Skip to main content

Field Survey Based Models for Exploring Nitrogen and Acidity Effects on Plant Species Diversity and Assessing Long-Term Critical Loads

  • Chapter
  • First Online:
Critical Loads and Dynamic Risk Assessments

Abstract

Empirical critical loads are based on current evidence for relationships between the rate of pollutant deposition and changes to ecosystems observed in experiments and surveys. When considering longer-term change and effects of changes in deposition rate after periods of deposition in excess of the critical load, dynamic modelling approaches are useful. This chapter describes two soil-vegetation-floristics model chains, similar in concept, that are being applied in the Netherlands and the UK to explore pollution scenarios and calculate long-term critical loads for acidity and nutrient-N. These model chains consist of dynamic models of soil and vegetation biogeochemistry, combined with environmental suitability models that define the realised niche for the species or assemblage. The environmental suitability models described in this chapter are based on empirical relationships between species (MOVE, PROPS, MultiMOVE) or assemblage (NTM3) occurrence and environmental conditions, defined on multiple axes. They are driven by different biogeochemical models, forming the model chains SMART2-(SUMO2)-PROPS/NTM3 and MADOC-MultiMOVE. In this chapter these model chains are described in detail, and applications to scenario exploration and setting critical loads are demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19, 716–723.

    Article  Google Scholar 

  • Albert, C. H., & Thuiller, W. (2008). Favourability functions versus probability of presence: Advantages and misuses. Ecography, 31, 417–422.

    Article  Google Scholar 

  • Amann, M., Asman, W., Bertok, I., Cofala, J., Heyes, C., Klimont, Z., Schöpp, W., & Wagner, F. (2007). Cost-effective emission reductions to meet the environmental targets of the thematic strategy on air pollution under different greenhouse gas constraints. NEC Scenario Analysis Report Nr. 5. IIASA, Laxenburg, Austria.

    Google Scholar 

  • Araujo, M. B., & New, M. (2007). Ensemble forecasting of species distributions. Trends in Ecology & Evolution, 22, 42–47.

    Article  Google Scholar 

  • Bobbink, R., & Hettelingh, J. P. (Eds.). (2011). Review and revision of empirical critical loads and dose-response relationships: Proceedings of an expert workshop, Noordwijkerhout, 23–25 June 2010. Co-ordination Centre for Effects, Bilthoven, The Netherlands.

    Google Scholar 

  • Boulangeat, I., Gravel, D., & Thuiller, W. (2012). Accounting for dispersal and biotic interactions to disentangle the drivers of species distributions and their abundances. Ecology Letters, 15, 584–593.

    Article  Google Scholar 

  • Butler, A. (2010). The GBMOVE ensemble (MultiMOVE): A technical summary. Biomathematics & Statistics Scotland, Edinburgh. Report to Centre for Ecology and Hydrology, Lancaster, UK.

    Google Scholar 

  • Carpenter, S. R. (2003). The need for fast-and-frugal models. In C. D. Canham, J. J. Cole, & W. K. Lauenroth (Eds.), Models in ecosystem science (pp. 455–460). Princeton University Press, Princeton, USA.

    Google Scholar 

  • Catterall, S., Cook, A. R., Marion, G., Butler, A., & Hulme, P. E. (2012). Accounting for uncertainty in colonisation times: A novel approach to modelling the spatio-temporal dynamics of alien invasions using distribution data. Ecography, 35, 901–911.

    Article  Google Scholar 

  • Cosby, B. J., Wright, R. F., Hornberger, G. M., & Galloway, J. N. (1985). Modelling the effects of acid deposition: Assessment of a lumped parameter model of soil water and streamwater chemistry. Water Resources Research, 21, 51–63.

    Article  CAS  Google Scholar 

  • Davis, M. A., Chew, M. K., Hobbs, R. J., Lugo, A. E., Ewel, J. J., Vermeij, G. J., Brown, J. H., Rosenzweig, M. L., Gardener, M. R., Carroll, S. P., Thompson, K., Pickett, S. T. A., Stromberg, J. C., Del Tredici, P., Suding, K. N., Ehrenfeld, J. G., Grime, J. P., Mascaro, J., & Briggs, J. C. (2011). Don’t judge species by their origins. Nature, 474, 153–154.

