Skip to main content

Investigations of the Efficient Electrocatalytic Interconversions of Carbon Dioxide and Carbon Monoxide by Nickel-Containing Carbon Monoxide Dehydrogenases

  • Chapter
  • First Online:
The Metal-Driven Biogeochemistry of Gaseous Compounds in the Environment

Part of the book series: Metal Ions in Life Sciences ((MILS,volume 14))

Abstract

Carbon monoxide dehydrogenases (CODH) play an important role in utilizing carbon monoxide (CO) or carbon dioxide (CO2) in the metabolism of some microorganisms. Two distinctly different types of CODH are distinguished by the elements constituting the active site. A Mo-Cu containing CODH is found in some aerobic organisms, whereas a Ni-Fe containing CODH (henceforth simply Ni-CODH) is found in some anaerobes. Two members of the simplest class (IV) of Ni-CODH behave as efficient, reversible electrocatalysts of CO2/CO interconversion when adsorbed on a graphite electrode. Their intense electroactivity sets an important benchmark for the standard of performance at which synthetic molecular and material electrocatalysts comprised of suitably attired abundant first-row transition elements must be able to operate. Investigations of CODHs by protein film electrochemistry (PFE) reveal how the enzymes respond to the variable electrode potential that can drive CO2/CO interconversion in each direction, and identify the potential thresholds at which different small molecules, both substrates and inhibitors, enter or leave the catalytic cycle. Experiments carried out on a much larger (Class III) enzyme CODH/ACS, in which CODH is complexed tightly with acetyl-CoA synthase, show that some of these characteristics are retained, albeit with much slower rates of interfacial electron transfer, attributable to the difficulty in making good electronic contact at the electrode. The PFE results complement and clarify investigations made using spectroscopic investigations.

Please cite as: Met. Ions Life Sci. 14 (2014) 71–97

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. W. Ragsdale, E. Pierce, Biochim. Biophys. Acta 2008, 1784, 1873–1898.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. J. G. Ferry, Annu. Rev. Microbiol. 2010, 64, 453–473.

    Article  CAS  PubMed  Google Scholar 

  3. E. Oelgeschlaeger, M. Rother, Arch. Microbiol. 2008, 190, 257–269.

    Article  CAS  Google Scholar 

  4. M. Can, F. A. Armstrong, S. W. Ragsdale, Chem. Rev. 2014, 114, 4119–4174.

    Google Scholar 

  5. O. Meyer, H. G. Schlegel, Annu. Rev. Microbiol. 1983, 37, 277–310.

    Article  CAS  PubMed  Google Scholar 

  6. G. Bender, E. Pierce, J. A. Hill, J. E. Darty, S. W. Ragsdale, Metallomics 2011, 3, 797–815.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. H. Dobbek, L. Gremer, R. Kiefersauer, R. Huber, O. Meyer, Proc. Natl. Acad. Sci. USA 2002, 99, 15971–15976.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. J. H. Jeoung, H. Dobbek, Science 2007, 318, 1461–1464.

