Skip to main content

Ammonoid Embryonic Development

  • Chapter
  • First Online:
Ammonoid Paleobiology: From anatomy to ecology

Part of the book series: Topics in Geobiology ((TGBI,volume 43))

Abstract

A great number of new studies have been carried out on ammonoid embryonic development in the last two decades. We focus here on novel developments and interpretations in the description of the embryonic shell (including terminology, shape, size, ornamentation, microstructure, septa, siphuncle and muscle scars), the sequence of embryonic development, reproductive strategy and post-hatching mode of life, followed by conclusions and possible future areas of research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alegret L, Thomas E, Lohmann KC (2012) End-Cretaceous marine mass extinction not caused by productivity collapse. Proc Natl Acad Sci U S A 109:728–732

    Google Scholar 

  • Alekseev SN, Arkadiev VV, Vavilov MN (1984) Internal structure and ontogeny of certain Middle Triassic ceratites. Paleontol J 1984:51–64

    Google Scholar 

  • Arkadiev VV, Vavilov MN (1984a) Middle Triassic Parapopanoceratidae and Nathorstitidae (ammonoidea) of Boreal region: internal structure, ontogeny and phylogenetic patterns. Geobios 17:397–425

    Google Scholar 

  • Arkadiev VV, Vavilov MN (1984b) Inner structure and ontogeny of Late Anisian Beyrichitidae (Ammonoidea) of Middle Siberia. Paleontol J 17:63–72

    Google Scholar 

  • Arkadiev VV, Bucher H, Vavilov MN (1993) Structure and systematic position of the middle Anisian genus Nevadisculites (Ammonoidea) from Nevada (USA). Paleontol Zh 1993(3): 30–36 [in Russian]

    Google Scholar 

  • Arkhipkin AI, Laptikhovsky VV (2012) Impact of ocean acidification on plankton larvae as a cause of mass extinctions in ammonites and belemnites. Neues Jahrb Geol Palaeontol Abh 266:39–50

    Google Scholar 

  • Arnold JM, Landman NH, Mutvei H (1987) Development of the embryonic shell of Nautilus. In Saunders WB, Landman NH (eds) Nautilus: the biology and paleobiology of a living fossil. Plenum Press, New York

    Google Scholar 

  • Bandel K (1982) Morphologie und Bildung der frühontogenetischen Gehäuse bei conchiferen Mollusken. Facies 7:1–197

    Google Scholar 

  • Bandel K (1986) The ammonitella: a model of formation with the aid of the embryonic shell of archaeogastropods. Lethaia 19:171–180

    Google Scholar 

  • Bandel K, Landman NH, Waage KM (1982) Micro-ornament on early whorls of Mesozoic ammonites: implications for early ontogeny. J Paleontol 56:386–391

    Google Scholar 

  • Baranov VN (1985) On the egg remains in the body chambers of Late Volgian. Bull Soc Nat Mosc Geol 60:89–91 [in Russian]

    Google Scholar 

  • Becker RT, De Baets K, Nikolaeva S (2010) New ammonoid records from the Lower Emsian of the Kitab reserve (Uzbekistan)—preliminary results. SDS Newsl 25:20–28

    Google Scholar 

  • Bensaïd M (1974) Étude sur des goniatites à la limite du Dévonien moyen et supérieur du Sud Marocain. Notes Serv Géol Maroc 36:81–140

    Google Scholar 

  • Birkelund T (1979) The last Maastrichtian ammonites. In: Birkelund T, Bromley RG (eds) Cretaceous-tertiary boundary events. University of Copenhagen, Copenhagen, pp 51–57

    Google Scholar 

  • Birkelund T (1981) Ammonoid shell structure. In: House MR, Senior JR (eds) The Ammonoidea: the evolution, classification, mode of life, and geological usefulness of a major fossil group. Academic Press, London, pp. 177–214

    Google Scholar 

  • Birkelund T, Hansen HT (1968) Early shell growth and structures of the septa and the siphuncular tube in some Maastrichtian ammonites. Medd Dan Geol Foren 18:95–101

    Google Scholar 

  • Birkelund T, Hansen HJ (1974) Shell ultrastructures of some Maastrichtian Ammonoidea and Coleoidea and their taxonomic implications. K Danske Vidensk Selsk Biol Skr 20:2–34

    Google Scholar 

  • Bogdanova TN, Arkadiev VV (2005) Revision of species of the ammonite genus Pseudosubplanites from the Berriasian of the Crimean mountains. Cretac Res 26:488–506

    Google Scholar 

  • Bogoslovskaya MF (1959) The internal structure of certain Artinskian ammonoid shells. Paleontol Zh 1:49–59 [in Russian]

    Google Scholar 

  • Bogoslovsky BI (1969) Devonian ammonoids. I. Agoniatitids. Trudy Paleont Inst Akad Nauk SSSR 124:1–341 [in Russian]

    Google Scholar 

  • Bogoslovsky BI (1971) Devonian ammonoids. II. Goniatitids. Trudy Paleont Inst Akad Nauk SSSR 127:1–228 [in Russian]

    Google Scholar 

  • Bogoslovsky BI (1972) New Early Devonian cephalopods of Novaya Zemlya. Paleontol. Zh 4:44–51 [in Russian]

    Google Scholar 

  • Bogoslovsky B (1976) Early ontogeny and origin of clymeniid ammonoids. Paleontol J 1976:150–158

    Google Scholar 

  • Bogoslovsky BI (1981) Devonian ammonoids. III. Clymeniids. Trudy Paleont Inst Akad Nauk SSSR 191:1–123 [in Russian]

    Google Scholar 

  • Bogoslovsky BI (1984) A new genus of the family Auguritidae and associated ammonoids from the Lower Devonian of the Zeravshan range. Paleontol Zh 1984(1):30–36 [in Russian]

    Google Scholar 

  • Böhmers JCA (1936) Bau und Struktur von Schale und Sipho bei permischen Ammonoidea. Drukkerij Universitas, Appeldoorn

    Google Scholar 

  • Boletzky Sv (1978) Nos connaissances actuelles sur le développement des octopodes. Vie Milieu 28:85–120

    Google Scholar 

  • Boletzky Sv (1981) Reflexions sur les strategies de reproduction chez les céphalopodes. Bull Soc Zool Fr 106:293–304

    Google Scholar 

  • Boletzky Sv (1987a) Embryonic phase. In: Boyle PR (ed) Cephalopod life cycles, Vol. II. Academic Press, London

    Google Scholar 

  • Boletzky Sv (1987b) Juvenile behavior. In: Boyle PR (ed) Cephalopod life cycles, Vol. II. Academic Press, London

    Google Scholar 

  • Boletzky Sv (1989) Early ontogeny and evolution: the cephalopod model viewed from the point of developmental morphology. Geobios 22 (Suppl 2):67–78

    Google Scholar 

  • Boletzky Sv (1992) Evolutionary aspects of development, life style, and reproductive mode in incirrate octopods (Mollusca, Cephalopoda). Rev Suisse Zool 99:755–770

    Google Scholar 

  • Boletzky Sv (1993) Development and reproduction in the evolutionary biology of Cephalopoda. Geobios 26(Suppl 1):33–38

    Google Scholar 

  • Boletzky Sv (1997) Developmental constraints and heterochrony: a new look at offspring size in cephalopod molluscs. Geobios 30(Suppl 2):267–275

    Google Scholar 

  • Boletzky Sv (2002) Yolk sac morphology in cephalopod embryo. Abh Geol Bundesanst (Vienna) 57:57–68

    Google Scholar 

  • Boletzky Sv (2003) Biology of early life stages in cephalopod molluscs. Adv Mar Biol 44:143–203

    Google Scholar 

  • Boyle PR (1983) Cephalopod Life Cycles, Vol. I. Academic Press, New York

    Google Scholar 

  • Boyle P, Rodhouse P (2005) Cephalopods: ecology and Fisheries. Wiley, Oxford

    Google Scholar 

  • Branco W (1879) Beiträge zur Entwicklungsgeschichte der fossilen Cephalopoden I. Palaeontographica 26:15–50

    Google Scholar 

  • Branco W (1880) Beiträge zur Entwicklungsgeschichte der fossilen Cephalopoden II. Palaeontographica 27:12–81

    Google Scholar 

  • Brayard A, Escarguel G (2013) Untangling phylogenetic, geometric and ornamental imprints on Early Triassic ammonoid biogeography: a similarity-distance decay study. Lethaia 46:19–33

    Google Scholar 

  • Brown AP (1892) The Development of the Shell in the Coiled Stage of Baculites compressus Say. Proc Acad Nat Sci Phila 44:136–141

    Google Scholar 

  • Bucher H, Landman NH, Klofak SM, Guex J (1996) Mode and rate of growth in ammonoids. In: Landman NH, Tanabe K, Davis RA (eds) Ammonoid paleobiology. Plenum, New York

    Google Scholar 

  • Callomon J (1985) The evolution of the Jurassic ammonite Family Cardioceratidae. Spec Pap Palaeontol 33:49–90

    Google Scholar 

  • Calow S (1987) Fact and theory-an overview. In: Boyle PR (ed) Cephalopod life cycles, volume ii: comparative reviews. Academic Press, London, pp. 351–365

    Google Scholar 

  • Cecca F (2002) Palaeobiogeography of marine fossil invertebrates: concepts and methods. Taylor and Francis, London

    Google Scholar 

  • Chambers JM, Cleveland WS, Kleiner B, Tukey PA Graphical methods for data analysis. Chapman and Hall, Belmont

    Google Scholar 

  • Checa A (1994) A model for the morphogenesis of ribs in ammonites inferred from associated microsculptures. Palaeontology 37:863–863

    Google Scholar 

  • Chirat R (2001) Anomalies of embryonic shell growth in post-Triassic Nautilida. Paleobiology 27:485–499

    Google Scholar 

  • Chlupáč I, Turek V (1983) Devonian goniatites from the Barrandian area. Rozpr Ustred Ust Geol 46:1–159

    Google Scholar 

  • Clausen C-D (1969) Oberdevonische Cephalopoden aus dem Rheinischen Schiefergebirge. II. Gephuroceratidae, Beloceratidae. Palaeontogr A 132: 95–178

    Google Scholar 

  • Dauphin Y (1975) Anatomie de la protoconque et des tours initiaux de Beudanticeras beudanti (Brongniart) et Desmoceras Latidorsatum (Michelin), (Desmoceratidae, Ammonitina), Albien de Gourdon (Alpes-Maritimes). Ann Paléontol Invertébr 61:3–16

    Google Scholar 

  • Dauphin Y (1977) Anatomie de la protoconque et des tours initiaux de Uhligella walleranti Jacob (Desmoceratidae, Ammonitina), Albien de Gourdon (Alpes–Maritimes). Ann Paléontol Invertébr 63:77–84

    Google Scholar 

  • Davis RA, Landman NL, Dommergues J-L, Marchand D, Bucher H (1996) Mature modifications and dimorphism in ammonoid cephalopods. In: Landman NH, Tanabe K, Davis RA (eds) Ammnoid paleobiology. Plenum, New York, pp. 464–539

    Google Scholar 

  • De Baets K, Klug C, Korn D (2009) Anetoceratinae (Ammonoidea, Early Devonian) from the Eifel and Harz Mountains (Germany), with a revision of their genera. Neues Jahrb Geol Palaeontol Abh 252:361–376

    Google Scholar 

  • De Baets K, Klug C, Korn D, Landman NH (2012) Early evolutionary trends in ammonoid embryonic development. Evolution 66:1788–1806

    Google Scholar 

  • De Baets K, Klug C, Monnet C (2013a) Intraspecific variability through ontogeny in early ammonoids. Paleobiology 39:75–94

    Google Scholar 

  • De Baets K, Klug C, Korn D, Bartels C, Poschmann M (2013b) Emsian Ammonoidea and the age of the Hunsrück Slate (Rhenish Mountains, Western Germany). Palaeontogr Abt A 299:1–113

    Google Scholar 

  • De Baets K, Bert D, Hofmann R, Monnet C, Yacobucci MM, Klug C (2015) Ammonoid intraspecific variability. This volume

    Google Scholar 

  • Dietl G (1978) Die heteromorphen Ammoniten des Dogger. Stuttg Beitr Natkde B 33:1–97

    Google Scholar 

  • Doguzhaeva L (2002) Adolescent bactritoid, orthoceroid, ammonoid and coleoid shells from the Upper Carboniferous and Lower Permian of the South Urals. Abh Geol Bundesanst (Vienna) 57:9–55

    Google Scholar 

  • Doguzhaeva L, Mikhailova I (1982) The genus Luppovia and the phylogeny of Cretaceous heteromorphic ammonoids. Lethaia 15:55–65

    Google Scholar 

  • Donoghue PCJ, Dong X-P (2005) Embryos and ancestors. In: Briggs DEG (ed) Evolving form and function: fossils and development. Yale Peabody Museum of Natural History, Yale University, New Haven, pp. 81–99

    Google Scholar 

  • Donoghue PCJ, Bengtson S, Dong X-p, Gostling NJ, Huldtgren T, Cunningham JA, Yin C, Yue Z, Peng F, Stampanoni M (2006) Synchrotron X-ray tomographic microscopy of fossil embryos. Nature 442:680–683

    Google Scholar 

  • Donovan DT (1964) Cephalopod phylogeny and classification. Biol Rev 39:259–287

    Google Scholar 

  • Donovan DT, Callomon JH, Howarth MK (1981) Classification of the Jurassic Ammonitina. In: House MR, Senior JR (eds) The Ammonoidea. Academic Press, London, pp. 101–155

    Google Scholar 

  • Dreyfuss M (1933) Découverte de nodules phosphatés à jeunes ammonites dans le Toarcien de Créveney (Haute Saône). C R Somm Séances Soc Géol Fr 14:224–226

    Google Scholar 

  • Drushchits VV, Doguzhaeva LA (1974) Some morphogenetic characteristics of phylloceratids and lytoceratids (Ammonoidea). Paleontol J 8:37–48

    Google Scholar 

  • Drushchits VV, Doguzhaeva LA (1981) Ammonites under the electron microscope. Moscow University Press, Moscow. [in Russian]

    Google Scholar 

  • Drushchits VV, Khiami N (1969) Characteristics of the early stages in the ontogeny of some Early Cretaceous ammonites. Moskov Obshch Ispytateley Prirody Byull Otd Geol 2:156–157

    Google Scholar 

  • Drushchits VV, Khiami N (1970) Structure of the septa, initial chamber walls and initial whorls in Early Cretaceous ammonites. Paleontol J 1970:26–38

    Google Scholar 

  • Drushchits VV, Doguzhaeva LA, Lominadze TA (1977a) Internal structural features of the shell of middle Callovian ammonites. Paleontol J 1977:16–29

    Google Scholar 

  • Drushchits VV, Doguzhayeva LA, Mikhaylova IA (1977b) The structure of the ammonitella and the direct development of ammonites. Paleontol J 1977:188–199

    Google Scholar 

  • Drushchits VV, Mikhailova IA, Kabanov GK, Knorina MV (1980) Morphogenesis of the Simbirskites group. Paleontol J 14:42–57

    Google Scholar 

  • Dzik J (1981) Origin of the Cephalopoda. Acta Palaeontol Pol 26:161–19

    Google Scholar 

  • Dzik J (1984) Phylogeny of the Nautiloidea. Palaeontol Pol 45:3–203

    Google Scholar 

  • Elmi S, Rulleau L (1991) Le Toarcien des carrières Lafarge (Bas-Beaujolais, France): Cadre biostratigraphique de référence pour la région lyonnaise. Geobios 24:315–331

    Google Scholar 

  • Erben HK (1950) Bemerkungen zu Anomalien mancher Anfangswindungen von Mimagoniatites fecundus (Barr.). Neues Jahrb Geol Paläontol Mh 25–32

    Google Scholar 

  • Erben HK (1960) Primitive Ammonoidea aus dem Unterdevon Frankreichs und Deutschlands. Neues Jahrb Geol Paläontol Abh 110:1–128

    Google Scholar 

  • Erben HK (1962a) Über böhmische und türkische Vertreter von Anetoceras (Ammon., Unterdevon). Paläontol Z 36:14–27

    Google Scholar 

  • Erben HK (1962b) Über die “forme elliptique” der primitiven Ammonoidea. Paläontol Z 36:38–44

    Google Scholar 

  • Erben HK (1964) Die Evolution der ältesten Ammonoidea (Lieferung I). Neues Jahrb Geol Paläont Abh 120:107–212

    Google Scholar 

  • Erben HK (1965) Die Evolution der ältesten Ammonoidea (Lieferung II). Neues Jahrb Geol Paläont Abh 122:275–312

    Google Scholar 

  • Erben HK (1966) Uber den Ursprung der Ammonoidea. Biol Rev 41:641–658

    Google Scholar 

  • Erben HK, Flajs G, Siehl A (1968) Ammonoids: early ontogeny of ultra-microscopical shell structure. Nature 219:396–398

    Google Scholar 

  • Erben HK, Flajs G, Siehl A (1969) Die frühontogenetische Entwicklung der Schalenstruktur ectocochleater Cephalopoden. Palaeontogr Abt A 132:1–54

    Google Scholar 

  • Etches S, Clarke J, Callomon J (2009) Ammonite eggs and ammonitellae from the Kimmeridge Clay Formation (Upper Jurassic) of Dorset, England. Lethaia 42:204–217

    Google Scholar 

  • Fernández-López SR (1991) Taphonomic concepts for a theoretical biochronology. Rev Esp Paleontol 6:37–49

    Google Scholar 

  • Fernández-López S (1995) Taphonomie et interprétation des paléoenvironnements. Geobios 28(Suppl 1):137–154

    Google Scholar 

  • Fernández-López SR (2007) Ammonoid taphonomy, palaeoenvironments and sequence stratigraphy at the Bajocian/Bathonian boundary on the Bas Auran area (Subalpine Basin, south-eastern France). Lethaia 40:377–391

    Google Scholar 

  • Fernández-López SR (2013) Dimorphism and evolution of Albarracinites (Ammonoidea, Lower Bajocian) from the Iberian Range (Spain). J Syst Palaeontol 12:669–685

    Google Scholar 

  • Fernández-López S, Meléndez G (1996) Phylloceratina ammonoids in the Iberian Basin during the Middle Jurassic: a model of biogeographical and taphonomic dispersal related to relative sea-level changes. Palaeogeogr Palaeoclimatol Palaeoecol 120:291–302

    Google Scholar 

  • Frest TJ, Glenister BF, Furnish WM (1981) Pennsylvanian-Permian Cheiloceratacean ammonoid families Maximitidae and Pseudohaloritidae. Memoir (The Paleontological Society) 11:1–46

    Google Scholar 

  • Frýda J, Nützel A, Wagner PJ (2008) Paleozoic Gastropoda. In: Ponder W, Lindberg DR (eds) Phylogeny and evolution of the Mollusca. University of California Press, Berkeley, pp. 239–270

    Google Scholar 

  • Furnish WM, Glenister BF, Kullmann J, Zuren Z (2009) Carboniferous and Permian Ammonoidea. In: Selden PA (ed) Treatise on invertebrate paleontology. part L, Mollusca 4, Revised, vol. 2. The University of Kansas Paleontological Institute, Lawrence, Kansas

    Google Scholar 

  • Grandjean F (1910) Le siphon des ammonites et des belémnites. Bull Soc Geol Fr 10:496–519

    Google Scholar 

  • Hall BK, Westermann GEG (1980) Lower Bajocian (Jurassic) cephalopod faunas from western Canada and proposed assemblage zones for the Lower Bajocian of North America. Palaeontogr A 9:1–93

    Google Scholar 

  • Hewitt RA, Westermann GEG (2003) Recurrences of hypotheses about ammonites and Argonauta. J Paleontol 77:792–795

    Google Scholar 

  • Hewitt R, Kullmann J, House M, Glenister B, Yi-Gang W (1993) Mollusca: Cephalopoda (Pre-Jurassic Ammonoidea). In: Benton MJ (ed) Fossil record 2. Chapman & Hall, London, pp 189–212

    Google Scholar 

  • Hickman CS (1992) Reproduction and development of trochacean gastropods. The Veliger 35:245–272

    Google Scholar 

  • Hickman CS (2004) The problem of similarity: analysis of repeated patterns of microsculpture on gastropod larval shells. Invertebr Biol 123:198–211

    Google Scholar 

  • Hoffmann R, Schultz JA, Schellhorn R, Rybacki E, Keupp H, Gerden SR, Lemanis R, Zachow S (2013) Non-invasive imaging methods applied to neo- and paleontological cephalopod research. Biogeosci Discuss 10:18803–18851

    Google Scholar 

  • Holland CH (2003) Some observations on bactritid cephalopods. Bull Geosci 78:369–372

    Google Scholar 

  • House MR (1963) Devonian ammonoid successions and facies in Devon and Cornwall. Quarterly Journal of the Geological Society 119:1–23

    Google Scholar 

  • House MR (1965) A study in the Tornoceratidae: the succession of Tornoceras and related genera in the North American Devonian. Phil Trans R Soc Lond B, Biol Sci 250:79–130

    Google Scholar 

  • House MR (1985) The ammonoid time-scale and ammonoid evolution. Geol Soc Lond Mem 10:273–283

    Google Scholar 

  • House MR (1996) Juvenile goniatite survival strategies following Devonian extinction events. Geol Soc Lond Spec Publ 102:163–18

    Google Scholar 

  • House MR, Kirchgasser WT (2008) Late Devonian goniatites (Cephalopoda, Ammonoidea) from New York State. Bull Am Paleontol 374:1–288

    Google Scholar 

  • Howarth MK (2013) Part L, Revised, Volume 3B, Chapter 4: Psiloceratoidea, Eodoceratoidea, Hildoceratoidea. Treatise Online 57:1–139

    Google Scholar 

  • Hyatt A (1894) Phylogeny of an acquired characteristic. Proc Am Philos Soc 32:349–647

    Google Scholar 

  • Igolnikov AE (2007) A new species of the genus Boreophylloceras Alekseev et Repin, 1998 (Ammonitida) from the Berriasian kochi zone of north-central Siberia. Paleontol J 41:128–131

    Google Scholar 

  • Iwata K (1980) Mineralization and architecture of the larval shell of Haliotis discus hannai Ino (Archaeogastropoda). J Fac Sci Hokkaido Univ Ser 4 Geol Miner 19:305–320