    Article  CAS  Google Scholar 

  • De Angelis, D. L., & Mooij, W. M. (2003). In praise of mechanistically rich models. In C. D. Canham, J. J. Cole, & W. K. Lauenroth (Eds.), Models in ecosystem science (pp. 63–82). Princeton University Press, Princeton, USA.

    Google Scholar 

  • De Vries, W., Wamelink, W., van Dobben, H., Kros, H., Reinds, G.-J., Mol-Dijkstra, J., Smart, S., Evans, C., Rowe, E., Belyazid, S., Sverdrup, H., Van Hinsberg, A., Posch, M., Hettelingh, J.-P., Spranger, T., & Bobbink, R. (2010). Use of dynamic soil-vegetation models to assess impacts of nitrogen deposition on plant species composition and to estimate critical loads: An overview. Ecological Applications, 20, 60–79.

    Article  Google Scholar 

  • Dengler, J., Jansen, F., Glockler, F., Peet, R. K., De Caceres, M., Chytry, M., Ewald, J., Oldeland, J., Lopez-Gonzalez, G., Finckh, M., Mucina, L., Rodwell, J. S., Schaminee, J. H. J., & Spencer, N. (2011). The Global Index of Vegetation-Plot Databases (GIVD): A new resource for vegetation science. Journal of Vegetation Science, 22, 582–597.

    Article  Google Scholar 

  • Diekmann, M. (2003). Species indicator values as an important tool in applied plant ecology—A review. Basic and Applied Ecology, 4, 493–506.

    Article  Google Scholar 

  • Elberse, W. T., Van Den Bergh, J. P., & Dirven, J. G. P. (1983). Effects of use and mineral supply on the botanical composition and yield of old grassland on heavy-clay soil. Netherlands Journal of Agricultural Science, 31, 63–88.

    CAS  Google Scholar 

  • Ellenberg, H., Weber, H. E., Dull, R., Wirth, V., Werner, W., & Paulissen, D. (1992). Zeigerwerte von pflanzen in mitteleuropa: 2nd ed. Scripta Geobotanica, 18, 1–258.

    Google Scholar 

  • Ertsen, A. C. D., Alkemade, J. R. M., & Wassen, M. J. (1998). Calibrating Ellenberg indicator values for moisture, acidity, nutrient availability and salinity in the Netherlands. Plant Ecology, 135, 113–124.

    Article  Google Scholar 

  • European Comission. (2011). Biodiversity: Commission announces new strategy to halt biodiversity loss within ten years. http://europa.eu/rapid/press-release_IP-11-526_en.htm. Accessed 31 July 2014.

  • Friedman, J. H. (1991). Multivariate adaptive regression splines. Annals of Statistics, 19, 1–67.

    Article  Google Scholar 

  • Grime, J. P., Hodgson, J. G., & Hunt, R. (1988). Comparative plant ecology: A functional approach to common British species. London: Unwin Hyman.

    Book  Google Scholar 

  • Gunderson, L. H. (2000). Ecological resilience—In theory and application. Annual Review of Ecology and Systematics, 31, 425–439.

    Article  Google Scholar 

  • Harmer, R., Peterken, G., Kerr, G., & Poulton, P. (2001). Vegetation changes during 100 years of development of two secondary woodlands on abandoned arable land. Biological Conservation, 101, 291–304.

    Article  Google Scholar 

  • Hastie, T., & Tibshirani, R. (1986). Generalized additive models. Statistical Science, 1, 297–310.

    Article  Google Scholar 

  • Hautier, Y., Niklaus, P. A., & Hector, A. (2009). Competition for light causes plant biodiversity loss after eutrophication. Science, 324, 636–638.

    Article  CAS  Google Scholar 

  • Hill, M. O., & Carey, P. D. (1997). Prediction of yield in the Rothamsted Park grass experiment by Ellenberg indicator values. Journal of Vegetation Science, 8, 579–586.

    Article  Google Scholar 

  • Hill, M. O., Roy, D. B., Mountford, J. O., & Bunce, R. G. H. (2000). Extending Ellenberg’s indicator values to a new area: An algorithmic approach. Journal of Applied Ecology, 37, 3–15.

