Skip to main content

Anti-inflammatory Effects of Galactose-Taurine Sodium Salt: A Taurine Derivate in Zebrafish In Vivo Model

  • Conference paper
Taurine 10

Abstract

Taurine, the plentiful amino acids in mammalian cells exerts various biological activities including antioxidant and anti-inflammatory effects. Inflammation can cause several diseases such as cancer, heart disease, rheumatoid arthritis and immune system reactions. Here, we investigated anti-inflammatory effects of Galactose-Taurine sodium salt (Gal-Tau), a newly synthesized taurine derivate in LPS-stimulated zebrafish embryos in vivo model. The result showed that Gal-Tau improved the survival rate and the edema in LPS-treated zebrafish embryos. Also, Gal-Tau effectively reduced the productions of nitric oxide (NO), reactive oxygen species (ROS) and cell death induced by LPS in zebrafish embryos. In addition, Gal-Tau regulated the expression levels of inflammatory mediators such as inducible NOS (iNOS) and cycloxygenase 2 (COX-2) as well as IL-6 and TNF-α, inflammatory cytokines known as important key mediators of inflammation. Taken together, this study first indicates that Gal-Tau could be considered as an effective anti-inflammatory material with its anti-inflammatory activity.

§Eun A Kim and W. Lee are equally contributed to this study.

*You-Jin Jeon and Ginnae Ahn are equally contributed to this study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 389.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 499.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Gal-Tau:

Galactose-Taurine sodium salt

LPS:

Lipopolysaccharide

NO:

Nitric oxide

PGE2 :

Prostaglandin E2

iNOS:

Inducible NO synthase

COX-2:

Cyclooxygenase-2

References

  • Cho HJ, You JS, Chang KJ, Kim KS, Kim SH (2014) Anti-adipogenic effect of taurine-carbohydrate derivatives. Bull Kor Chem Soc 35:1863–1866

    Article  CAS  Google Scholar 

  • Choi CW, Kim SC, Hwang SS, Choi BK, Ahn HJ, Lee MY, Park SH, Kim SK (2002) Antioxidant activity and free radical scavenging capacity between Korean medicinal plants and flavonoids by assay-guided comparison. Plant Sci 163:1161–1168

    Google Scholar 

  • Conforti F, Sosa S, Marrelli M, Menichini F, Statti GA, Uzunov D, Tubaro A, Menichini F, Loggia RD (2008) In vivo anti-inflammatory and in vitro antioxidant activities of Mediterranean dietary plants. J Ethnopharmacol 116:144–151

    Article  CAS  PubMed  Google Scholar 

  • Higashimoto T, Panopoulos A, Hsieh CL, Zandi E (2006) TNFalpha induces chromosomal abnormalities independent of ROS through IKK, JNK, p38 and caspase pathways. Cytokine 34:39–50

    Article  CAS  PubMed  Google Scholar 

  • Kang N, Chang KJ, Park SY, Um JH, Han EJ, Lee WW, Kim EA, Oh JY, Kim SHm Jeon YJ, Cheong SH, Ahn G (2017) Anti-inflammatory Effects of Galactose-Taurine Sodium Salt in LPS-Activated RAW 264.7 Cells. Adv Exp Med Biol, In press

    Google Scholar 

  • Kim HK, Cheon BS, Kim YH, Kim SY, Kim HP (1999) Effects of naturally occurring flavonoids on nitric oxide production in the macrophage cell line RAW 264.7 and their structure-activity relationships. Biochem Pharmacol 58:759–765

    Article  CAS  PubMed  Google Scholar 

  • Marcinkiewicz J, Kurnyta M, Biedroń R, Bobek M, Kontny E, Maśliński W (2006) Antiinflammatory effects of taurine derivatives (taurine chloramine, taurine bromamine, and taurolidine) are mediated by different mechanisms. Adv Exp Med Biol 583:481–449

    Article  CAS  PubMed  Google Scholar 

  • Miao J, Fa Y, Gu B, Zhu W, Zou S (2012) Taurine attenuates lipopolysaccharide-induced disfunction in mouse mammary epithelial cells. Cytokine 59:35–40

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa T, Yokozawa T (2002) Direct scavenging of nitric oxide and superoxide by green tea. Food Chem Toxicol 40:1745–1750

