Skip to main content

Diatom Frustule Morphology and its Biomimetic Applications in Architecture and Industrial Design

  • Chapter
  • First Online:
Evolution of Lightweight Structures

Part of the book series: Biologically-Inspired Systems ((BISY,volume 6))

Abstract

Diatoms are a highly diverse group of unicellular microalgae. Their multipart silica cell wall, called a frustule, is morphologically highly elaborate and shows many fine-details reminiscent of what designers and civil engineers would readily recognize as solutions to challenges in construction. This makes diatom frustules ideal objects for biomimetic applications in architecture and industrial design. Here we review the diversity of frustule architectures and fine structures as well as the way they are produced. Then we focus on the integrated transfer of knowledge on diatom frustules into practical engineering applications and provide several thematic examples of morphological principles as well as of the materiality as central themes for a design- and material-transfer. We select a number of biological silica reinforced structures and compare them with technical and fibre embedded elements for structural load-bearing details and for additional functional requirements. The examples focus on the benefit of knowledge transfer for future building envelopes in architecture and innovative products for industrial design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anonymous (2013) VDI Richtlinie 6226, Bionik-Architektur, Ingenieurbau, Industriedesign. Beuth, Berlin

    Google Scholar 

  • Beautyman M (2012) Jurassic Park-Pohl Architekten guided a school team’s prehistoric-inspired campus pavilion at the Schule für Architektur Saar in Germany. In: Interior Design, New York, pp 135–137

    Google Scholar 

  • Bradbury J (2004) Nature’s nanotechnologists: unveiling the secrets of diatoms. PLOS Biol 2:1512–1515

    Google Scholar 

  • Braun D (2008) Bionische Gebäudehüllen. Dissertation, University of Stuttgart

    Google Scholar 

  • Crawford SA, Higgins MJ, Mulvaney P et al (2001) Nanostructure of the diatom frustule as revealed by atomic force and scanning electron microscopy. J Phycol 37:543–554

    Article  Google Scholar 

  • D’Arcy Thompson W (1917) On growth and form. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • De Stefano M, Kooistra WHCF, Marino D (2003) Morphology of the diatom genus Campyloneis (Bacillariophyceae, Bacillariophyta), with a description of Campyloneis juliae sp. nov. and an evaluation of the function of the valvocopulae. J Phycol 39:735–753

    Article  Google Scholar 

  • Drum RW, Gordon R (2003) Star Trek replicators and diatom nanotechnology. Trends Biotechnol 21:325–328

    Article  Google Scholar 

  • Edgar LA, Pickett-Heaps JD (1984) Diatom locomotion. In: Round FE, Chapman DJ (eds) Progress in phycological research, vol 3. Biopress, Bristol, pp 47–88

    Google Scholar 

  • Ehrlich A, Kroll L, Gelbrich S et al (2011) Einsatz von tragenden Faserverbundstrukturen in der Architektur. Paper presented at the 18th Symposium: Verbundwerkstoffe und Werkstoffverbunde, Chemnitz, 24 March-1 April 2011

    Google Scholar 

  • Gersonde R, Harwood DM (1990) Lower Cretaceous diatoms from ODP Leg 113 site 693 (Weddell Sea) Part 1: Vegetative cells. Proc ODP Sci Results 113:365–402

    Google Scholar 

  • Gosztonyi S, Brychta M, Gruber P (2010) Challenging the engineering view: comparative analysis of technological and biological functions targeting energy efficient facade systems. In: Brebbia CA, Carpi A (eds) Design & Nature 5, Comparing Design in Nature with Science and Engineering. WIT Press, Southampton, pp 491–502

    Google Scholar 

  • Gosztonyi S, Judex F, Richter S et al (2011a) Bionischer Lösungsansatz für innovative Tageslichtnutzung im Sanierungsfall. Austrian Institute of Technology, Vienna

    Google Scholar 

  • Gosztonyi S, Judex F, Brychta M et al (2011b) BioSkin-Bionische Fassaden, Potentialstudie über bionische Konzepte für adaptive energieeffiziente Fassaden. Austrian Institute of Technology, Vienna

    Google Scholar 

  • Gruber P (2010) Biomimetics in Architecture: architecture of life and buildings. Springer, Vienna

    Google Scholar 

  • Gruber P, Gosztonyi S (2010) Skin in architecture: towards bioinspired facades. In: Brebbia CA, Carpi A (eds) Design and Nature V, Comparing Design in Nature with Science and Engineering. WIT Press, Southampton, pp 503–513