    Google Scholar 

  • Jablonski D, Lutz RA (1983) Larval ecology of marine benthic invertebrates: paleobiological implications. Biol Rev 58:21–89

    Google Scholar 

  • Jacobs DK (1992) Shape, drag, and power in ammonoid swimming. Paleobiology 18:203–220

    Google Scholar 

  • Jacobs DK, Chamberlain JA (1996) Buoyancy and hydrodynamics in ammonoids. In: Landman NH, Tanabe K, Davis RA (eds) Ammonoid paleobiology. Plenum, New York, pp. 170–224

    Google Scholar 

  • Jäger M, Fraaye R (1997) The diet of the Early Toarcian ammonite Harpoceras falciferum. Palaeontology 40:557–574

    Google Scholar 

  • Kawabe F, Haggart JW (2003) The ammonoid Desmoceras in the Upper Albian (Lower Cretaceous) of Japan. J Paleontol 77:314–322

    Google Scholar 

  • Kennedy WJ (1989) Thoughts on the evolution and extinction of Cretaceous ammonites. Proc Geol Assoc 100:251–279

    Google Scholar 

  • Keupp H (2000) Ammoniten–Paläobiologische Erfolgsspiralen. Jan Thorbecke Verlag, Stuttgart

    Google Scholar 

  • Klofak SM (2002) Size classes in ammonoids from the Middle Devonian Cherry Valley Limestone of New York state, USA. Abh Geol Bundesanst (Vienna) 57:443–457

    Google Scholar 

  • Klofak SM, Landman NH, Mapes RH (1999) Embryonic development of primitive ammonoids and the monophyly of the Ammonoidea. In: Olóriz F, Rodríguez-Tovar FJ (eds) Advancing research on living and fossil cephalopods. Kluwer Academic/Plenum, New York, pp. 23–45

    Google Scholar 

  • Klofak SM, Landman NH, Mapes RH (2007) Patterns of embryonic development in Early to Middle Devonian ammonoids. In: Landman NH, Davis RA, Mapes RH (eds) Cephalopods—present and past: new insights and fresh perspectives. Springer Netherlands, pp 15-56

    Google Scholar 

  • Klofak SM, Landman NH (2010) Some exceptionally well preserved specimens of Agoniatites vanuxemi from the Middle Devonian Cherry Valley Limestone of New York State. In: Tanabe K, Shigeta Y, Sasaki T, Hirano H (eds) Cephalopods—present and past. Tokai University Press, Tokyo, pp. 93–103

    Google Scholar 

  • Klofak SM, Landman NH (2012) Internal features of ammonitellas of tornoceratids from the Middle Devonian Cherry Valley Limestone, New York State, USA. Geobios 45:49–56

    Google Scholar 

  • Klug C (2001a) Early Emsian ammonoids from the eastern Anti-Atlas (Morocco) and their succession. Palaeontol Z 74:479–515

    Google Scholar 

  • Klug C (2001b) Life-cycles of some Devonian ammonoids. Lethaia 34:215–233

    Google Scholar 

  • Klug C (2002) Quantitative stratigraphy and taxonomy of late Emsian and Eifelian ammonoids of the eastern Anti-Atlas (Morocco). Cour Forsch Senckenberg 238:1–109

    Google Scholar 

  • Klug C (2007) Sublethal injuries in Early Devonian cephalopod shells from Morocco. Acta Palaeontol Pol 52:749–759

    Google Scholar 

  • Klug C, Korn D (2004) The origin of ammonoid locomotion. Acta Palaeontol Pol 49:235–242

    Google Scholar 

  • Klug C, Kröger B, Korn D, Rücklin M, Schemm-Gregory M, De Baets K, Mapes RH (2008) Ecological change during the early Emsian (Devonian) in the Tafilalt (Morocco), the origin of the Ammonoidea, and the first African pyrgocystid edrioasteroids, machaerids and phyllocarids. Palaeontogr A 283:83–176 Klug C, Kröger B, Kiessling W, Mullins GL, Servais T, Fryda J, Korn D, Turner S (2010) The Devonian nekton revolution. Lethaia 43:465–477

    Google Scholar 

  • Klug C, Kröger B, Klug C, Riegraf W, Lehmann J (2012) Soft–part preservation in heteromorph ammonites from the Cenomanian–Turonian Boundary Event (OAE 2) in north–west Germany. Palaeontology 55:1307–1331

    Google Scholar 

  • Klug C, Kröger B, Vinther J, Fuchs D, De Baets (2015) Ancestry, origin and early evolution of ammonoids. In: Klug C, Korn D, De Baets K, Kruta I, Mapes RH (eds) Ammonoid Paleobiology: From macroevolution to paleogeography. Springer, The Netherlands

    Google Scholar 

  • Knyazev VG (1975). Ammonites and zonal stratigraphy of the Lower Oxfordian of North Siberia. Transactions of the Institute of Geology and Geophysics, Siberian Branch of Academy of Sciences of the USSR 275:1–139 [in Russian]

    Google Scholar 

  • Korn D, Klug C (2002) Ammoneae Devonicae. Fossilium Catalogus 138. Backhuys, Leiden

    Google Scholar 

  • Korn D, Klug C (2007) Conch form analysis, variability, morphological disparity, and mode of life of the Frasnian (Late Devonian) ammonoid Manticoceras from Coumiac (Montagne Noire, France). In: Landman NH, Davis RA, Mapes RH (eds) Cephalopods––present and past: new insights and fresh perspectives. Springer, Dordrecht, pp. 57–85

    Google Scholar 

  • Kröger B (2008) Nautiloids before and during the origin of ammonoids in a Siluro-Devonian section in the Tafilalt, Anti-Atlas, Morocco. Spec Pap Palaeontol 79:5–110

    Google Scholar 

  • Kröger B, Mapes RH (2007) On the origin of bactritoids (Cephalopoda). Paläontol Z 81:316–327

    Google Scholar 

  • Kröger B, Servais T, Zhang Y (2009) The origin and initial rise of pelagic cephalopods in the Ordovician. PLoS ONE 4:e7262

    Google Scholar 

  • Kröger B, Vinther J, Fuchs D (2011) Cephalopod origin and evolution: a congruent picture emerging from fossils, development and molecules. Bioessays 33:602–613

    Google Scholar 

  • Kruta I, Landman N, Rouget I, Cecca F, Tafforeau P (2011) The role of ammonites in the Mesozoic marine food web revealed by jaw preservation. Science 331:70–72

    Google Scholar 

  • Kulicki C (1974) Remarks on the embryogeny and postembryonal development of ammonites. Acta Palaeontol Pol 19:201–22

    Google Scholar 

  • Kulicki C (1979) The ammonite shell: its structure, development and biological significance. Acta Palaeontol Pol 39:97–142

    Google Scholar 

  • Kulicki C (1996) Ammonoid shell microstructure. In: Landman N, Tanabe K, Davis R (eds) Ammonoid paleobiology. Plenum, New York, pp. 65–101

    Google Scholar 

  • Kulicki C, Doguzhaeva LA (1994) Development and calcification of the ammonitella shell. Acta Palaeontol Pol 39:17–44

    Google Scholar 

  • Kulicki, C., Wierzbowski, H. (1983) The Jurassic juvenile ammonites of the Jagua Formation, Cuba. Acta Palaeontol Pol 28:369–384

    Google Scholar 

  • Kulicki C, Landman NH, Heaney MJ, Mapes RH, Tanabe K (2002) Morphology of the early whorls of goniatites from the Carboniferous Buckhorn Asphalt (Oklahoma) with aragonitic preservation. Abh Geol Bundesanst (Vienna) 57:205–224