    Article  CAS  PubMed  Google Scholar 

  • Park DW, Baek K, Kim JR, Lee JJ, Ryu SH, Chin BR, Baek SH (2009) Resveratrol inhibits foam cell formation via NADPH oxidase 1-mediated reactive oxygen species and monocyte chemotactic protein-1. Exp Mol Med 41:171–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park KH, Cho KH (2011) A zebrafish model for the rapid evaluation of prooxidative and inflammatory death by lipopolysaccharide, oxidized low-density lipoproteins and glycated high-density lipoproteins. Fish Shellfish Immunol 31:904–910

    Article  CAS  PubMed  Google Scholar 

  • Pasantes-Morales H, Wright CE, Gaull GE (1985) Taurine protection of lymphoblastoid cells from iron-ascorbate induced damage. Biochem Pharmacol 34:2205–2207

    Article  CAS  PubMed  Google Scholar 

  • Peluso MR, Miranda CL, Hobbs DJ, Proteau RR, Stevens JF (2010) Xanthohumol and related prenylated flavonoids inhibit inflammatory cytokine production in LPS-activated THP-1 monocytes: structure-activity relationships and in silico binding to myeloid differentiation protein-2 (MD-2). Planta Med 76:1536–1543

    Article  CAS  PubMed  Google Scholar 

  • Posadas I, Terencio MC, Guillén I, Ferrándiz ML, Coloma J, Payá M, Alcaraz MJ (2000) Co-regulation between cyclo-oxygenase-2 and inducible nitric oxide synthase expression in the time-course of murine inflammation. Naunyn Schmiedeberg’s Arch Pharmacol 361:98–106

    Article  CAS  Google Scholar 

  • Salerno L, Sorrenti V, Di Giacomo C, Romeo G, Siracusa MA (2002) Progress in the development of selective nitric oxide synthase (NOS) inhibitors. Curr Pharm Des 8:177–200

    Article  CAS  PubMed  Google Scholar 

  • Shibata T, Ishimaru K, Kawaguchi S, Yoshikawa H, Hama Y (2008) Antioxidant activities of phlorotannins isolated from Japanese Laminariacea. J Appl Phycol 20:705–711

    Article  CAS  Google Scholar 

  • Stapleton PP, Bloomfield FJ (1993) Effect of zwitterions on the respiratory burst. J Biomed Sci 3:79–84

    Google Scholar 

  • Sturman JA (1993) Taurine in development. Physiol Rev 73:119–148

    CAS  PubMed  Google Scholar 

  • Takahashi K, Harada H, Schaffer SW (1992) Effect of taurine on intracellular calcium dynamics of cultured myocardial cells during the calcium paradox. In: Lombardini JB (ed) Taurine nutritional value and mechanisms of action. Plenum Press, New York, pp 3768–3774

    Google Scholar 

  • Trede NS, Zapata A, Zon LI (2001) Fishing for lymphoid genes. Trends Immunol 22:302–307

    Article  CAS  PubMed  Google Scholar 

  • Tripathi P, Tripathi P, Kashyap L, Singh V (2007) The role of nitric oxide in inflammatory reactions. FEMS Immunol Med Microbiol 51:443–452

    Article  CAS  PubMed  Google Scholar 

  • Yoon WJ, Moon JY, Kang JY, Kim GO, Lee NH, Hyun CG (2010) Neolitsea sericea essential oil attenuates LPS-induced inflammation in RAW 264.7 macrophages by suppressing NF-kappaB and MAPK activation. Nat Prod Commun 5:1311–1316

    CAS  PubMed  Google Scholar 

  • Zhang F, Mao Y, Qiao H, Jiang H, Zhao H, Chen X, Tong L, Sun X (2010) Protective effects of taurine against endotoxin-induced acute liver injury after hepatic ischemia reperfusion. Amino Acids 38:237–245

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ginnae Ahn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this paper

Cite this paper

Kim, E.A. et al. (2017). Anti-inflammatory Effects of Galactose-Taurine Sodium Salt: A Taurine Derivate in Zebrafish In Vivo Model. In: Lee, DH., Schaffer, S.W., Park, E., Kim, H.W. (eds) Taurine 10. Advances in Experimental Medicine and Biology, vol 975. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1079-2_51

Download citation

Publish with us

Policies and ethics