Skip to main content

Earthquake Precursors in the Ionosphere

  • Chapter
  • First Online:
Earthquake Precursors in the Atmosphere and Ionosphere

Abstract

Chapter 1 discussed the plasma chemistry of the near-ground layer of the atmosphere under the action of ionization processes. It was demonstrated that ion-induced nucleation (IIN) leads to the formation of large cluster ions, which can reach an aerosol size of several microns. The growth of particles happens mainly due to the ion hydration process, which is accompanied by latent heat release. However, we should keep in mind that as ionization creates charged particles, high ion production rates will locally change the electric properties of the near-ground layer of the atmosphere and modify the balance of the global electric circuit (GEC) within the earthquake preparation zone. In this chapter, we try to estimate the expected changes and how they can affect our planet's ionosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alekseev VA, Alekseeva NG (1992) Investigation of metal transfer in the biosphere during gaseous emission in zones of tectonic activity using methods of nuclear-physics. Nucl Geophys 6:99–110

    Google Scholar 

  • Alekseev VA, Alekseeva NG, Ichankuliev J (1995) On the relation between fluxes of metals in waters and radon in Turkmenistan region of seismic activity. Radiation Meas 25:637–639

    Article  Google Scholar 

  • Aleshina ME, Voronov SA, Galper AM, Koldashev SV, Maslennikov LV (1992) On the interrelation of the earthquakes sources positions and the areas of energetic particles precipitation from the radiation belt. Cosmic Res 30:79–83

    Google Scholar 

  • Aleshina ME, Voronov SA, Galper AM, Koldashev SV, Maslennikov LV (1993) Precipitation of the high energy particles from the Earth’s radiation belt and seismic activity. Izvestiya USSR Acad Sci Physics 57:97–99

    Google Scholar 

  • Ampferer M, Denisenko VV, Hausleitner W, Krauss S, Stangl G, Boudjada MY, Biernat HK (2010) Decrease of the electric field penetration into the ionosphere due to low conductivity at the near ground atmospheric layer. Ann Geophys 28:779–787

    Article  Google Scholar 

  • Anagnostopoulos GC, Efthymios V, Pulinets S (2012) Characteristics of flux-time profiles, temporal evolution, and spatial distribution of radiation-belt electron precipitation bursts in the upper ionosphere before great and giant earthquakes. Annals gGeophys 55:21–36

    Google Scholar 

  • Anisimov SV, Mareev EA, Shikhova NM et al (2003) Electrodynamic properties of fog. Proceedings of the Fifth Russian conference on atmospheric electricity. Vladimir: Vl.SU Publishing House, vol 1, pp 112–115

    Google Scholar 

  • Artsimovich LA, Sagdeev RZ (1974) Plasma physics for physicists. Moscow, Atomizdat. In Russian

    Google Scholar 

  • Ashour-Abdalla M (1972) Amplification of whistler waves in the magnetosphere. Planet Space Sci 20:639–662

    Article  Google Scholar 

  • Berthelier JJ, Godefroy M, Leblanc F, Malingre M, Menvielle M, Lagoutte D, Brochot JY, Colin F, Elie F, Legendre C, Zamora P, Benoist D, Chapuis Y, Artru J, Pfaff R (2006) ICE, The electric field experiment on DEMETER. Planet Space Sci 54:456–471

    Article  Google Scholar 

  • Biagi PF, Ermini A, Kingsley SP (2001) Disturbances in LF radiosignals and the Umbria-Marche (Italy) seismic sequence in 1997–1998. Phys Chem Earth 26:755–759

    Google Scholar 

  • Boyarchuk KA, Lomonosov AM, Pulinets SA (1997) Electrode effect as an earthquake precursor. BRAS Phys/Suppl Phys Vibr 61(3):175–179

    Google Scholar 

  • Boyarchuk KA, Karelin AV, Shirokov RV (2005) Neutral cluster and its influence on electromagnetic effects in the atmosphere. Izvestiya RAS. Phys Atmos Ocean 41:537–549

    Google Scholar 

  • Boyarchuk KA, Karelin AV, Shirokov RV (2006) The basic model of the ionized atmosphere kinetics. VNIIEM Publ, Moscow, p 320

    Google Scholar 

  • Briant CL, Burton JJ (1976) A molecular model for the nucleation of water on ions. J Atm Sci 33:1357–1361

    Article  Google Scholar 

  • Brice N (1964) Fundamentals of very low frequency emission generation mechanisms. J Geophys Res 69:4515–4522

    Article  Google Scholar 

  • Chmyrev VM, Sorokin VM, Shklyar DR (2008) VLF transmitter signals as a possible tool for detection of seismic effects on the ionosphere. J Atm Solar-Terr Phys 70:2053–2060

    Article  Google Scholar 

  • Cushman-Roisin B (2014) Atmospheric Boundary Layer. In Environment fluid dynamics, Wiley, New York/Chichester/Weinheim/Brisbane/Singa-pore/Toronto, pp 165–186

    Google Scholar 

  • Davies K (1990) Ionospheric radio. Peter Peregrinus, London

    Book  Google Scholar 

  • Davies К, Baker DM (1965) Ionospheric effects observed around the time of the Alaskan earthquake of March 28 1964. J Geophys Res 70:2251–2253

    Article  Google Scholar 

  • Denisenko VV (2014) Electric current penetration from a thunderstorm cloud into the middle-latitude ionosphere. Proceedings of the 10th international conference problems of geocosmos (Oct 6–10, 2014, St. Petersburg, Russia), pp 76–81

    Google Scholar 

  • Denisenko VV (2015) Estimate for the strength of the electric field penetrating from the Earth’s surface to the ionosphere. Russ J Phys Chem B 9:789–795. https://doi.org/10.1134/S199079311505019X

    Article  Google Scholar 

  • Denisenko VV, Boudjada MY, Horn M, Pomozov EV, Biernat HK, Schwingenschuh K, Lammer H, Prattes G, Cristea E (2008) Ionospheric conductivity effects on electrostatic field penetration into the ionosphere. Nat Hazard 8:1009–1017

    Article  Google Scholar 

  • Denisenko VV, Hausleitner W, Stangl G, Biernat HK (2012) Mathematical simulation of quasi-stationary electric fields penetration through the earth’s atmosphere. Proceedings of the 9th international conference problems of geocosmos (Oct 8–12, 2012, St. Petersburg, Russia), pp 81–86

    Google Scholar 

  • Denisenko VV, Ampferer M, Pomozov EV, Kitaev AV, Hausleitner W, Stangl G, Biernat HK (2013) On electric field penetration from ground into the ionosphere. J Atmos Solar Terr Phys 102:341–353

    Article  Google Scholar 

  • Dobrovolsky IR, Zubkov SI, Myachkin VI (1979) Estimation of the size of earthquake preparation zones. Pageoph 117:1025–1044

    Article  Google Scholar 

  • Dungey JW (1963) Loss of Van Allen electrons due to whistlers. Planet Space Sci 11:591–602

    Article  Google Scholar 

  • Dysthe B (1971) Some studies of triggered whistler. J Geophys Res 76:6915–6931

    Article  Google Scholar 

  • Emersic C (2006) Investigations into thunderstorm electrification processes. PhD thesis, The University of Manchester, Manchester, UK

    Google Scholar 

  • Eresmaa N, Härkönen J, Joffre SM, Schultz DM, Karppinen A, Kukkonen J (2012) A three-step method for estimating the mixing height using ceilometer data from the Helsinki testbed. J Appl Meteorol Climatol 51:2172–2187

    Article  Google Scholar 

  • Fedorenko AK, Lizunov GV, Rothkaehl H (2005) Satellite observations of quasi-wave atmospheric disturbances at heights of the F region caused by powerful earthquakes. Geomag Aeron 45:380–387

    Google Scholar 

  • Fischer HJ (1977) Das luftelektrische Feld in Abhängigkeit von Wetterlage und Luftverunreinigung. in Luftelektrizität I. Promet. Meteorologische Fortbildung 2:4–12

    Google Scholar 

  • Fortov VE, Khrapak AG, Khrapak SA, Molotkov VI, Petrov OF (2004) Dusty plasmas. Phys Usp 47:447–492

    Article  Google Scholar 

  • Frenkel Y (2007) Theory of the phenomena of atmospheric electricity. KomKniga, Moscow, p 160

    Google Scholar 

  • Freund F (2000) Time-resolved study of charge generation and propagation in igneous rocks. J. Goephys. Res. 105:11001–11019

    Article  Google Scholar 

  • Freund FT (2011) Pre-earthquake signals: underlying physical processes. J Asian Earth Sci 41:383–400

    Article  Google Scholar 

  • Füllekrug M (2003) ULF/ELF Interferometry. XXIII general assembly of the international union of geodesy and geophysics, Abstracts, Week B, GAII.04.07A/A8–002, p. B.193

    Google Scholar 

  • Galper AM, Grachev VM, Dmitrienko VV, Kirillov-Ugryumov VG, Polukhina NG, Tzarkov RN, Ulin SE (1983) Saptial-temporal correlation of the earthquakes and variations of high energy flux in the inner radiation belt. Cosmic Res 21:707–717

    Google Scholar 

  • Galper AM, Dmitrienko VV, Nikitina NV, Grachev VM, Ulin SE (1989) Connection of the fluxes of charged particles of high energy in radiation belt with the Earth’s seismicity. Cosm Res 27:789–792

    Google Scholar 

  • Galper AM, Koldashov SV, Voronov SA (1995) High energy particle flux variations as earthquake predictors. Adv Space Res 15:(11)131–134

    Google Scholar 

  • Galperin YI, Gladyshev VA, Jorjio NV, Larkina VI, Mogilevsky MM (1992) Energetic particle precipitation from the magnetosphere above the epicenter of approaching earthquake. Cosm Res 30:89–106

    Google Scholar 

  • Gendrin R (1975) Waves and wave-particle interaction in the magnetosphere; a review. Space Sci Rev 18:145–200

    Article  Google Scholar 

  • Gokhberg MB, Pilipenko VA, Pokhotelov OA (1983) Seismic Precursors in the ionosphere. Izvestiya Earth Physics 19:762–765

    Google Scholar 

  • Gokhberg MB, Morgounov VA, Pokhotelov OA (1995) Earthquake Prediction. Gordon and Breach Science Publishers, Amsterdam, Seismo-electromagnetic phenomena

    Google Scholar 

  • Gong SS, Yang GT, Wang JM, Liu BM, Cheng XW, Xu JY, Wan WX (2002) Occurrence and characteristics of sporadic sodium layer observed by lidar at a mid-latitude location. J Atm Sol Ter Phys 64:1957–1966

    Article  Google Scholar 

  • Green HL and Lane WR (1957) Particulate clouds: dusts, smokes and mists. Their physics and physical chemistry and industrial and environmental aspects. Van Nostrand, Princeton

    Google Scholar 

  • Griffithes RF, Latham J, Myers V (1974) The ionic conductivity of electrified clouds. Q J R Meteorol Soc 100:181–190

    Article  Google Scholar 

  • Griffiths AD, Parkes SD, Chambers SD, McCabe MF, Williams AG (2013) Improved mixing height monitoring through a combination of lidar and radon measurements. Atmos Meas Tech 6:207–218

    Article  Google Scholar 

  • Grimalsky VV, Hayakawa M, Ivchenko VN, Rapoport YuG, Zadoroznii VI (2003) Penetration of electrostatic field from the lithosphere into the ionosphere and its effect on the D-region before earthquake. JASTP 65(4):391–407

    Google Scholar 

  • Gringel W, Rosen JM, Hoffman DJ (1986) Electrical structure from 0 up to 30 kilometers. The Earth’s Electrical Environment. National Academic Press, Washington D.C., pp 166–182

    Google Scholar 

  • Hao J, Tang T, Li D (2000) Progress in the research of atmospheric electric field anomaly as an index for short-impending prediction of earthquakes. J Earthq Pred Res 8:241–255

    Google Scholar 

  • Hata M, Takumi I, Yabashi S (1998) A Model of Earthquake Seen by Electromagnetic Observation, Proc. of European Geophysical Society XXIII General Assembly, Nice, France 20–24 April 1998. Annales Geophysicae, Supplement IV, 16: 1188

    Google Scholar 

  • Hayakawa M (2015) Earthquake prediction with radio techniques. Wiley, Singapore Pte. Ltd.

    Google Scholar 

  • Hegai VV, Kim VP (1990) The formation of a cavity in the night-time midlatitude ionospheric E-region above a thundercloud. Planet Space Sci 38:703–707

    Article  Google Scholar 

  • Hegai VV, Kim VP, Liu JY (2015) On a possible seismomagnetic effect in the topside ionosphere. Adv Space Res 56:1707–1713

    Article  Google Scholar 

  • Holzer RE (1972) Atmospheric electrical effects of nuclear explosions. J Geophys Res 77:5845–5855

    Article  Google Scholar 

  • Hoppel WA (1962) Electrode effect. Comparison of theory and measurement. Planet Electrodyn 2:167–181

    Google Scholar 

  • Hoppel WA (1967) Theory of electrode effect. J Atmos Terr Phys 29:709–721

    Article  Google Scholar 

  • Hoppel WA, Anderson RV, Willett JC (1986) Atmospheric Electricity in the Planetary Boundary Layer, - in Studies in Geophysics. The Earth’s Electrical Environment. National Academy Press, Washington, D.C, pp 149–165

    Google Scholar 

  • Hõrrak U (2001) Air ion mobility spectrum at a rural area. PhD Thesis. Tartu Ülikooli Kirjastuse trükikoda

    Google Scholar 

  • Ilin NV, Slyunyaev NN, and Mareev EA (2020) Toward a realistic representation of global electric circuit generators in models of atmospheric dynamics. J Geophys Res Atmos 125:e2019JD032130. https://doi.org/10.1029/2019JD032130

  • Inan US, Bell TF, Helliwell RA (1978) Nonlinear pitch angle scattering of energetic electrons by coherent VLF waves in the magnetosphere. J Geophys Res 83:3235–3248

    Article  Google Scholar 

  • Kaimal JC, Finnigan JJ (1994) Atmospheric boundary layer flows: their structure and measurement. Oxford University Press, New York, NY

    Book  Google Scholar 

  • Kakinami Y, Kamogawa M, Liu J-Y, Watanabe S, Mogi T (2011) Ionospheric disturbance associated with radiation accidents of Fukushima I nuclear power plant damaged by the M9.0 2011 Tohoku Earthquake. Adv Space Res 48:1613–1616

    Article  Google Scholar 

  • Kelley MC (1989) The earth's ionosphere: plasma physics and electrodynamics. Academic Press Inc

    Google Scholar 

  • Khegai VV (2020) Analytical model of a seismogenic electric field according to data of measurements in the surface layer of the Midlatitude atmosphere and calculation of its magnitude at the ionospheric level. Geomagn Aeron 60:507–520. https://doi.org/10.1134/S0016793220030081

    Article  Google Scholar 

  • Kikuchi H (2001) Electrohydrodynamics in dusty and dirty plasmas. Kluwer Academic Publishers, Dordrecht, The Netherlands, p 2001

    Book  Google Scholar 

  • Kim VP, Hegai VV, Illich-Svitych PV (1994) On the possibility of a metallic ion layer forming in the E-region of the night midlatitude ionosphere before great earthquakes. Geomag Aeron 33:658–662

    Google Scholar 

  • Kim VP, Hegai VV, Nikiforova LI (1995) On the possible disturbance of the Night E-region of the ionosphere over the large scale tectonic fault. Phys Earth No 7:35–39

    Google Scholar 

  • Kim VP, Hegai VV (1997) On possible changes in the midlatitude upper ionosphere before strong earthquakes. J Earthq Predict Res 6:275–280

    Google Scholar 

  • Kim VP, Hegai VV (1999) A Possible presage of strong earthquakes in the night-time mid-latitude F2region ionosphere. In: Hayakawa M (ed) In atmospheric and ionospheric electromagnetic phenomena associated with earthquakes. Terra Scientific Publishing Company, Tokyo, pp 619–627

    Google Scholar 

  • Kim VP, Pulinets SA, Hegai VV (2002) The theoretical model of the possible changes in the night-time midlatitude D-region of the ionosphere over the zone of strong earthquake preparation. Radiophys Quant Radiophys 45:289–296

    Google Scholar 

  • Kim VP, Liu JY, Hegai VV (2012) Modeling the pre-earthquake electrostatic effect on the F region ionosphere. Adv Space Res 50:1524–1533

    Article  Google Scholar 

  • King BV, Freund F (1984) Surface charges and subsurface space charge distribution in magnesium oxide containing dissolved traces of water. Phys Rev B 29:5814–5824

    Article  Google Scholar 

  • Klimenko MV, Klimenko VV, Zakharenkova IE, Pulinets SA, Zhao B, Tzidilina MN (2011) Formation mechanism of great positive disturbances prior to wenchuan earthquake on May 12, 2008. Adv Space Res 48:488–499

    Article  Google Scholar 

  • Korepanov V, Hayakawa M, Yampolski Y, Lizunov G (2009) AGW as a seismo-ionospheric coupling responsible agent. Phys Chem Earth Parts a/b/c 34:485–495. https://doi.org/10.1016/j.pce.2008.07.014

    Article  Google Scholar 

  • Korsunova LP, Mikhailov YuM, Khegai VV, Leshchenko LN, Smirnov SE, Bogdanov VV (2010) Experimental evidence of the correlation between possible precursors of earthquakes in near-surface quasistatic electric fields and in the ionosphere. Geomag Aeron 50:920–926

    Article  Google Scholar 

  • Korsunova LP, Hegai VV, Mikhailov YuM, Smirnov SE (2013) Regularities in the manifestation of precursors earthquakes in the ionosphere and near-surface atmospheric electric fields in Kamchatka. Geomag Aeron 53:227–233

    Article  Google Scholar 

  • Korsunova LP, Hegai VV (2015) Effectiveness criteria for methods of identifying ionospheric earthquake precursors by parameters of a sporadic E layer and regular F2 layer. J Astron Space Sci 32:137–140

    Article  Google Scholar 

  • Kuo CL, Huba JD, Joyce G, Lee LC (2011) Ionosphere plasma bubbles and density variations induced by preearthquake rock currents and associated surface charges. J Geophys Res 116:A10317. https://doi.org/10.1029/2011JA016628

    Article  Google Scholar 

  • Kuo CL, Lee LC, Huba JD (2014), An improved coupling model for the lithosphere-atmosphere-ionosphere system. J Geophys Res Space Phys 119. https://doi.org/10.1002/2013JA019392

  • Leblanc F, Aplin KL, Yair Y, Harrison RG, Lebreton JP, Blanc M, Editors (2008) Planetary atmospheric electricity. Springer, Dordrecht, Boston, London

    Google Scholar 

  • Lozansky ED, Firsov OB (1975) Spark theory. Atomizdat, Moscow, p 242

    Google Scholar 

  • Maiorov SA, Tkachev AN, Yakovlenko SI (1994) Metastable supercooled plasma. Phys Uspekhi 164(3):S.297–307

    Google Scholar 

  • Mareev EA (2010) Global electric circuit research: achievements and prospects. Physics- Uspekhi 53:504–511

    Article  Google Scholar 

  • Markson R (2007) The global circuit intensity: its measurement and variation over the last 50 years. Bull Am Meteorol Soc 88:223–241

    Article  Google Scholar 

  • McCormick RJ, Rodger CJ, Thomson NR (2002) Reconsidering the effectiveness of quasi-static thunderstorm electric fields for whistler duct formation. J Geophys Res 107:art.no.1396 NOV 2002

    Google Scholar 

  • Moriya T, Mogi T, Takada M (2010) Anomalous pre-seismic transmission of VHF-band radio waves resulting from large earthquakes, and its statistical relationship to magnitude of impending earthquakes. Geophys J Int 180:858–870

    Article  Google Scholar 

  • Morozova LI (2014) Private communication

    Google Scholar 

  • Mühleisen R (1958) The influence of water on the atmospheric electrical field. In: Recent advances in atmospheric electricity. Proceed. of the Second conference on atmospheric., Electricity, Mar 20–23, 1958, Portsmouth, NH, Pergamon Press, pp 213–221

    Google Scholar 

  • Namgaladze AA, Zolotov OV, Prokhorov BE (2013) Numerical simulation of the variations in the total electron content of the ionosphere observed before the Haiti earthquake of January 12, 2010. Geomag Aeron 53:522–528

    Article  Google Scholar 

  • Nikiforova NN, Michnowski S (1995): Atmospheric electric field anomalies analysis during great Carpatian Earthquake at Polish Observatory Swider. IUGG XXI General Assembly Abstracts. Boulder, CO. VA11D-16

    Google Scholar 

  • Nunn D (1971) A theory VLF emissions. Planet Space Sci 19:1141–1167

    Article  Google Scholar 

  • Oikonomou C, Haralambous H, Muslim B (2016) Investigation of ionospheric TEC precursors related to the M7.8 Nepal and M8.3 Chile earthquakes in 2015 based on spectral and statistical analysis. Nat Hazards 83:97–https://doi.org/10.1007/s11069-016-2409-7

  • Ondoh T, Marubashi K (eds) (2001) Science of space environment. IOS Press, Ohmsha, p 280

    Google Scholar 

  • Park CG, Dejnakarintra M (1973) Penetration of thundercloud electric fields into the ionosphere and magnetosphere, 1. Middle and auroral latitudes. J Geophys Res 84:960–964

    Article  Google Scholar 

  • Park CG, Dejnakarintra M (1977) Thundercloud electric fields in the ionosphere. In: Dolezhalek H, Reiter R (eds) Electrical Processes in Atmospheres. Steinkopff, Darmstadt, pp 544–551

    Google Scholar 

  • Pestova O, Pestov D, Shishenya A, Kupovykh G, Redin A, Klovo A (2014) Electrode layer structure generating under Radon-222 transfer across land-atmosphere interface. XV international conference on atmospheric electricity, 15-20 June 2014, Norman, OK. http://www.nssl.noaa.gov/users/mansell/icae2014/preprints/Pestova_215.pdf

  • Pierce ET (1976) Atmospheric electricity and earthquake prediction. Geophys Res Lett 3:185–188

    Article  Google Scholar 

  • Pierce ET, Whitson AL (1964) The variation of potential gradient with altitude above ground of high radioactivity. J Geophys Res 69:2895–2898

    Article  Google Scholar 

  • Pulinets SA (1989) Prospects of Topside Sounding. In: WITS handbook Vol 2, Liu CH ed., Chapter 3, SCOSTEP Publishing, Urbana, IL pp 99–127

    Google Scholar 

  • Pulinets SA (2009) Physical mechanism of the vertical electric field generation over active tectonic faults. Adv Space Res 44:767–773

    Article  Google Scholar 

  • Pulinets SA, Legen'ka AD, Alekseev VA (1994) Pre-earthquakes effects and their possible mechanisms in “Dusty and Dirty Plasmas, Noise and Chaos in Space and in the Laboratory”. Plenum Publishing, New York, pp 545–557

    Google Scholar 

  • Pulinets SA, Alekseev VA, Legen'ka AD, Khegai VV (1997) Radon and metallic aerosols emanation before strong earthquakes and their role in atmosphere and ionosphere modification, Adv Space Res, 20:2173–2176

    Google Scholar 

  • Pulinets SA, Legen’ka AD, Zelenova TI (1998a) Local-time dependence of seismo-ionospheric variations at the f-layer maximum. Geomag Aeron 38:400–402

    Google Scholar 

  • Pulinets SA, Khegai VV, Boyarchuk KA, Lomonosov AM (1998b) Atmospheric electric field as a source of ionospheric variability. Phys Usp 41:515–522

    Article  Google Scholar 

  • Pulinets SA, Kim VP, Hegai VV, Depuev VK, Radicella SM (1998c) Unusual longitude modification of the nighttime midlatitude F2 region ionosphere in July 1980 over the array of tectonic faults in the Andes area: observations and interpretation. Geophys Res Let 25:4143–4136

    Article  Google Scholar 

  • Pulinets SA, Boyarchuk KA, Khegai VV, Kim VP, Lomonosov AM (2000) Quasielectrostatic model of atmosphere-thermosphere-ionosphere coupling. Adv Space Res 26:1209–1218

    Article  Google Scholar 

  • Pulinets SA, Boyarchuk KA, Lomonosov AM, Khegai VV, Liu JY (2002) Ionospheric precursors to earthquakes: a preliminary analysis of the foF2 critical frequencies at chung-li ground-based station for vertical sounding of the ionosphere (Taiwan Island). Geomag Aeron 42:508–513

    Google Scholar 

  • Pulinets SA, Boyarchuk KA (2004) Ionospheric precursors of earthquakes. Springer, Berlin, Germany, p 315

    Google Scholar 

  • Pulinets SA, Contreras AL, Kostoglodov V, De Tejada HP, Urrutia-Fucugauchi J (2004) Prevention project: a complex geophysical observatory in Mexico as a test facility for lithosphere-atmosphere-ionosphere coupling models. Phys Chem Earth 29:657–662

    Article  Google Scholar 

  • Pulinets SA, Bondur VG, Tsidilina MN, Gaponova MV (2010) Verification of the concept of seismoionospheric relations under quiet heliogeomagnetic conditions, using the Wenchuan (China) Earthquake of May 12, 2008, as an example. Geomag Aeron 50:231–242

    Article  Google Scholar 

  • Pulinets S (2011) The synergy of earthquake precursors. Earthquake Sci 24:535–548

    Article  Google Scholar 

  • Pulinets S, Ouzounov D (2011) Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) model—an unified concept for earthquake precursors validation. J Asian Earth Sci 41:371–382

    Article  Google Scholar 

  • Pulinets S, Davidenko D (2014) Ionospheric precursors of earthquakes and global electric circuit. Adv Space Res 53:709–723

    Article  Google Scholar 

  • Pulinets SA, Ouzounov DP, Davidenko DV (2014) Is earthquake forecasting possible?! Integral technologies of multiparameter monitoring of geoeffective phenomena in the framework of the complex model of the Earth’s Lithosphere–Atmosphere–Ionosphere Coupling, Moscow: Trovant, (in Russian)

    Google Scholar 

  • Pulinets SA, Ouzounov DP, Karelin AV, Davidenko DV (2015) Physical bases of the generation of short-term earthquake precursors: a complex model of ionization-induced geophysical processes in the lithosphere–atmosphere–ionosphere–magnetosphere system. Geomag Aeron 55:540–558

    Article  Google Scholar 

  • Pulinets SA, Davidenko DV (2018) The nocturnal positive ionospheric anomaly of electron density as a short-term earthquake precursor and the possible physical mechanism of its formation. Geomag Aeron 58:559–570. https://doi.org/10.1134/S0016793218040126

    Article  Google Scholar 

  • Pulinets S, Ouzounov D, Karelin A, and Davidenko D (2018) Lithosphere–atmosphere–ionosphere–magnetosphere coupling—a concept for pre‐earthquake signals generation in: pre‐earthquake processes: a multidisciplinary approach to earthquake prediction studies, Eds Dimitar Ouzounov, Sergey Pulinets, Katsumi Hattori, Patrick Taylor. AGU/Wiley, pp 77–98. https://doi.org/10.1002/9781119156949.ch6

  • Pulinets S, Ouzounov D (2018) The possibility of earthquake forecasting. Learning from Nature. IOP Publishing, Bristol, https://iopscience.iop.org/book/978-0-7503-1248-6

  • Rapoport Yu, Grimalsky V, Krankowski A, Pulinets S, Fedorenko A, Petrishchevskii S (2019) Algorithm for modeling electromagnetic channel of seismo-ionospheric coupling (SIC) and the variations in the electron concentration. Acta Geophysica. 68:253–278. https://doi.org/10.1007/s11600-019-00385-0

  • Redin AA, Klovo AG, Kypovykh GV, Morozov VN (2010) Generation of Volumetric charge near the ground surface taking into account interaction of aerosol particles with aero-ions. Natural Sciences. Physics of Atmosphere. Izvestiya of Tertiary Education Institutions. Northern Caucasus Region, pp 81–85

    Google Scholar 

  • Redin A, Kupovykh G, Kudrinskaya T, Boldyreff A (2014) Surface layer electrodynamic structure under severe aerosol pollution. XV International conference on atmospheric electricity, 15-20 June 2014, Norman, OKP-07-11. 6 p. http://www.nssl.noaa.gov/users/mansell/icae2014/preprints/Redin_231.pdf

  • Rees MH (1963) Auroral ionization and excitation by incident energetic electrons. Planet Space Sci 11:1209–1218

    Article  Google Scholar 

  • Roberts CS (1969) Pitch-angle diffusion of electrons in the magnetosphere. Rev Geophys Space Phys 7:305–337

    Article  Google Scholar 

  • Roble RG (1991) On modeling component processes in the Earth’s global electric circuit. J Atmos Terr Phys 53:831–847

    Article  Google Scholar 

  • Roble RG, Tzur I (1986) The Global Atmospheric-Electrical Circuit. The Earth’s Electrical Environment. Studies in Geophysics series, National Academy Press, Washington D.C., pp 206–231

    Google Scholar 

  • Rodger CJ, Thomson NR, Dowden RL (1998) Testing the formulation of Park and Dejnakarintra to calculate thunderstorm dc electric fields. J Geophys Res 103:2171–2178

    Article  Google Scholar 

  • Rozhnoi A, Solovieva M, Molchanov O, Schwingenschuh K, Boudjada M, Biagi PF, Maggipinto T, Castellana L, Ermini A, Hayakawa M (2009) Anomalies in VLF radio signals prior the Abruzzo earthquake (M=6.3) on 6 April 2009. Nat Hazards Earth Syst Sci 9:1727–1732

    Google Scholar 

  • Rulenko OP (2000) Operative Precursors of Earthquakes in the Near-Ground Atmosphere Electricity. Volcanology and Seismology 4:57–68

    Google Scholar 

  • Rulenko OP (2001) Immediate earthquake precursors in near-ground atmospheric electricity. Volcanol Seismol 22:435–451

    Google Scholar 

  • Rundle JB, Turcotte DL, Klein W (eds) (2000) GeoComplexity and the physics of earthquakes. Geophysical Monographs series, American Geophysical Union, Washington DC

    Google Scholar 

  • Rycroft MJ, Odzimek A, Arnold NF, Fullekrug M, Kulak A, Neubert T (2007) New model simulations of the global atmospheric electric circuit driven by thunderstorms and electrified shower clouds: the roles of lightning and sprites. JASTP 69:2485–2509

    Google Scholar 

  • Rycroft MJ, Nicoll KA, Aplin KL, Harrison RG (2012) Recent advances in global electric circuit coupling between the space environment and the troposphere. J Atmos Sol Terr Phys 90–91:198–211

    Article  Google Scholar 

  • Ryu K, Parrot M, Kim SG, Jeong KS, Chae JS, Pulinets S, Oyama K-I (2014) Suspected seismo-ionospheric coupling observed by satellite measurements and GPS TEC related to the M7.9 Wenchuan earthquake of 12 May 2008. J Geophys Res Space Phys 119:10305–10323

    Article  Google Scholar 

  • Sagalyn RC, Burke HK, Fitzgerald DR (1985) Atmospheric electricity Chapter 20 in Handbook of geophysics and the space environment. Jursa AS Sci. Ed. Air Force Geophysics Laboratory Air Force Systems Command. United States Air Force. Document Accession Number: ADA 167000

    Google Scholar 

  • Sauvaud JA, Moreau T, Maggiolo R, Treilhou J-P, Jacquey C, Cros A, Coutelier J, Rouzaud J, Penou E, Gangloff M (2006) High-energy electron detection onboard DEMETER: the IDP spectrometer, description and first results on the inner belt. Planet Space Sci 54:502–511

    Article  Google Scholar 

  • Schunk RW (1988) A mathematical model of the middle and high latitude ionosphere. Pure Appl Geophys 127:255–303

    Article  Google Scholar 

  • Shamansky YuV (2003) Global and local variations of the electric field. Proceedings of the Fifth Russian conference on atmospheric electricity. Vladimir: Publishing House of Vl.SU, vol 1, pp 46–49

    Google Scholar 

  • Shklyar DR, Nagano I (1998) On VLF wave scattering in plasma with density irregularities. J Geophys Res 103:29515–29526

    Article  Google Scholar 

  • Sidiropoulos NF, Anagnostopoulos G, Rigas V (2011) Comparative study on earthquake and ground based transmitter induced radiation belt electron precipitation at middle latitudes. Nat Hazards Earth Syst Sci 11:1901–1913

    Article  Google Scholar 

  • Slyunyaev NN, Mareev EA, and Zhidkov AA (2015) On the variation of the ionospheric potential due to large-scale radioactivity enhancement and solar activity. J Geophys Res Space Phys 120:7060–7082. https://doi.org/10.1002/2015JA021039.

  • Smirnov VV Ionization in troposphere (1992) Gidrometeoizdat Publ., St Petersburg (in Russian)

    Google Scholar 

  • Smythe WR (1939) Static and dynamic electricity. McGraw-Hill Book Co., Inc

    Google Scholar 

  • Solovyov VA (1941) Experiments on the atmosphere ionization by the X-rays. Meteorol Hydrol No. 3:19–30

    Google Scholar 

  • Sorokin VM, Chmyrev VM, Yaschenko AK (2001) Electrodynamic model of the lower atmosphere and the ionosphere. JASTP 63:681–1691

    Google Scholar 

  • Sorokin VM (2007) Plasma and Electromagnetic Effects in the Ionosphere Related to the Dynamics of Charged Aerosols in the Lower Atmosphere. Russian Journal of Physical Chemistry B 1:138–170

    Google Scholar 

  • Sorokin V, Hayakawa M (2013) Generation of seismic-related DC electric fields and lithosphere–atmosphere–ionosphere coupling. Mod Appl Sci 7:1–25

    Google Scholar 

  • Sounders C (2008) Charge separation mechanisms in clouds. Space Sci Rev 137:335–353

    Article  Google Scholar 

  • Stakhanov IP (1979) The physical nature of the ball lightning. Atomizdat, Moscow, p 240

    Google Scholar 

  • Stull RB (ed) (1988) An introduction to boundary layer meteorology. Kluwer Academic, Dordrecht, Boston, London, p 667

    Book  Google Scholar 

  • Stull R. (2015) Atmospheric boundary layer. Ch. 18 in Practical Meteorology: an Algebra-based Survey of Atmospheric Science. University of British Columbia Publishing, pp 687–722

    Google Scholar 

  • Svensmark H, Friis-Christensen E (1997) Variation of cosmic ray flux and global cloud coverage—a missing link in solar-climate relationships. J Atm Solar-Terr Phys 59:1225–1232

    Article  Google Scholar 

  • Svensmark H, Pedersen JOP, Marsch ND, Enghoff MB, Uggerhøj UI (2007) Experimental evidence for the role of ions in particle nucleation under atmospheric conditions. Proc R Soc A 463:385–396

    Article  Google Scholar 

  • Takeda M, Yamauchi M, Makino M, Owada T (2011) Initial effect of the Fukushima Accident on atmospheric electricity. Geophys Res Lett 38:L15811. https://doi.org/10.1029/2011/2011GL048511

    Article  Google Scholar 

  • Tertyshnikov AV, Vazhenin AA (2012) The anomalous 5-days variations of aerosol optical thickness over the seismic-prone regions before strong crust earthquakes. Heliogeophys Res 2:33–39 (in Russian)

    Google Scholar 

  • Thomas H, Morfill GE, Demmel V, Goree J (1994) Plasma crystal: coulomb crystallization in a dusty plasma. Phys Rev Lett 73:652–655

    Google Scholar 

  • Titova MA, Zakharov VI, Pulinets SA (2019) Detection of ionospheric disturbances over the region of Haiti Island for period of January 1–15, 2010, according to GPS data in quiet geomagnetic conditions. Geomag Aeron 59:743–751. https://doi.org/10.1134/S0016793219060136

    Article  Google Scholar 

  • Titova MA, Zakharov VI, Pulinets SA (2021) Recognition and interpretation of the spatial irregularities in ionosphere for February—March 2010 over the seismic zones of South America by radiophysical methods. Radio Commun Technol. Issue 1(48):07–23. https://doi.org/10.33286/2075-8693-2021-48-07-23

    Article  Google Scholar 

  • Tributsch H (1978) Do aerosol anomalies precede earthquake? Nature 276:606–608

    Article  Google Scholar 

  • Tsukuda T (1997) Size and some features of luminous sources associated with the 1995 Hyogo-ken Nanbu earthquake. J Phys Earth 45:73–82

    Article  Google Scholar 

  • Tzur I, Roble RG (1985) The interaction of a dipolar thunderstorm with its global electrical environment. J Geophys Res 90:5989–5999

    Article  Google Scholar 

  • Vampola AL, Kuck GA (1978) Induced precipitation of inner zone electrons 1. Observations J Geophys Res 83:2543–2551

    Article  Google Scholar 

  • Vinuesa J-F, Basu S, Galmarini S (2007) The diurnal evolution of 222Rn and its progeny in the atmospheric boundary layer during the Wangara experiment. Atmos Chem Phys 7:5003–5019

    Article  Google Scholar 

  • Vonnegut B (1953) Possible mechanism for the formation of thunderstorm electricity. Bull Amer Meteor Soc 34:378–381

    Google Scholar 

  • Voronov SA, Galper AM, Koldashev SV, Maslennikov LV, Mikhailov VV, Nikitina NV, Popov AV (1990) The increase of charged particles of high energy fluxes in the area of Brazilian anomaly and the Earth’s seismicity. Cosmic Res 28:789–791

    Google Scholar 

  • Williams ER (2009) The global electrical circuit: a review. Atmos Res 91:140–152

    Article  Google Scholar 

  • Wilson CTR (1920) Investigations on lightning discharges and on the electric field of thunderstorms. Phil Trans Roy Soc Lond A 221:73–115

    Google Scholar 

  • Yakovlenko SI (1995) Metastable plasma of hydrated ions. Russ Phys J 38:3–10

    Article  Google Scholar 

  • Zatsepina GN (1998) Physical properties and structure of water. M.: Publishing House of Moscow State University

    Google Scholar 

  • Zolotov OV (2015) Earthquake effects in variations of total electron content, PhD Thesis, St Petersburg

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Pulinets .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature B.V.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pulinets, S., Ouzounov, D., Karelin, A., Boyarchuk, K. (2022). Earthquake Precursors in the Ionosphere. In: Earthquake Precursors in the Atmosphere and Ionosphere. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-2172-9_3

Download citation

Publish with us

Policies and ethics