    Article  CAS  PubMed  Google Scholar 

  9. D. A. Grahame, J. Biol. Chem. 1991, 266, 22227–22233.

    CAS  PubMed  Google Scholar 

  10. P. A. Lindahl, B. Chang, Orig. Life Evol. Biosph. 2001, 31, 403–434.

    Article  CAS  PubMed  Google Scholar 

  11. S. W. Ragsdale, Crit. Rev. Biochem. Mol. Biol. 2004, 39, 165–195.

    Article  CAS  PubMed  Google Scholar 

  12. B. Soboh, D. Linder, R. Hedderich, Eur. J. Biochem. 2002, 269, 5712–5721.

    Article  CAS  PubMed  Google Scholar 

  13. J. D. Fox, Y. P. He, D. Shelver, G. P. Roberts, P. W. Ludden, J. Bacteriol. 1996, 178, 6200–6208.

    CAS  PubMed Central  PubMed  Google Scholar 

  14. J. H. Jeoung, H. Dobbek, J. Am. Chem. Soc. 2009, 131, 9922–9923.

    Article  CAS  PubMed  Google Scholar 

  15. H. Dobbek, V. Svetlitchnyi, J. Liss, O. Meyer, J. Am. Chem. Soc. 2004, 126, 5382–5387.

    Article  CAS  PubMed  Google Scholar 

  16. V. Svetlitchnyi, H. Dobbek, W. Meyer-Klaucke, T. Meins, B. Thiele, P. Romer, R. Huber, O. Meyer, Proc. Natl. Acad. Sci. USA. 2004, 101, 446–451.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. A. Parkin, J. Seravalli, K. A. Vincent, S. W. Ragsdale, F. A. Armstrong, J. Am. Chem. Soc. 2007, 129, 10328–10329.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. V. C. C. Wang, M. Can, E. Pierce, S. W. Ragsdale, F. A. Armstrong, J. Am. Chem. Soc. 2013, 135, 2198–2206.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. V. C. C. Wang, S. W. Ragsdale, F. A. Armstrong, ChemBioChem 2013, 14, 1845–1851.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Y. Kung, T. I. Doukov, J. Seravalli, S. W. Ragsdale, C. L. Drennan, Biochemistry 2009, 48, 7432–7440.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. C. L. Drennan, J. Y. Heo, M. D. Sintchak, E. Schreiter, P. W. Ludden, Proc. Natl. Acad. Sci. USA 2001, 98, 11973–11978.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. C. Darnault, A. Volbeda, E. J. Kim, P. Legrand, X. Vernede, P. A. Lindahl, J. C. Fontecilla-Camps, Nat. Struct. Biol. 2003, 10, 271–279.

    Article  CAS  PubMed  Google Scholar 

  23. P. A. Lindahl, Angew. Chem. Int. Ed. 2008, 47, 4054–4056.

    Article  CAS  Google Scholar 

  24. P. A. Lindahl, Biochemistry 2002, 41, 2097–2105.

    Article  CAS  PubMed  Google Scholar 

  25. P. Amara, J. M. Mouesca, A. Volbeda, J. C. Fontecilla-Camps, Inorg. Chem. 2011, 50, 1868–1878.

    Article  CAS  PubMed  Google Scholar 

  26. W. W. Gu, J. Seravalli, S. W. Ragsdale, S. P. Cramer, Biochemistry 2004, 43, 9029–9035.

    Article  CAS  PubMed  Google Scholar 

  27. G. O. Tan, S. A. Ensign, S. Ciurli, M. J. Scott, B. Hedman, R. H. Holm, P. W. Ludden, Z. R. Korsun, P. J. Stephens, K. O. Hodgson, Proc. Natl. Acad. Sci. USA 1992, 89, 4427–4431.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. C. Y. Ralston, H. X. Wang, S. W. Ragsdale, M. Kumar, N. J. Spangler, P. W. Ludden, W. Gu, R. M. Jones, D. S. Patil, S. P. Cramer, J. Am. Chem. Soc. 2000, 122, 10553–10560.

