging challenges for robust system design. IEEE Des. Test Comput. 26, 28–39 (2009)

    Article  Google Scholar 

  5. Srinivasan, S., Krishnan, R., Mangalagiri, P., Xie, Y., Narayanan, V., Irwin, M.J., Sarpatwari, K.: Toward increasing FPGA lifetime. IEEE Trans. Dependable Secure Comput. 5, 115–127 (2008)

    Article  Google Scholar 

  6. Mintarno, E., Skaf, J., Zheng, R., Velamala, J.B., Cao, Y., Boyd, S., Dutton, R.W., Mitra, S.: Self-tuning for maximized lifetime energy-efficiency in the presence of circuit aging. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 30, 760–773 (2011)

    Google Scholar 

  7. Keymeulen, D., Stoica, A., Zebulum, R.: Fault-tolerant evolvable hardware using field programmable transistor arrays. IEEE Trans. Reliab. 48, 305–316 (2000)

    Article  Google Scholar 

  8. DeMara, R.F., Zhang, K.: Autonomous FPGA fault handling through competitive runtime reconfiguration. In: Proceedings of the 2005 NASA/DoD Conference on Evolvable Hardware, pp. 109–116, Washington (2005)

    Google Scholar 

  9. Zhang, K., DeMara, R.F., Sharma, C.A.: Consensus-based evaluation for fault isolation and on-line evolutionary regeneration. In: Proceedings of the International Conference in Evolvable Systems, pp. 12–24, Spain (2005)

    Google Scholar 

  10. Greenwood, G.W.: On the practicality of using intrinsic reconfiguration for fault recovery. IEEE Trans. Evol. Comput. 9, 398–405 (2005)

    Article  Google Scholar 

  11. Haddow, P.C., Tyrrell, A.M.: Challenges of evolvable hardware past, present and the path to a promising future. Genet. Program Evolvable Mach. 12, 183–215 (2011)

    Article  Google Scholar 

  12. Larchev, G.V., Lohn, J.D.: Evolutionary based techniques for fault tolerant field programmable gate arrays. In: Proceedings of the 2nd IEEE Conference Space Mission Challenges for Information Technology, pp. 321–329, Pasadena (2006)

    Google Scholar 

  13. Abramovici, M., Emmert, J.M., Stroud, C.E.: Roving STARs: an integrated approach to on-line testing, diagnosis, and fault tolerance for FPGAs in adaptive computing systems. In: Proceedings of the NASA/DoD Workshop on Evolvable Hardware, Long Beach (2001)

    Google Scholar 

  14. DeMara, R.F., Zhang, K., Sharma, C.A.: Autonomic fault-handling and refurbishment using throughput-driven assessment. Appl. Soft Comput. 11, 1588–1599 (2011)

    Google Scholar 

  15. Oreifej, R.S., Al-Haddad, R.N., Tan, H., DeMara, R.F.: Layered approach to intrinsic evolvable hardware using direct bitstream manipulation of Virtex II Pro devices. In: Proceedings of the International Conference on Field Programmable Logic and Applications, pp. 299–304, Amsterdam (2007)

    Google Scholar 

  16. Partial Reconfiguration User Guide. Technical report, Xilinx. http://www.xilinx.com/support/documentation/sw_manuals/xilinx12_4/ug702.pdf (2010)

  17. Ashraf, R.A., DeMara, R.F.: Scalable FPGA refurbishment using netlist-driven evolutionary algorithms. IEEE Trans. Comput. 62, 1526–1541 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepa Jose .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this paper

Cite this paper

Jose, D., Tamilselvan, R. (2016). Fault Tolerant and Energy Efficient Signal Processing on FPGA Using Evolutionary Techniques. In: Senthilkumar, M., Ramasamy, V., Sheen, S., Veeramani, C., Bonato, A., Batten, L. (eds) Computational Intelligence, Cyber Security and Computational Models. Advances in Intelligent Systems and Computing, vol 412. Springer, Singapore. https://doi.org/10.1007/978-981-10-0251-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0251-9_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0250-2

  • Online ISBN: 978-981-10-0251-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics