Skip to main content

Epistemic Relevance and Learning Chemistry in an Academic Context

  • Chapter
Relevant Chemistry Education

Abstract

Many students find chemistry a challenging and difficult subject at school and college levels (Danili & Reid, 2004). A consequence of this is that students may readily lose interest in the subject and be less likely to select it as an option unless they can see good reason to persevere with it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adey, P. (1992). The CASE results: Implications for science teaching. International Journal of Science Education, 21, 553-576.

    Google Scholar 

  • Adey, P. (1999). The science of thinking, and science for thinking: A description of cognitive acceleration through science education (CASE). Geneva: UNESCO.

    Google Scholar 

  • Adey, P., & Shayer, M. (2002). An exploration of long-term far-transfer effects following an extended intervention program in the high school science curriculum. In C. Desforges & R. Fox (Eds.), Teaching and learning: The essential readings (pp. 173-209). Oxford: Blackwell.

    Chapter  Google Scholar 

  • Allchin, D. (2013). Teaching the nature of science: Perspectives and resources. Saint Paul: SHiPS.

    Google Scholar 

  • Alsop, S., & Bowen, M. G. (2009). Inquiry science as a language of possibility in troubled times. In W.- M. Roth & K. Tobin (Eds.), The world of science education: Handbook of research in North America (pp. 49-60). Rotterdam: Sense.

    Google Scholar 

  • Arlin, P. K. (1975). Cognitive development in adulthood: A fifth stage? Developmental Psychology, 11, 602-606.

    Article  Google Scholar 

  • Ausubel, D. P. (2000). The acquisition and retention of knowledge: A cognitive view. Dordrecht: Kluwer.

    Book  Google Scholar 

  • Baddeley, A. D. (2003). Working memory: Looking back and looking forward. Nature Reviews Neuroscience, 4, 829-839.

    Article  Google Scholar 

  • Bennett, J., Hogarth, S., & Lubben, F. (2003). A systematic review of the effects of context-based and Science-Technology-Society (STS) approaches in the teaching of secondary science: Review conducted by the TTA-supported science review group. London: EPPI-Centre, Social Science Research Unit, Institute of Education, University of London.

    Google Scholar 

  • Bliss, J. (1995). Piaget and after: The case of learning science. Studies in Science Education, 25, 139-172.

    Article  Google Scholar 

  • Bruner, J. S. (1960). The process of education. New York: Vintage Books.

    Google Scholar 

  • Burmeister, M., Rauch, F., & Eilks, I. (2012). Education for Sustainable Development (ESD) and chemistry education. Chemistry Education Research and Practice, 13, 59-68.

    Article  Google Scholar 

  • Csikszentmihalyi, M. (1988). The flow experience and its significance for human psychology. In M. C. Csikszentmihalyi & I. S. Csikszentmihalyi (Eds.), Optimal experience: Psychological studies of flow in consciousness (pp. 15-35). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Danili, E., & Reid, N. (2004). Some strategies to improve performance in school chemistry, based on two cognitive factors. Research in Science & Technological Education, 22, 203-226.

    Article  Google Scholar 

  • De Jong, O., & Taber, K. S. (2014). Teaching and learning the many faces of chemistry. In N. G. Lederman & S. K. Abell (Eds.), Handbook of research in science education (Vol. 2, pp. 457-480). New York: Routledge.

    Google Scholar 

  • Driver, R. (1989). Students’ conceptions and the learning of science. International Journal of Science Education, 11, 481-490.

    Article  Google Scholar 

  • Duit, R. (2009). Bibliography – Students’ and teachers’ conceptions and science education. Kiel: IPN.

    Google Scholar 

  • Eilks, I., & Rauch, F. (2012). Sustainable development and green chemistry in chemistry education. Chemistry Education Research and Practice, 13, 57-58.

    Article  Google Scholar 

  • Emsley, J. (2010). A healthy, wealthy, sustainable world. Cambridge: RSC.

    Google Scholar 

  • Engel Clough, E., & Driver, R. (1986). A study of consistency in the use of students’ conceptual frameworks across different task contexts. Science Education, 70, 473-496.

    Article  Google Scholar 

  • Gilbert, J. K., Bulte, A. M. W., & Pilot, A. (2010). Concept development and transfer in context-based science education. International Journal of Science Education, 33, 817-837.

    Article  Google Scholar 

  • Gilbert, J. K., Osborne, R. J., & Fensham, P. J. (1982). Children’s science and its consequences for teaching. Science Education, 66, 623-633.

    Article  Google Scholar 

  • Gilbert, J. K., & Watts, D. M. (1983). Concepts, misconceptions and alternative conceptions: Changing perspectives in science education. Studies in Science Education, 10, 61-98.

    Article  Google Scholar 

  • Hammer, D., Elby, A., Scherr, R. E., & Redish, E. F. (2005). Resources, framing, and transfer. In J. P. Mestre (Ed.), Transfer of learning: From a modern multidisciplinary perspective (pp. 89-119). Greenwich: Information Age.

    Google Scholar 

  • Hansen, K.-H., & Olson, J. (1996). How teachers construe curriculum integration: The Science, Technology, Society (STS) movement as Bildung. Journal of Curriculum Studies, 28, 669-682.

    Article  Google Scholar 

  • Herron, J. D., Cantu, L., Ward, R., & Srinivasan, V. (1977). Problems associated with concept analysis. Science Education, 61, 185-199.

    Article  Google Scholar 

  • Jenkins, E. W. (1999). School science, citizenship and the public understanding of science. International Journal of Science Education, 21, 703-710.

    Article  Google Scholar 

  • Jenkins, E. W. (2000). The impact of the national curriculum on secondary school science teaching in England and Wales. International Journal of Science Education, 22, 325-336.

    Article  Google Scholar 

  • Jenkins, E. W. (2006). The student voice and school science education. Studies in Science Education, 42, 49-88.

    Article  Google Scholar 

  • Johnstone, A. H. (1982). Macro- and microchemistry. School Science Review, 64(227), 377-379.

    Google Scholar 

  • Jones, A. T., & Kirk, C. M. (1990). Gender differences in students’ interests in applications of school physics. Physics Education, 25, 308.

    Article  Google Scholar 

  • Justi, R., & Gilbert, J. K. (2000). History and philosophy of science through models: Some challenges in the case of ‘the atom’. International Journal of Science Education, 22, 993-1009.

    Article  Google Scholar 

  • Kramer, D. A. (1983). Post-formal operations? A need for further conceptualization. Human Development, 26, 91-105.

    Article  Google Scholar 

  • Kuhn, T. S. (Ed.) (1977). The essential tension: Selected studies in scientific tradition and change. Chicago: University of Chicago.

    Google Scholar 

  • Kuhn, T. S. (1996). The structure of scientific revolutions. Chicago: University of Chicago.

    Book  Google Scholar 

  • Kuhn, D. (1999). A developmental model of critical thinking. Educational Researcher, 28, 16-46.

    Article  Google Scholar 

  • Lawson, A. E. (2010). Teaching inquiry science in middle and secondary schools. Thousand Oaks, California: Sage.

    Google Scholar 

  • Mestre, J. P., Thaden-Koch, T. C., Dufresne, R. J., & Gerace, W. J. (2004). The dependence of knowledge depolyment on context among physics novices. In E. F. Redish & M. Vicentini (Eds.), Research on physics education (pp. 367-408). Bologna: Italian Physical Society/IOS Press.

    Google Scholar 

  • Millar, R., & Osborne, J. (1998). Beyond 2000: Science education for the future. London: King’s College.

    Google Scholar 

  • NDoE. (1997). Promising curriculum and instructional practices for high-ability learners manual. Lincoln: Nebraska Department of Education.

    Google Scholar 

  • Niaz, M., & Rodriguez, M. A. (2000). Teaching chemistry as a rhetoric of conclusions or heuristic principles – A history and philosophy of science perspective. Chemistry Education: Research and Practice, 1, 315-322.

    Google Scholar 

  • Osborne, J., & Collins, S. (2001). Pupils’ views of the role and value of the science curriculum: A focus-group study. International Journal of Science Education, 23, 441-467.

    Article  Google Scholar 

  • Osborne, R. J., & Wittrock, M. C. (1985). The generative learning model and its implications for science education. Studies in Science Education, 12, 59-87.

    Article  Google Scholar 

  • Perks, D. (2006). What is science education for? In T. Gilland (Ed.), What is science education for? (pp. 9-33). London: Academy of Ideas.

    Google Scholar 

  • Perry, W. G. (1970). Forms of intellectual and ethical development in the college years: A scheme. New York: Holt, Rinehart & Winston.

    Google Scholar 

  • Piaget, J. (1970/1972). The principles of genetic epistemology. London: Routledge & Kegan Paul.

    Google Scholar 

  • Pintrich, P. R., Marx, R. W., & Boyle, R. A. (1993). Beyond cold conceptual change: The role of motivational beliefs and classroom contextual factors in the process of conceptual change. Review of Educational Research, 63, 167-199.

    Article  Google Scholar 

  • QCA (2007a). Science: Programme of study for key stage 3 and attainment targets. London: Qualifications and Curriculum Authority.

    Google Scholar 

  • QCA (2007b). Science: Programme of study for key stage 4. London: Qualifications and Curriculum Authority.

    Google Scholar 

  • Sadler, T. D. (Ed.). (2011). Socio-scientific issues in the classroom. Dordrecht: Springer.

    Google Scholar 

  • Sadler, T. D., & Zeidler, D. L. (2009). Scientific literacy, PISA, and socioscientific discourse: Assessment for progressive aims of science education. Journal of Research in Science Teaching, 46, 909-921.

    Article  Google Scholar 

  • Shayer, M., & Adey, P. (1981). Towards a science of science teaching: Cognitive development and curriculum demand. Oxford: Heinemann.

    Google Scholar 

  • Snow, C. P. (1998). The two cultures. Cambridge: Cambridge University.

    Google Scholar 

  • Stepanek, J. (1999). Meeting the needs of gifted students: Differentiating mathematics and science instruction. Portland: Northwest Regional Educational Laboratory.

    Google Scholar 

  • Sternberg, R. J. (2009). A balance theory of wisdom. In J. C. Kaufman & E. L. Grigorenko (Eds.), The essential Sternberg: Essays on intelligence, psychology and education (pp. 353-375). New York: Springer.

    Google Scholar 

  • Stuckey, M., & Eilks, I. (2014). Increasing student motivation and the perception of chemistry’s relevance in the classroom by learning about tattooing from a chemical and societal view. Chemistry Education Research and Practice, 15, 156-167.

    Article  Google Scholar 

  • Stuckey, M., Hofstein, A., Mamlok-Naaman, R., & Eilks, I. (2013). The meaning of ‘relevance’ in science education and its implications for the science curriculum. Studies in Science Education, 49, 1-34.

    Article  Google Scholar 

  • Taber, K. S. (2000). Multiple frameworks?: Evidence of manifold conceptions in individual cognitive structure. International Journal of Science Education, 22, 399-417.

    Article  Google Scholar 

  • Taber, K. S. (2003). Examining structure and context – Questioning the nature and purpose of summative assessment. School Science Review, 85(311), 35-41.

    Google Scholar 

  • Taber, K. S. (2007). Science education for gifted learners? In K. S. Taber (Ed.), Science education for gifted learners (pp. 1-14). London: Routledge.

    Google Scholar 

  • Taber, K. S. (2008a). Exploring conceptual integration in student thinking: Evidence from a case study. International Journal of Science Education, 30, 1915-1943.

    Article  Google Scholar 

  • Taber, K. S. (2008b). Towards a curricular model of the nature of science. Science & Education, 17, 179-218.

    Article  Google Scholar 

  • Taber, K. S. (2009). Progressing science education: Constructing the scientific research programme into the contingent nature of learning science. Dordrecht: Springer.

    Book  Google Scholar 

  • Taber, K. S. (2010). Challenging gifted learners: General principles for science educators; and exemplification in the context of teaching chemistry. Science Education International, 21, 5-30.

    Google Scholar 

  • Taber, K. S. (2011a). Inquiry teaching, constructivist instruction and effective pedagogy. Teacher Development, 15, 257-264.

    Article  Google Scholar 

  • Taber, K. S. (2011b). The natures of scientific thinking: creativity as the handmaiden to logic in the development of public and personal knowledge. In M. S. Khine (Ed.), Advances in the nature of science research – Concepts and methodologies (pp. 51-74). Dordrecht: Springer.

    Google Scholar 

  • Taber, K. S. (2012). Key concepts in chemistry. In K. S. Taber (Ed.), Teaching secondary chemistry (2nd ed., pp. 1-47). London: Hodder Education.

    Google Scholar 

  • Taber, K. S. (2013a). Modelling learners and learning in science education: Developing representations of concepts, conceptual structure and conceptual change to inform teaching and research. Dordrecht: Springer.

    Book  Google Scholar 

  • Taber, K. S. (2013b). Revisiting the chemistry triplet: Drawing upon the nature of chemical knowledge and the psychology of learning to inform chemistry education. Chemistry Education Research and Practice, 14, 156-168.

    Article  Google Scholar 

  • Taber, K. S. (2014). Student thinking and learning in science: Perspectives on the nature and development of learners’ ideas. New York: Routledge.

    Google Scholar 

  • Teichert, M. A., Tien, L. T., Anthony, S., & Rickey, D. (2008). Effects of context on students’ molecular-level ideas. International Journal of Science Education, 30, 1095-1114.

    Article  Google Scholar 

  • Vosniadou, S. (Ed.). (2008). International handbook of research on conceptual change. London: Routledge.

    Google Scholar 

  • Vygotsky, L. S. (1934/1986). Thought and language. London: MIT Press.

    Google Scholar 

  • Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Cambridge: Harvard University.

    Google Scholar 

  • Winstanley, C. (2007). Gifted science learners with special educational needs. In K. S. Taber (Ed.), Science education for gifted learners (pp. 32-44). London: Routledge.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Sense Publishers

About this chapter

Cite this chapter

Taber, K.S. (2015). Epistemic Relevance and Learning Chemistry in an Academic Context. In: Eilks, I., Hofstein, A. (eds) Relevant Chemistry Education. SensePublishers, Rotterdam. https://doi.org/10.1007/978-94-6300-175-5_5

Download citation

Publish with us

Policies and ethics