    Article  Google Scholar 

  • Jaccard, P. (1912). The distribution of flora in the alpine zone. New Phytologist, 11, 37–50.

    Article  Google Scholar 

  • Jarvis, S. J., Rowe, E. C., Henrys, P. A., Smart, S. M., Jones, M. L. M., & Garbutt, A. (in prep.) Empirical realised niche models for coastal plant species. Journal of Coastal Conservation.

    Google Scholar 

  • Jenkinson, D. S., Potts, J. M., Perry, J. N., Barnett, V., Coleman, K., & Johnston, A. E. (1994). Trends in herbage yields over the last century on the Rothamsted long-term continuous hay experiment. Journal of Agricultural Science, 122, 365–374.

    Google Scholar 

  • Kros, J. (2002). Evaluation of biogeochemical models at local and regional scale. PhD thesis. Wageningen University, The Netherlands.

    Google Scholar 

  • Latour, J. B., & Reiling, R. (1993). A multiple stress model for vegetation (‘move’): A tool for scenario studies and standard-setting. Science of the Total Environment, 134, 1513–1526.

    Article  Google Scholar 

  • Ludwig, D., Walker, B., & Holling, C. S. (1997). Sustainability, stability, and resilience. Conservation Ecology, 1, 7.

    Google Scholar 

  • Mace, G. M., & Stuart, S. N. (1994). Draft IUCN Red List Categories, Version 2.2. Species, 21–22, 13–24.

    Google Scholar 

  • Michalzik, B., Tipping, E., Mulder, J., Lancho, J. F. G., Matzner, E., Bryant, C. L., Clarke, N., Lofts, S., & Esteban, M. A. V. (2003). Modelling the production and transport of dissolved organic carbon in forest soils. Biogeochemistry, 66, 241–264.

    Article  CAS  Google Scholar 

  • Mitchell, T. D., Carter, T. R., Jones, P. D., Hulme, M., & New, M. (2004). A comprehensive set of high-resolution grids of monthly climate for Europe and the globe: The observed record (1901–2000) and 16 scenarios (2010–2100). Tyndall Centre for Climate Change Research, Norwich, UK.

    Google Scholar 

  • Nakícenovíc, N., Alcamo, J., Davis, G., De Vries, B., Fenhann, J., Gaffin, S., Gregory, K., Grübler, A., Jung, T. Y., Kram, T., Emilio la Rovere, E., Michaelis, L., Mori, S., Morita, T., Pepper, W., Pitcher, H., Price, L., Riahi, K., Roehrl, A., Rogner, H.-H., Sankovski, A., Schlesinger, M. E., Shukla, P. R., Smith, S., Swart, R. J., Van Rooyen, S., Victor, N., & Dadi, Z. (2001). Special report on emission scenarios: Intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Newbold, T., Reader, T., El-Gabbas, A., Berg, W., Shohdi, W. M., Zalat, S., El Din, S. B., & Gilbert, F. (2010). Testing the accuracy of species distribution models using species records from a new field survey. Oikos, 119, 1326–1334.

    Article  Google Scholar 

  • Nilsson, J., & Grennfelt, P. (1988). Critical loads for sulphur and nitrogen. Report 188:15. Copenhagen: UNECE/Nordic Council of Ministers.

    Google Scholar 

  • Pakeman, R. J., Reid, C. L., Lennon, J. J., & Kent, M. (2008). Possible interactions between environmental factors in determining species optima. Journal of Vegetation Science, 19, 201–208.

    Article  Google Scholar 

  • Posch, M., & Reinds, G. J. (2009). A very simple dynamic soil acidification model for scenario analyses and target load calculations. Environmental Modelling & Software, 24, 329–340.

    Article  Google Scholar 

  • Posch, M., Hettelingh, J.-P. & Slootweg, J. (2003). Manual for dynamic modelling of soil response to atmospheric deposition (RIVM report 259101 012). Bilthoven: National Institute for Public Health and the Environment.

    Google Scholar 

  • Preston, C. D., Pearman, D. A., & Dines, T. D. (2002). New plant Atlas of the British and Irish flora. New York: Oxford University Press, Oxford, UK.