    Google Scholar 

  • Guillou L, Chrétiennot-Dinet M-J, Medlin LK et al (1999) Bolidomonas: a new genus with two species belonging to a new algal class, the Bolidophyceae (Heterokonta). J Phycol 35:368–381

    Article  Google Scholar 

  • Haeckel E (1898) Kunstformen der Natur. Bibliographisches Institut, Leipzig-Jena

    Google Scholar 

  • Hamm CE, Merkel R, Springer O et al (2003) Architecture and material properties of diatom shells provide effective mechanical protection. Nature 421:841–843

    Article  Google Scholar 

  • Harwood DM, Chang KH, Nikolaev VA (2004) Late Jurassic to earliest Cretaceous diatoms from Jasong Synthem, Southern Korea: Evidence for a terrestrial origin. In: Abstracts of the 18th International Diatom Symposium, Międzyzdroje, 2–7 September 2004

    Google Scholar 

  • Hildebrand M (2008) Diatoms, biomineralization processes, and genomics. Chem Rev 108:4855–4874

    Article  Google Scholar 

  • Ichinomiya M, Yoshikawa S, Kamiya M et al (2011) Isolation and characterization of Parmales (Heterokonta/Heterokontophyta/Stramenopiles) from the Oyashio region, western North Pacific. J Phycol 47:144–151

    Article  Google Scholar 

  • Ishii K-I, Iwataki M, Matsuoka K, Imai I (2011) Proposal of identification criteria for resting spores of Chaetoceros species (Bacillariophyceae) from a temperate coastal sea. Phycologia 50:351–362

    Article  Google Scholar 

  • Kooistra WHCF, Gersonde R, Medlin LK et al (2007) The origin and evolution of the diatoms: their adaptation to a planktonic existence. In: Falkowski PG, Knoll AH (eds) Evolution of planktonic photoautotrophs. Academic Press, Burlington, pp 207–249

    Google Scholar 

  • Kooistra WHCF, Sarno D, Hernández-Becerril DU et al (2010) Comparative molecular and morphological phylogenetic analyses of taxa in the Chaetocerotaceae (Bacillariophyta). Phycologia 49:471–500

    Article  Google Scholar 

  • Kröger N, Poulsen N (2008) Diatoms-from cell wall biogenesis to nanotechnology. Ann Rev Genet 42:83–107

    Article  Google Scholar 

  • Kroll L, Wolf S, Müller S et al (2011) Characterisation of new embedded embroidered sensors for strain measurements in composite materials. In: Abstracts of the 10th Youth Symposium on Experimental Solid Mechanics, Chemnitz, 26-28 May 2011

    Google Scholar 

  • Mann DG, Marchant HJ (1989) The origins of the diatom and its life cycle. In: Green JC, Leadbeater BSC, Diver WL (eds) The Chromophyte Algae: problems and perspectives. Clarendon Press, Oxford, pp 307–323

    Google Scholar 

  • Medlin LK, Williams DM, Sims PA (1993) The evolution of the diatoms (Bacillariophyta). I. Origin of the group and assessment of the monophyly of its major divisions. Eur J Phycol 28:261–275

    Article  Google Scholar 

  • Müller WEG, Wendt K, Geppert C et al (2006) Novel photoreception system in sponges? Unique transmission properties of the stalk spicules from the hexactinellid Hyalonema sieboldi. J Biosens Bioelectron 21:1149–1155

    Article  Google Scholar 

  • Müller WEG, Wang X, Zeng L et al (2007) Phylogenetic position of sponges in early metazoan evolution and bionic applications of siliceous sponge spicules. Chinese Sci Bull 52:1372–1381

    Article  Google Scholar 

  • Nachtigall W, Pohl G (2013) Bau Bionik. Springer Verlag, Berlin

    Book  Google Scholar 

  • Otto F (1975a) Netze in Natur und Technik. IL Berichte 8. Institut für leichte Flächentragwerke, Stuttgart

    Google Scholar 

  • Otto F (1975b) Wandelbare Pneus. IL Berichte 12. Institut für leichte Flächentragwerke, Stuttgart

    Google Scholar 

  • Otto F (1985) Diatoms 1- Shells in nature and technics, morphogenetic analysis and character synthesis of diatom valves. IL Berichte 28. Institut für leichte Flächentragwerke, Stuttgart

    Google Scholar 

  • Otto F (1986) Bambus. IL Berichte 31. Institut für leichte Flächentragwerke, Stuttgart