    Google Scholar 

  • Kulicki C, Tanabe K, Landman NH, Kaim A (2015) Ammonoid shell microstructure. This volume

    Google Scholar 

  • Kullmann J, Wiedmann J (1970) Significance of sutures in phylogeny of Ammonoidea. Kansas University Paleontological Contributions, Paper 47:1–32

    Google Scholar 

  • Kutygin R, Knyazev V (2000) Ontogeny of the ammonoid genus Dactylioceras from northeastern Russia. Paleontol J 34:263–271

    Google Scholar 

  • Landman NH (1982) Embryonic Shells of Baculites. J Paleontol 56:1235–1241

    Google Scholar 

  • Landman NH (1985) Preserved ammonitellas of Scaphites (Ammonoidea, Ancyloceratina). Am Mus Novit 2815:1–10

    Google Scholar 

  • Landman NH (1987) Ontogeny of Upper Cretaceous (Turonian-Santonian) scaphitid ammonites from the Western Interior of North America: systematics, developmental patterns, and life history. Bull Am Mus Nat Hist 185:117–241

    Google Scholar 

  • Landman NH (1988) Early ontogeny of Mesozoic ammonites and nautilids. In: Wiedmann J, Kullmann J (eds) Cephalopods—present and past. Schweizerbart, Stuttgart, pp. 215–228

    Google Scholar 

  • Landman NH (1994) Exceptionally well-preserved ammonites from the Upper Cretaceous (Turonian-Santonian) of North America: Implications for ammonite early ontogeny. Am Mus Novit 3086:1–15

    Google Scholar 

  • Landman NH, Bandel K (1985) Internal structures in the early whorls of Mesozoic ammonites. Am Mus Novit 2823:1–21

    Google Scholar 

  • Landman NH, Waage KM (1982) Terminology of structures in embryonic shells of Mesozoic ammonites. J Paleontol 56:1293–1295

    Google Scholar 

  • Landman NH, Waage KM (1993) Scaphitid ammonites of the Upper Cretaceous (Maastrichtian) Fox Hills Formation in South Dakota and Wyoming. Bull Am Mus Nat Hist 215:1–257

    Google Scholar 

  • Landman NH, Tanabe K, Shigeta Y (1996) Ammonoid embryonic development. In: Landman NH, Tanabe K, Davis A (eds) Ammonoid paleobiology. Plenum Pess, New York

    Google Scholar 

  • Landman NH, Mapes RH, Tanabe K (1999) Internal features of the embryonic shells of Late Carboniferous Goniatitina. In: Olóriz F, Rodríguez-Tovar FJ (eds) Advancing research on living and fossil cephalopods. Kluwer Academic/Plenum, New York, pp. 243–254

    Google Scholar 

  • Landman NH, Bizzarini F, Tanabe K, Mapes RH, Kulicki C (2001) Micro-ornamentation on the embryonic and post-embryonic shells of Triassic ceratites (Ammonoidea). Am Malacol Bull 16:1–12

    Google Scholar 

  • Landman NH, Mapes RH, Cruz C (2010) Jaws and soft tissues in ammonoids from the Lower Carboniferous (Upper Mississippian) Bear Gulch Beds, Montana, USA. In: Tanabe K, Shigeta Y, Sasaki T, Hirano H (eds) Cephalopods—present and past. Tokai University Press, Tokyo, pp. 147–153

    Google Scholar 

  • Laptikhovsky VL, Rogov MA, Nikolaeva SE, Arkhipkin AI (2013) Environmental impact on ectocochleate cephalopod reproductive strategies and the evolutionary significance of cephalopod egg size. Bull Geosci 88:83–94

    Google Scholar 

  • Lehmann U (1966) Dimorphismus bei Ammoniten der Ahrensburger Lias-Geschiebe. Paläontol Z 40:26–55

    Google Scholar 

  • Lehmann U (1981) The ammonites: their life and world. Cambridge University Press, New York

    Google Scholar 

  • Lehmann U (1990) Ammonoideen: Leben zwischen Skylla und Charybdis. Enke, Stuttgart

    Google Scholar 

  • Lehmann U, Weitschat W (1973) Zur Anatomie und Ökologie von Ammoniten: Funde von Kropf und Kiemen. Paläontol Z 47:69–76

    Google Scholar 

  • Lewy Z (2002) New aspects in ammonoid mode of life and their distribution. Geobios 35(Suppl 1):130–139

    Google Scholar 

  • Lukeneder A, Harzhauser M, Müllegger S, Piller WE (2010) Ontogeny and habitat change in Mesozoic cephalopods revealed by stable isotopes (δ18O, δ13C). Earth Planet Sci Lett 296:103–11

    Google Scholar 

  • Lukeneder A (2015) Ammonoid habitats and life history. This volume

    Google Scholar 

  • Maas A, Braun A, Dong X-P, Donoghue PCJ, Müller KJ, Olempska E, Repetski JE, Siveter DJ, Stein M, Waloszek D (2006) The ‘Orsten’-more than a Cambrian Konservat-Lagerstätte yielding exceptional preservation. Palaeoworld 15:266–28

    Google Scholar 

  • Maeda H (1991) Sheltered preservation: a peculiar mode of ammonite occurrence in the Cretaceous Yezo Group, Hokkaido, north Japan. Lethaia 24:69–82

    Google Scholar 

  • Manda S, Frýda J (2010) Silurian-Devonian boundary events and their influence on cephalopod evolution: evolutionary significance of cephalopod egg size during mass extinctions. Bull Geosci 85:513–540

    Google Scholar 

  • Maeda H, Seilacher A (1996) Ammonoid taphonomy. In: Landman NH, Tanabe K, Davis RA (eds) Ammonoid paleobiology. Plenum, New York, pp. 543–578

    Google Scholar 

  • Manger W, Stephen D, Meeks L (1999) Possible cephalopod reproductive mass mortality reflected by middle Carboniferous assemblages, Arkansas, Southern United States. In: Olóriz F, Rodríguez-Tovar F (eds) Advancing research on living and fossil cephalopods. Kluwer Academic/Plenum, New York

    Google Scholar 

  • Mapes RH, Nützel A (2009) Late Palaeozoic mollusc reproduction: cephalopod egg-laying behavior and gastropod larval palaeobiology. Lethaia 42:341–356

    Google Scholar 

  • Martin D, Briggs DEG, Parkes RJ (2003) Experimental mineralization of invertebrate eggs and the preservation of Neoproterozoic embryos. Geology 31:39–42

    Google Scholar 

  • Martin D, Briggs DEG, Parkes RJ (2005) Decay and mineralization of invertebrate eggs. Palaios 20:562–572

    Google Scholar 

  • Michael R (1894) Ammoniten-Brut mit Aptychen in der Wohnkammer von Oppelia steraspis Oppel sp. Z Dtsch Geol Ges 46:697–702

    Google Scholar 

  • Mikhailova IA (1974) The relationship between Early Cretaceous and Late Cretaceous Hoplitaceae. Rev Bulg Geol Soc 35:117–132 Miller AI (1938) Devonian ammonoids of America. GSA Special Papers 14:1–294

    Google Scholar 

  • Miller AK, Unklesbay AG (1943) The siphuncle of Late Paleozoic ammonoids. J Paleontol 17:1–25

    Google Scholar 

  • Monnet C, De Baets K, Klug C (2011) Parallel evolution controlled by adaptation and covariation in ammonoid cephalopods. BMC Evol Biol 11:115