    Article  CAS  Google Scholar 

  29. P. A. Lindahl, E. Munck, S. W. Ragsdale, J. Biol. Chem. 1990, 265, 3873–3879.

    CAS  PubMed  Google Scholar 

  30. N. J. Spangler, P. A. Lindahl, V. Bandarian, P. W. Ludden, J. Biol. Chem. 1996, 271, 7973–7977.

    Article  CAS  PubMed  Google Scholar 

  31. J. L. Craft, P. W. Ludden, T. C. Brunold, Biochemistry 2002, 41, 1681–1688.

    Article  CAS  PubMed  Google Scholar 

  32. J. Seravalli, M. Kumar, W. P. Lu, S. W. Ragsdale, Biochemistry 1995, 34, 7879–7888.

    Article  CAS  PubMed  Google Scholar 

  33. S. W. Ha, M. Korbas, M. Klepsch, W. Meyer-Klaucke, O. Meyer, V. Svetlitchnyi, J. Biol. Chem. 2007, 282, 10639–10646.

    Article  CAS  PubMed  Google Scholar 

  34. S. A. Ensign, M. R. Hyman, P. W. Ludden, Biochemistry 1989, 28, 4973–4979.

    Article  CAS  PubMed  Google Scholar 

  35. W. Gong, B. Hao, Z. Wei, D. J. Ferguson, T. Tallant, J. A. Krzycki, M. K. Chan, Proc. Natl. Acad. Sci. USA 2008, 105, 9558–9563.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. J.-H. Jeoung, H. Dobbek, J. Biol. Inorg. Chem. 2012, 17, 167–173.

    Article  CAS  PubMed  Google Scholar 

  37. M. E. Anderson, P. A. Lindahl, Biochemistry 1994, 33, 8702–8711.

    Article  CAS  PubMed  Google Scholar 

  38. M. E. Anderson, V. J. Derose, B. M. Hoffman, P. A. Lindahl, J. Am. Chem. Soc. 1993, 115, 12204–12205.

    Article  CAS  Google Scholar 

  39. V. J. DeRose, J. Telser, M. E. Anderson, P. A. Lindahl, B. M. Hoffman, J. Am. Chem. Soc. 1998, 120, 8767–8776.

    Article  CAS  Google Scholar 

  40. H. Dobbek, V. Svetlitchnyi, L. Gremer, R. Huber, O. Meyer, Science 2001, 293, 1281–1285.

    Article  CAS  PubMed  Google Scholar 

  41. J. Feng, P. A. Lindahl, J. Am. Chem. Soc. 2004, 126, 9094–9100.

    Article  CAS  PubMed  Google Scholar 

  42. K. A. Vincent, A. Parkin, F. A. Armstrong, Chem. Rev. 2007, 107, 4366–4413.

    Article  CAS  PubMed  Google Scholar 

  43. C. Léger, P. Bertrand, Chem. Rev. 2008, 108, 2379–2438.

    Article  PubMed  Google Scholar 

  44. K. A. Vincent, F. A. Armstrong, Inorg. Chem. 2005, 44, 798–809.

    Article  CAS  PubMed  Google Scholar 

  45. C. Léger, S. J. Elliott, K. R. Hoke, L. J. C. Jeuken, A. K. Jones, F. A. Armstrong, Biochemistry 2003, 42, 8653–8662.

    Article  PubMed  Google Scholar 

  46. F. A. Armstrong, J. Hirst, Proc. Natl. Acad. Sci. USA 2011, 108, 14049–14054.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. S. V. Hexter, T. Esterle, F. A. Armstrong, Phys. Chem. Chem. Phys. 2014, 16, 11822–11833.

    Article  CAS  PubMed  Google Scholar 

  48. V. Svetlitchnyi, C. Peschel, G. Acker, O. Meyer, J. Bacteriol. 2001, 183, 5134–5144.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. S. W. Ragsdale, J. E. Clark, L. G. Ljungdahl, L. L. Lundie, H. L. Drake, J. Biol. Chem. 1983, 258, 2364–2369.

    CAS  PubMed  Google Scholar 

  50. W. S. Shin, P. A. Lindahl, Biochim. Biophys. Acta 1993, 1161, 317–322.

    Article  CAS  PubMed  Google Scholar 

  51. J. Y. Heo, C. R. Staples, C. M. Halbleib, P. W. Ludden, Biochemistry 2000, 39, 7956–7963.

    Article  CAS  PubMed  Google Scholar 

  52. M. J. Lukey, A. Parkin, M. M. Roessler, B. J. Murphy, J. Harmer, T. Palmer, F. Sargent, F. A. Armstrong, J. Biol. Chem. 2010, 285, 20421–20421.