    Google Scholar 

  • Parker AR, Lenau T, Saito A (2013) Biomimetics in optical nanostructures. In: Karthaus O (ed) Biomimetics in photonics. CRC Press, Taylor & Francis Group, Boca Raton, pp 55–116

    Google Scholar 

  • Pohl G, Pfalz M (2010) Innovative composite-fibre components in architecture. In: Pohl G (ed) Textiles, composites and polymers for buildings. Woodhead Publishing, Cambridge, pp 420–470

    Chapter  Google Scholar 

  • Pohl G, Pohl J, Speck T et al (2010) The role of textiles in providing biomimetic solutions for construction. In: Pohl G (ed) Textiles, composites and polymers for buildings. Woodhead Publishing, Cambridge, pp 310–329

    Chapter  Google Scholar 

  • Pohl G, Feth N, Otten J (2012) BOWOOSS nachhaltige Bausysteme bionisch inspirierter Holzschalenkonstruktionen. Projektdokumentation Teilvorhaben 1, Biona- Forschungsbericht. B2E3, Institut für Effiziente Bauwerke. HTW des Saarlandes University Press, Saarbrücken

    Google Scholar 

  • Rabosky DL, Sorhannus U (2009) Diversity dynamics of marine planktonic diatoms across the Cenozoic. Nature 457:183–186

    Article  Google Scholar 

  • Round FE, Crawford RM, Mann DG (1990) The diatoms. Biology and morphology of the genera. Cambridge University Press, Cambridge

    Google Scholar 

  • Sarno D, Kooistra WHCF, Medlin LK et al (2005) Diversity in the genus Skeletonema (Bacillariophyceae): II. An assessment of the taxonomy of S. costatum-like species, with the description of four new species. J Phycol 41:151–176

    Article  Google Scholar 

  • Sarno D, Kooistra WHCF, Balzano S et al (2007) Diversity in the genus Skeletonema (Bacillariophyceae): III. Phylogenetic position and morphological variability of Skeletonema costatum and Skeletonema grevillei, with the description of Skeletonema ardens sp. nov. J Phycol 43:156–170

    Article  Google Scholar 

  • Schmid A-MM, Schulz D (1979) Wall morphogenesis in diatoms: deposition of silica by cytoplasmic vesicles. Protoplasma 100:267–288

    Article  Google Scholar 

  • Sinninghe-Damsté JS, Muyzer G, Abbas B et al (2004) The rise of the rhizosolenoid diatoms. Science 304:584–587

    Article  Google Scholar 

  • Sörhannus U (2004) Diatom phylogenetics inferred based on direct optimization of nuclear-encoded SSU rRNA sequences. Cladistics 20:487–497

    Article  Google Scholar 

  • Suto I (2006) The explosive diversification of the diatom genus Chaetoceros across the Eocene/Oligocene and Oligocene/Miocene boundaries in the Norwegian Sea. Mar Micropaleontol 58:259–269

    Article  Google Scholar 

  • Teichmann K, Wilke J (1996) Prozeß und Form “Natürliche Konstruktionen,” Der Sonderforschungsbereich 230. Ernst & Sohn Verlag, Berlin

    Google Scholar 

  • Townley HE (2011) Diatom frustules: physical, optical, and biotechnological applications. In: Seckbach J, Kociolek JP (eds) The diatom world; cellular origin, life in extreme habitats and astrobiology, vol 19. Springer Science and Business Media, Dordrecht, pp 273–289

    Google Scholar 

  • Vrieling EG, Beelen TPM, van Santen RA et al (2000) Nano-scale uniformity of pore architecture in diatomaceous silica: a combined small and wide angle X-ray scattering study. J Phycol 36:146–159

    Article  Google Scholar 

  • Zitzler U (2008) Licht im Schwamm-Schwämme haben die ersten Glas-Lichtleiter erfunden. Pressemitteilung Universität Stuttgart

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge support from the COCOON_FS project Plankton- Tech www.planktontech.de. Ulrich Knaack and Tilmann Klein (Façade Research Group at TU Delft), Julia Pohl (Pohl Architekten) and Diana Sarno (SZN) provided constructive comments on the manuscript. Diana Sarno is thanked for providing electron micrographs and Susanne Gosztonyi for providing illustrations on light transferring structures based on glass fibres.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wiebe H. C. F. Kooistra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kooistra, W., Pohl, G. (2015). Diatom Frustule Morphology and its Biomimetic Applications in Architecture and Industrial Design. In: Hamm, C. (eds) Evolution of Lightweight Structures. Biologically-Inspired Systems, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9398-8_5

Download citation

Publish with us

Policies and ethics