    Google Scholar 

  • Morard A, Guex J (2003) Ontogeny and covariation in the Toarcian genus Osperleioceras (Ammonoidea). Bull Soc Geol Fr 174:607–615

    Google Scholar 

  • Moriya M (2015) Isotope signature of ammonoid shells. This volume

    Google Scholar 

  • Morton N (1988) Segregation and migration patterns in some Graphoceras populations (Middle Jurassic). In: Wiedmann J, Kullmann J (eds) Cephalopods—present and past. Schweizerbart, Stuttgart, pp. 377–386

    Google Scholar 

  • Müller A (1969) Ammoniten mit “Eierbeutel” und die Frage nach dem Sexual dimorphismus der Ceratiten (Cephalopoda). Monatsber Dtsch Akad Wiss Berl 11:411–420

    Google Scholar 

  • Münster, GG von (1834) Über das Kalkmergel-Lager von St. Cassian in Tyrol und die darin vorkommenden Ceratiten. Neues Jahrbuch für Mineralogie, Geognosie und Petrefactenkunde [Stuttgart] 1834:1–15

    Google Scholar 

  • Naef A (1922) Die fossilen Tintenfische: eine paläozoologische Monographie. Fischer, Jena

    Google Scholar 

  • Neige P (1997) Ontogeny of the Oxfordian ammonite Creniceras renggeri from the Jura of France. Eclogae Geol Helv 90:605–616

    Google Scholar 

  • Nesis K (1986) On the feeding habits and the causes of the extinction of some heteromorph ammonites. Paleontol Zh 1986 :8–15 [in Russian]

    Google Scholar 

  • Nishimura T, Maeda H, Tanaka G, Ohno T (2010) Taxonomic evaluation of various morphological characters in the Late Cretaceous desmoceratine polyphyletic genus “Damesites” from the Yezo Group in Hokkaido and Sakhalin. Paleont Res 14: 33–55

    Google Scholar 

  • Nixon M (1996) Morphology of the jaws and radula in Ammonoids. In Landman NH, Tanabe K,Davis A (eds) Ammonoid Paleobiology. Plenum Press, New York, pp. 23–42 Nützel A (2014) Larval ecology and morphology in fossil gastropods. Palaeontology 57:479–503

    Google Scholar 

  • Nützel A, Lehnert O, Frýda J (2006) Origin of planktotrophy—evidence from early molluscs. Evol Dev 8:325–330

    Google Scholar 

  • Okubo S, Tsujii T, Watabe N, Williams DF (1995) Hatching of Nautilus belauensis Saunders, 1981, in captivity: culture, growth and stable isotope compositions of shell, and histology and immunohistochemistry of the mantle epithelium of the juveniles. The Veliger 38:192–202

    Google Scholar 

  • Owen C (1878) On the relative positions to their constructors of the chambered shells of cephalopods. Proc Zool Soc Lond 1878:955–977

    Google Scholar 

  • Page KN (1996) Mesozoic Ammonoids in space and time. In: Landman NH, Tanabe K, Davis RA (eds) Ammonoid paleobiology. Plenum, New York, pp. 755–794

    Google Scholar 

  • Palframan DFB (1966) Variation and ontogeny of some Oxfordian ammonites: Taramelliceras richei (de Loriol) and Creniceras renggeri (Oppel), from Woodham, Buckinghamshire. Palaeontology 9:290–311

    Google Scholar 

  • Palframan DFB (1967) Variation and ontogeny of some oxford clay ammonites: Distichoceras bicostatum (Stahl) and Horioceras baugieri (D’Orbigny), from England. Palaeontology 10:60–94

    Google Scholar 

  • Palframan D (1969) Taxonomy of sexual dimorphism in ammonites: morphogenetic evidence in Hecticoceras brightii (Pratt). In: Westermann GEG (ed) Sexual dimorphism in fossil Metazoa and taxonomic implications. Schweizerbart, Stuttgart, pp. 126–154

    Google Scholar 

  • Parent H (1997) Ontogeny and sexual dimorphism of Eurycephalites gottschei (Tornquist) (Ammonoidea) of the Andean Lower Callovian (Argentine-Chile). Geobios 30:407–419

    Google Scholar 

  • Petter G (1959) Goniatites dévoniennes du Sahara. Publications de la Carte géologique de l’Algérie, nouvelle série, Paléontologie, Mémoires 2:1–369

    Google Scholar 

  • Pianka ER (1970) On r- and K-selection. Am Nat 104:592–597

    Google Scholar 

  • Repin YS, Meledina SV, Alexeev SN (1998) Phylloceratids (Ammonoidea) from the Lower Jurassic of Northeastern Asia. Paleontol J 32:461–473

    Google Scholar 

  • Reznick D, Bryant MJ, Bashey F (2002) r-and K-selection revisited: the role of population regulation in life-history evolution. Ecology 83:1509–1520

    Google Scholar 

  • Ristedt H (1971) Zum Bau der Orthoceriden Cephalopoden. Palaeontogr Abt A 137:155–195

    Google Scholar 

  • Ritterbush KA, Hoffmann R, Lukeneder A, De Baets K (2014) Pelagic palaeoecology: the importance of recent constraints on ammonoid palaeobiology and life history. J Zool 292:229–241

    Google Scholar 

  • Rocha F, Guerra Á, Gonzalez ÁF (2001) A review of reproductive strategies in cephalopods. Biol Rev 76:291–304

    Google Scholar 

  • Rosa R, Pierce GJ, O´Dor R (2013a) Advances in squid biology, ecology and fisheries. Part I—Myopsid Squids. Nova Science Publishers, New York

    Google Scholar 

  • Rosa R, O´Dor R, Pierce GJ (2013b) Advances in squid biology, ecology and fisheries. Part II—Oegopsid Squids. Nova Science Publishers, New York

    Google Scholar 

  • Rouget I, Neige P (2001) Embryonic ammonoid shell features: intraspecific variation revisited. Palaeontology 44:53–64

    Google Scholar 

  • Ruzhentsev VE, Shimanskij VN (1954) Lower Permian coiled and curved nautiloids of the Southern Urals. Trans Paleontol Inst Akad Nauk SSSR 50:1–150 [in Russian]

    Google Scholar 

  • Sánchez-Villagra MR (2012) Embryos in deep time: the rock record of biological development. University of California Press, Oakland

    Google Scholar 

  • Schindewolf OH (1928) Zur Terminologie der Lobenlinie. Paläontol Z 9:181–186

    Google Scholar 

  • Schindewolf OH (1929) Vergleichende Studien zur Phylogenie, Morphogenie und Terminologie der Ammoneenlobenlinie. Abh Preuss Geol Landesanst 115:1–102

    Google Scholar 

  • Schindewolf OH (1932) Zur Stammesgeschichte der Ammoneen. Paläontol Z 14:164–180

    Google Scholar 

  • Schindewolf OH (1933) Vergleichende Morphologie und Phylogenie der Anfangskammern tetrabranchiater Cephalopoden. Eine Studie über Herkunft, Stammesentwicklung und System der niederen Ammoneen. Abh Preuss Geol Landesanst 148:1–115

    Google Scholar 

  • Schindewolf OH (1934) Zur Stammesgeschichte der Cephalopoden. Jahrb Preuss Geol Landesanst 55:258–283

    Google Scholar 

  • Schindewolf, OH (1937) Zur Stratigraphie und Paläontologie der Wocklumer Schichten (Oberdevon). Abh Preuss Geol Landesanst 178:1–132

    Google Scholar 

  • Schindewolf OH (1951) Zur Morphogenie und Terminologie der Ammoneen-Lobenlinie. Paläontol Z 25:11–34