    Google Scholar 

  • Randin, C. F., Dirnbock, T., Dullinger, S., Zimmermann, N. E., Zappa, M., & Guisan, A. (2006). Are niche-based species distribution models transferable in space? Journal of Biogeography, 33, 1689–1703.

    Article  Google Scholar 

  • Reinds, G. J., Bonten, L., Mol-Dijkstra, J. P., Wamelink, G. W. W. & Goedhart, P. (2012). Combined effects of air pollution and climate change on species diversity in Europe: First assessments with VSD+ linked to vegetation models. In M. Posch & J. P. Hettelingh (Eds.), CCE status report 2012 (pp. 49–61). Co-ordination Centre for Effects, Bilthoven, The Netherlands.

    Google Scholar 

  • Rodwell, J. S. (Ed.). (1991–2000). British Plant Communities (Vol. 1–5). Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Rowe, E. C., Emmett, B. A., Smart, S. M., & Frogbrook, Z. L. (2011a). A new net mineralizable nitrogen assay improves predictions of floristic composition. Journal of Vegetation Science, 22, 251–261.

    Article  Google Scholar 

  • Rowe, E. C., Jones, M. L. M., Henrys, P. A., Smart, S. M., Tipping, E., Mills, R. T. E., & Evans, C. D. (2011b). Predicting effects of N pollutant load on plant species based on a dynamic soil eutrophication indicator. CCW Science Report 977. Countryside Council for Wales, Bangor, UK.

    Google Scholar 

  • Rowe, E. C., Smart, S. M., & Emmett, B. A. (2011c). Defining a biodiversity damage metric and threshold using Habitats Directive criteria. In W. K. Hicks, C. P. Whitfield, W. J. Bealey, & M. A. Sutton (Eds.), Nitrogen deposition and Natura 2000: Science and practice in determining environmental impacts (pp. 136–141). COST.

    Google Scholar 

  • Rowe, E. C., Tipping, E., Posch, M., Oulehle, F., Cooper, D. M., Jones, T. G., Burden, A., Monteith, D. T., Hall, J., & Evans, C. D. (2014a). Predicting nitrogen and acidity effects on long-term dynamics of dissolved organic matter. Environmental Pollution, 184, 271–282.

    Article  CAS  Google Scholar 

  • Rowe, E. C., Wright, D. G., Bertrand, N., & Reis, S. (2014b) Fusing and disaggregating models, data and analysis tools for a dynamic science-society interface. In Riddick, A. T., Kessler, H., & Giles, J. R. A. (Eds) Integrated Environmental Modelling to Solve Real World Problems: Methods, Visions and Challenges. Geological Society, London, Special Publications, 408, http://dx.doi.org/10.1144/SP408.1.

  • Roy, D. B., Hill, M. O., Rothery, P., & Bunce, R. G. H. (2000). Ecological indicator values of British species: An application of Gaussian logistic regression. Annales Botanici Fennici, 37, 219–226.

    Google Scholar 

  • Schaffers, A. P., & Sykora, K. V. (2000). Reliability of Ellenberg indicator values for moisture, nitrogen and soil reaction: A comparison with field measurements. Journal of Vegetation Science, 11, 225–244.

    Article  Google Scholar 

  • Schaminee, J. H. J., Hennekens, S. M., & Ozinga, W. A. (2012). The Dutch national vegetation database. Biodiversity and Ecology, 4, 201–209.

    Article  Google Scholar 

  • Schöpp, W., Posch, M., Mylona, S., & Johansson, M. (2003). Long term development of acid deposition (1880–2030) in sensitive freshwater regions in Europe. Hydrology and Earth System Sciences, 7, 436–446.

    Article  Google Scholar 

  • Schouwenberg, E. P. A. G., Houweling, H., Jansen, M. J. W., Kros, J., & Mol-Dijkstra, J. P. (2001). Uncertainty propagation in model chains: A case study in nature conservancy. Alterra-rapport 001, ISSN 1566–7197. Wageningen, Netherlands.

    Google Scholar 

  • Smart, S., Evans, C., Rowe, E., Wamelink, W., Wright, S., Scott, A., Roy, D., Preston, C., Hill, M., Rothery, P., Bullock, J., Moy, I., Emmett, B., & Maskell, L. (2005). Atmospheric nitrogen pollution impacts on biodiversity: Phase 1—Model development and testing. Final report to DEFRA, JNCC and English Nature. Centre for Ecology and Hydrology, Lancaster, UK.

    Google Scholar 

  • Smart, S. M., Henrys, P. A., Scott, W. A., Hall, J. R., Evans, C. D., Crowe, A., Rowe, E. C., Dragosits, U., Page, T., Whyatt, J. D., Sowerby, A., & Clark, J. M. (2010a). Impacts of pollution and climate change on ombrotrophic Sphagnum species in the United Kingdom; analysis of uncertainties in two empirical niche models. Climate Research, 45, 163–177.

    Article  Google Scholar 

  • Smart, S. M., Scott, W. A., Whitaker, J., Hill, M. O., Roy, D. B., Critchley, C. N., Marini, L., Evans, C., Emmett, B. A., Rowe, E. C., Crowe, A., Le Duc, M., & Marrs, R. H. (2010b). Empirical realised niche models for British higher and lower plants—Development and preliminary testing. Journal of Vegetation Science, 21, 643–656.

    Google Scholar 

  • Svenning, J.-C., & Skov, F. (2004). Limited filling of the potential range in European tree species. Ecology Letters, 7, 565–573.

    Article  Google Scholar 

  • Tarrasón, L., Fagerli, H., Jonson, J. E., Simpson, D., Benedictow, A., Klein, H., Vestreng, V., Aas, W., & Hjellbrekke, A.-G. (2007). Transboundary acidification, eutrophication and ground level ozone in Europe in 2005. EMEP Report 1/2007. Oslo: Norwegian Meteorological Institute.

    Google Scholar 

  • Tipping, E., Rowe, E. C., Evans, C. D., Mills, R. T. E., Emmett, B. A., Chaplow, J. S., & Hall, J. R. (2012). N14C: A plant-soil nitrogen and carbon cycling model to simulate terrestial ecosystem responses to atmospheric nitrogen deposition. Ecological Modelling, 247, 11–26.

    Article  CAS  Google Scholar 

  • Tipping, E., Henrys, P. A., Maskell, L. C., & Smart, S. M. (2013). Nitrogen deposition effects on plant species diversity: Threshold loads from field data. Environmental Pollution, 179, 218–223.

    Article  CAS  Google Scholar 

  • Van Adrichem, M. H. C., Wortelboer, F. G., & Wamelink, G. W. W. (2010). MOVE: MOdel for terrestrial VEgetation version 4.0. (WOT werkdocument 153). Wageningen: Wettelijke Onderzoekstaken Natuur & Milieu.

    Google Scholar 

  • Van Dobben, H., & Wamelink, W. (2009). A Red-List-based biodiversity indicator and its application in model studies in the Netherlands. In J.-P. Hettelingh, M. Posch, & J. Slootweg (Eds.), CCE status report 2009: Progress in the modelling of critical thresholds, impacts to plant species diversity and ecosystem services in Europe (pp. 77–81). ICP Modelling and Mapping Co-ordination Centre for Effects, Bilthoven, The Netherlands.

    Google Scholar 

  • Van Dobben, H. F., Van Hinsberg, A., Schouwenberg, E., Jansen, M., Mol-Dijkstra, J. P., Wieggers, H. J. J., Kros, J., & De Vries, W. (2006). Simulation of critical loads for nitrogen for terrestrial plant communities in The Netherlands. Ecosystems, 9, 32–45.

    Article  Google Scholar 

  • Van Tongeren, O. (2000). Programma ASSOCIA gebruikershandleiding en voorwaarden. Wageningen: Data-analyse Ecologie.

    Google Scholar 

  • Vitousek, P. M., Porder, S., Houlton, B. Z., & Chadwick, O. A. (2010). Terrestrial phosphorus limitation: Mechanisms, implications, and nitrogen-phosphorus interactions. Ecological Applications, 20, 5–15.

    Article  Google Scholar 

  • Wamelink, G. W. W., & Van Dobben, H. F. (2003). Uncertainty of critical loads based on the Ellenberg indicator value for acidity. Basic and Applied Ecology, 4, 515–523.