    Google Scholar 

  • Schindewolf O (1954) On development, evolution and terminology of ammonoid suture line. Bull Mus Comp Zool 112:217–237

    Google Scholar 

  • Schindewolf OH (1959) Adolescent cephalopods from the exshaw formation of Alberta. J Paleontol 33:971–976

    Google Scholar 

  • Schlögl J, Chirat R, Balter V, Joachimski M, Hudáčková N, Quillévéré F (2011) Aturia from the Miocene Paratethys: an exceptional window on nautilid habitat and lifestyle. Palaeogeogr Palaeoclimatol Palaeoecol 308:330–338

    Google Scholar 

  • Senior JR (1977) The Jurassic ammonite Bredyia Buckman. Palaeontology 20:675–693

    Google Scholar 

  • Shigeta Y (1989) Systematics of the ammonite genus Tetragonites from the Upper Cretaceous of Hokkaido. Trans Proc Palaeontol Soc Jpn 156:319–342

    Google Scholar 

  • Shigeta Y (1993) Post-hatching early life history of Cretaceous Ammonoidea. Lethaia 26:133–145

    Google Scholar 

  • Shigeta Y, Zakharov YD, Mapes RH (2001) Origin of the Ceratitida (Ammonoidea) inferred from the early internal shell features. Paleontol Res 5:201–213 Shimizu S (1934) Ammonites. In: Shimizu S, Obata T (eds) Ammonites: Iwanami’s Lecture Series of Geology and Palaeontology, Tokyo, pp. 137 [in Japanese]

    Google Scholar 

  • Smith JP (1897) The development of Glyphioceras and the phylogeny of the Glyphioceratidae. Proc Calif Acad Sci (Geol) 1:105–128

    Google Scholar 

  • Smith JP (1898) The development of Lytoceras and Phylloceras. Proc Calif Acad Sci, 3rd Ser Geol 1:129–160

    Google Scholar 

  • Smith JP (1899) Larval stages of Schloenbachia. J Morphol 16:237–268

    Google Scholar 

  • Smith JP (1900) The development and phylogeny of Placenticeras. Proc Calif Acad Sci, 3rd Ser Geol 1:181–240

    Google Scholar 

  • Smith JP (1901) The larval coil of Baculites. Am Nat 35:39–49

    Google Scholar 

  • Smyshlyaeva OP, Zakharov YD (2012) New representatives of the family Melagathiceratidae (Ammonoidea) from the Lower Triassic of South Primorye. Paleontol J 46:142–147

    Google Scholar 

  • Smyshlyaeva OP, Zakharov YD (2013) New members of the family Flemingitidae (Ammonoidea) from the Lower Triassic of South Primorye. Paleontol J 47:247–255

    Google Scholar 

  • Spath LF (1933) The evolution of the Cephalopoda. Biol Rev 8:418–462

    Google Scholar 

  • Spath LF (1936) The phylogeny of the Cephalopoda. Paläontol Z 18:156–181

    Google Scholar 

  • Sprey AM (2001) Tuberculate micro-ornament on the juvenile shell of Middle Jurassic ammonoids. Lethaia 34:31–35

    Google Scholar 

  • Sprey AM (2002) Early Ontogeny of three Callovian ammonite Genera (Binatisphinctes, Kosmoceras (Spinikosmoceras) and Hecticoceras) from Ryazan (Russia). Abh Geol Bundesanst (Vienna) 57:225–255

    Google Scholar 

  • Stearns SC (1977) The evolution of life history traits: a critique of the theory and a review of the data. Annu Rev Ecol Syst 8:145–171

    Google Scholar 

  • Stearns SC (1992) The evolution of life histories. Oxford University Press, Oxford

    Google Scholar 

  • Stephen DA, Stanton. RJ (2002) Impact of reproductive strategy on cephalopod evolution. Abh Geol Bundesanst (Vienna) 57:151–155

    Google Scholar 

  • Stephen DA, Bylund KG, Garcia P, McShinsky RD, Carter HJ (2012) Taphonomy of dense concentrations of juvenile ammonoids in the Upper Cretaceous Mancos Shale, east-central Utah, USA. Geobios 45:121–128

    Google Scholar 

  • Suan G, Rulleau L, Mattioli E, Sucheras-Marx B, Rousselle B, Pittet B, Vincent P, Martin JE, Lena A, Spangenberg JE (2013) Palaeoenvironmental significance of Toarcian black shales and event deposits from southern Beaujolais, France. Geol Mag 150:728–742

    Google Scholar 

  • Tajika A, Wani R (2011) Intraspecific variation of hatchling size in Late Cretaceous ammonoids from Hokkaido, Japan: implication for planktic duration at early ontogenetic stage. Lethaia 44:287–298

    Google Scholar 

  • Tanabe K (1977a) Functional evolution of Otoscaphites puerculus (Jimbo) and Scaphites planus (Yabe), Upper Cretaceous ammonites. Mem Fac Sci Kyushu Univ Ser D (Geol) 23:367–407

    Google Scholar 

  • Tanabe K (1977b) Mid-Cretaceous scaphitid ammonites from Hokkaido. Palaeontol Soc Jpn Spec Pap 21:11–22

    Google Scholar 

  • Tanabe K (1989) Endocochliate embryo model in the Mesozoic Ammonitida. Hist Biol 2:183–196

    Google Scholar 

  • Tanabe K (2011) The feeding habits of ammonites. Science 331:37–38

    Google Scholar 

  • Tanabe K, Ohtsuka Y (1985) Ammonoid early internal shell structure: its bearing on early life history. Paleobiology 11:310–322

    Google Scholar 

  • Tanabe K, Tsukahara J (1987) Biometric analysis of Nautilus pompilius from the Philippines and the Fiji Islands. In: Saunders WB, Landman NH (eds) Nautilus. Plenum Press, New York, pp. 105–113

    Google Scholar 

  • Tanabe K, Uchiyama K (1997). Development of the embryonic shell structure in Nautilus. The Veliger 40:203–215

    Google Scholar 

  • Tanabe K, Obata I, Fukuda Y, Futakami M (1979) Early shell growth in some Upper Cretaceous ammonites and its implications to major taxonomy. Bull Natl Sci Mus Ser C (Geol) 5:155–176

    Google Scholar 

  • Tanabe K, Fukuda Y, Obata I (1980) Ontogenetic development and functional morphology in the early growth stages of three Cretaceous ammonites. Bull Natl Sci Mus Ser C (Geol) 6:9–26

    Google Scholar 

  • Tanabe K, Landman NH, Mapes RH, Faulkner CJ (1993) Analysis of a Carboniferous embryonic ammonoid assemblage implications for ammonoid embryology. Lethaia 26:215–224

    Google Scholar 

  • Tanabe K, Landman NH, Mapes RH (1994) Early shell features of some Late Paleozoic ammonoids and their systematic implications. Trans Proc Palaeontol Soc Jpn 173:384–400

    Google Scholar 

  • Tanabe K, Shigeta Y, Mapes RH (1995) Early life history of Carboniferous ammonoids inferred from analysis of shell hydrostatics and fossil assemblages. Palaios 10:80–86

    Google Scholar 

  • Tanabe K, Kulicki C, Landman NH, Mapes RH (2001) External features of embryonic and early post-embryonic shells of a Carboniferous goniatite Vidrioceras from Kansas. Paleontol Res 5:13–19

    Google Scholar 

  • Tanabe K, Landman NH, Yoshioka Y (2003) Intra- and interspecific variation in the early internal shell features of some Cretaceous ammonoids. J Paleontol 77:876–887