    Article  Google Scholar 

  • Wamelink, G. W. W., Joosten, V., Van Dobben, H. F., & Berendse, F. (2002). Validity of Ellenberg indicator values judged from physico-chemical field measurements. Journal of Vegetation Science, 13, 269–278.

    Article  Google Scholar 

  • Wamelink, G. W. W., Van Dobben, H. F., & Berendse, F. (2003a). Apparently we do need phytosociological classes to calibrate Ellenberg indicator values! Journal of Vegetation Science, 14, 619–620.

    Article  Google Scholar 

  • Wamelink, G. W. W., Ter Braak, C. J. F., & Van Dobben, H. F. (2003b). Changes in large-scale patterns of plant biodiversity predicted from environmental economic scenarios. Landscape Ecology, 18, 513–527.

    Article  Google Scholar 

  • Wamelink, G. W. W., Goedhart, P. W., Van Dobben, H. F., & Berendse, F. (2005). Plant species as indicators of soil pH: Replacing expert judgement with measurements. Journal of Vegetation Science, 16, 461–470.

    Article  Google Scholar 

  • Wamelink, G. W. W., Van Der Greft, J., Jochem, R., Prins, A. H., Van Dobben, H. F., & Grashof-Bokdam, C. (2007). Dispersion of plant species in a scattered landscape on a regional scale; a modeling approach. In R. G. H. Bunce, R. H. G. Jongman, L. Hojas, & S. Weel (Eds.), 25 years of landscape ecology: Scientific principles in practice. Proceedings of the 7th IALE World Congress part 2 (pp. 1089–1090).

    Google Scholar 

  • Wamelink, G. W. W., Van Dobben, H. F., & Berendse, F. (2009a). Vegetation succession as affected by decreasing nitrogen deposition, soil characteristics and site management: A modelling approach. Forest Ecology and Management, 258, 1762–1773.

    Article  Google Scholar 

  • Wamelink, G. W. W., Van Dobben, H. F., Mol-Dijkstra, J. P., Schouwenberg, E., Kros, J., De Vries, W., & Berendse, F. (2009b). Effect of nitrogen deposition reduction on biodiversity and carbon sequestration. Forest Ecology and Management, 258, 1774–1779.

    Article  Google Scholar 

  • Wamelink, G. W. W., Wieggers, H. J. J., Reinds, G. J., Kros, J., Mol-Dijkstra, J. P., Van Oijen, M., & De Vries, W. (2009c). Modelling impacts of changes in carbon dioxide concentration, climate and nitrogen deposition on carbon sequestration by European forests and forest soils. Forest Ecology and Management, 258, 1794–1805.

    Article  Google Scholar 

  • Wamelink, G. W. W., Akkermans, L. M. W., Brus, D. J., Heuvelink, G. B. M., Mol-Dijkstra, J. P., & Schouwenberg, E. P. A. G. (2011). Uncertainty analysis of SMART2-SUMO2-P2E-MOVE4. The Nature Planner soil and vegetation model chain (WOT-Report 108). Wageningen: Alterra.

    Google Scholar 

  • Wamelink, G. W. W., Van Adrichem, M. H. C., & Goedhart, P. W. (2012a). Validatie van MOVE4. Wageningen: Wettelijke Onderzoekstaken Natuur & Milieu, WOt-werkdocument 311.

    Google Scholar 

  • Wamelink, G. W. W., Van Adrichem, M. H. C. Van Dobben, H. F. van, Frissel, J. Y., Den Held, M., Joosten, V., Malinowska, A. H., Slim, P. A., & Wegman, R. M. A. (2012b). Vegetation relevés and soil measurements in the Netherlands: A database. Biodiversity and Ecology, 4,125–132.

    Google Scholar 

  • Wassen, M. J., Venterink, H. O., Lapshina, E. D., & Tanneberger, F. (2005). Endangered plants persist under phosphorus limitation. Nature, 437, 547–550.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ed C. Rowe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Rowe, E. et al. (2015). Field Survey Based Models for Exploring Nitrogen and Acidity Effects on Plant Species Diversity and Assessing Long-Term Critical Loads. In: de Vries, W., Hettelingh, JP., Posch, M. (eds) Critical Loads and Dynamic Risk Assessments. Environmental Pollution, vol 25. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9508-1_11

Download citation

Publish with us

Policies and ethics