    Google Scholar 

  • Tanabe K, Kulicki C, Landman NH (2008) Development of the embryonic shell structure of mesozoic ammonoids. Am Mus Novit 3621:1–19

    Google Scholar 

  • Tanabe K, Landman NH, Kaim A (2010) Tuberculate micro-ornamentation on embryonic shells of Mesozoic ammonoids: microstructure, taxonomic variation, and morphogenesis. In: Tanabe K, Shigeta Y, Sasaki T, Hirano H (eds) Cephalopods—present and past. Tokai University Press, Tokyo, pp. 105–121

    Google Scholar 

  • Tomašových A, Schlögl J (2008) Analyzing variations in cephalopod abundances in shell concentrations: the combined effects of production and density-dependent cementation rates. Palaios 23:648–666

    Google Scholar 

  • Tozer ET (1981) Triassic Ammonoidea: Classification, evolution and relationship with Permian and Jurassic Forms. In: House MR, Senior JR (eds.) The Ammonoidea: the evolution classification, mode of life and geological usefulness of a major fossil group. Academic Press, London, pp. 66–100

    Google Scholar 

  • Uchiyama K, Tanabe K (1999) Hatching experiment of Nautilus macromphalus in the Toba Aquarium, Japan. In: Olóriz F, Rodríguez-Tovar FJ (eds) Advancing research on living and fossil cephalopods. Kluwer/Plenum, New York, pp. 13–16

    Google Scholar 

  • Urdy S, Wilson LB, Haug J, Sánchez-Villagra M (2013) On the unique perspective of paleontology in the study of developmental evolution and biases. Biol Theory :1–19

    Google Scholar 

  • Urlichs M (2006) Dimorphismus bei Ceratites aus dem Germanischen Oberen Muschelkalk (Ammonoidea, Mitteltrias) mit Revision einiger Arten. Stuttg Beitr Natkd Ser B 363:1–85

    Google Scholar 

  • Vance RR (1973) On reproductive strategies in marine benthic invertebrates. Am Nat 107:339–352

    Google Scholar 

  • Van Valen L (2005) The statistics of variation. In: Hallgrímsson B, Hall BK (eds) Variation: a central concept in biology. Academic Press, Burlington

    Google Scholar 

  • Vavilov MN (1992) Stratigraphy and ammonoids of the Middle Triassic deposits of North-East Asia. Nedra, Moscow [in Russian]

    Google Scholar 

  • Walton SA, Korn D, Klug C (2010) Size distribution of the Late Devonian ammonoid Prolobites: indication for possible mass spawning events. Swiss J Geosci 103:475–494

    Google Scholar 

  • Wani R, Kurihara K, Ayyasami K (2011) Large hatchling size in Cretaceous nautiloids persists across the end-Cretaceous mass extinction: new data of Hercoglossidae hatchlings. Cretac Res 32:618–622

    Google Scholar 

  • Ward P (1996) Ammonoid extinction. In: Landman NH, Tanabe K, Davis RA (eds) Ammonoid paleobiology. Plenum, New York, pp. 815–824

    Google Scholar 

  • Ward PD, Bandel K (1987) Life history strategies in fossil cephalopods. In: Boyle PR (ed) Cephalopod life cycles, Vol. II. Academic Press, London, pp. 329–350

    Google Scholar 

  • Weitschat W, Bändel K (1991) Organic components in phragmocones of boreal Triassic ammonoids: Implications for ammonoid biology. Paläontol Z 65:269–303

    Google Scholar 

  • Westermann GEG (1993) On alleged negative buoyancy of ammonoids. Lethaia 26:246–246

    Google Scholar 

  • Westermann GEG (1996) Ammonoid life and habitat. In: Landman NH, Tanabe K, Davis RA (eds) Ammonoid paleobiology. Plenum, New York, pp. 607–707

    Google Scholar 

  • Wetzel W (1959) Über Ammoniten-Larven. N Jahrb Geol Paläont Abh 107:240–252

    Google Scholar 

  • Winkelmann I, Campos PF, Strugnell J, Cherel Y, Smith PJ, Kubodera T, Allcock L, Kampmann M-L, Schroeder H, Guerra A, Norman M, Finn J, Ingrao D, Clarke M, Gilbert MTP (2013) Mitochondrial genome diversity and population structure of the giant squid Architeuthis: genetics sheds new light on one of the most enigmatic marine species. Proc R Soc Lond Ser B Biol Sci 280: 20130273

    Google Scholar 

  • Wissner UFG, Norris AW (1991) Middle Devonian goniatites from the Dunedin and Besa River formations of northeastern British Columbia. Geol Surv Can Bull 412:45–79

    Google Scholar 

  • Wright CW (1996) Treatise on Invertebrate Paleontology: Part L (Revised) Mollusca 4, vol. 4, Cretaceous Ammonoidea. University of Kansas Paleontological Institute, Lawrence

    Google Scholar 

  • Yahada H, Wani R (2013) limited migration of scaphitid ammonoids: evidence from the analysis of shell whorls. J Paleont 87: 406–412

    Google Scholar 

  • Yokoyama M (1890) Versteinerungen aus der japanischen Kreide. Palaeontogr 36:159–202

    Google Scholar 

  • Young RE, Harman RF (1988) ‘Larva’, ‘paralarva’ and ‘subadult’ in cephalopod terminology. Malacologia 29:201–207

    Google Scholar 

  • Zakharov YD (1971) Some features of the development of the hydrostatic apparatus in early Mesozoic ammonoids. Paleontol J 5(1):24–33

    Google Scholar 

  • Zakharov YD (1972) Formation of the caecum and prosiphon in ammonoids. Paleontol J 6:201–206

    Google Scholar 

  • Zakharov YD (1974) New data on internal shell structures in Carboniferous, Triassic and Cretaceous ammonoids. Paleontol J 8(1):25–36

    Google Scholar 

  • Zakharov YD (1978) Lower Triassic ammonoids of the East USSR. NAUKA, Moscow [in Russian]

    Google Scholar 

  • Zakharov YD, Smyshlyaeva OP, Simanenko LF (2012) Triassic ammonoid succession in South Primorye: 6. Melagathiceratid ammonoids (inner shell structure, phylogeny, stratigraphical and palaeobiogeographical importance). Albertiana 40:28–36

    Google Scholar 

  • Zatoń M, Niedźwiedzki G, Pieńkowski G (2009) Gastropod egg capsules preserved on bivalve shells from the Lower Jurassic (Hettangian) of Poland. Palaios 24:568–577

    Google Scholar 

  • Zhou Z, Glenister BF, Furnish WM (2002) Endemic Permian ammonoid genus Yinoceras, Central Hunan, South China. J Paleontol 76:424–430

    Google Scholar 

Download references

Acknowledgments

Some of the insights described in this chapter grew during the course of research projects 200021-113956⁄ 1, and 200020-125029 funded by the Swiss National Science Foundation SNF (to KDB). Mikhail A. Rogov (Moscow) and Carlo Romano (Zürich) helped with obtaining some of the literature. Steve Etches (Wareham) kindly put pictures at our disposal. We dedicate this chapter to Susan Klofak for her inspiring work on the embryonic development of Paleozoic ammonoids.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth De Baets .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Baets, K., Landman, N., Tanabe, K. (2015). Ammonoid Embryonic Development. In: Klug, C., Korn, D., De Baets, K., Kruta, I., Mapes, R. (eds) Ammonoid Paleobiology: From anatomy to ecology. Topics in Geobiology, vol 43. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9630-9_5

Download citation

Publish with us

Policies and ethics