    Article  CAS  PubMed Central  Google Scholar 

  53. J. Q. Xia, J. F. Sinclair, T. O. Baldwin, P. A. Lindahl, Biochemistry 1996, 35, 1965–1971.

    Article  CAS  PubMed  Google Scholar 

  54. W. Shin, P. A. Lindahl, J. Am. Chem. Soc. 1992, 114, 9718–9719.

    Article  CAS  Google Scholar 

  55. S. W. Ragsdale, H. G. Wood, J. Biol. Chem. 1985, 260, 3970–3977.

    CAS  PubMed  Google Scholar 

  56. M. Kumar, W. P. Lu, S. W. Ragsdale, Biochemistry 1994, 33, 9769–9777.

    Article  CAS  PubMed  Google Scholar 

  57. E. L. Maynard, P. A. Lindahl, J. Am. Chem. Soc. 1999, 121, 9221–9222.

    Article  CAS  Google Scholar 

  58. J. Seravalli, S. W. Ragsdale, Biochemistry 2000, 39, 1274–1277.

    Article  CAS  PubMed  Google Scholar 

  59. O. Lazarus, T. W. Woolerton, A. Parkin, M. J. Lukey, E. Reisner, J. Seravalli, E. Pierce, S. W. Ragsdale, F. Sargent, F. A. Armstrong, J. Am. Chem. Soc. 2009, 131, 14154–14155.

    Article  CAS  PubMed  Google Scholar 

  60. O. O. James, A. M. Mesubi, T. C. Ako, S. Maity, Fuel Process. Technol. 2010, 91, 136–144.

    Google Scholar 

  61. T. W. Woolerton, S. Sheard, E. Pierce, S. W. Ragsdale, F. A. Armstrong, Energy Environ. Sci. 2011, 4, 2393–2399.

    Article  CAS  Google Scholar 

  62. Y. S. Chaudhary, T. W. Woolerton, C. S. Allen, J. H. Warner, E. Pierce, S. W. Ragsdale, F. A. Armstrong, Chem. Commun. 2012, 48, 58–60.

    Article  CAS  Google Scholar 

  63. A. Bachmeier, V. C. C. Wang, T. W. Woolerton, S. Bell, J. C. Fontecilla-Camps, M. Can, S. W. Ragsdale, Y. S. Chaudhary, F. A. Armstrong, J. Am. Chem. Soc. 2013, 135, 15026–15032.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the UK Research Councils (BBSRC (grants H003878-1 and BB/I022309) and EPSRC (Supergen 5, EH/H019480/1)), and NIH (GM39451) for supporting their research. Vincent Wang thanks the Ministry of Education, Taiwan (R.O.C) for financial support through a scholarship for study abroad.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fraser A. Armstrong .

Editor information

Editors and Affiliations

Abbreviations

Abbreviations

acetyl-CoA:

acetyl-coenzyme A

ACDS:

acetyl-CoA decarbonylase synthase

Ch :

Carboxydothermus hydrogenoformans

CoA:

coenzyme A

CODH:

carbon monoxide dehydrogenase

CODH/ACS:

carbon monoxide dehydrogenase/acetyl-CoA synthase

CoFeSP:

corrinoid-iron-sulfur protein

E FB :

flatband potential

EPR:

electron paramagnetic resonance

Mb :

Methanosarcina barkeri

MES:

2-(N-morpholino)ethanesulfonic acid

Mt :

Moorella thermoacetica

PDB:

Protein Data Base

PFE:

protein film electrochemistry

PGE:

pyrolytic graphite edge

Rr :

Rhodospirillum rubrum

SHE:

standard hydrogen electrode

XAS:

X-ray absorption spectroscopy

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wang, V.CC., Ragsdale, S.W., Armstrong, F.A. (2014). Investigations of the Efficient Electrocatalytic Interconversions of Carbon Dioxide and Carbon Monoxide by Nickel-Containing Carbon Monoxide Dehydrogenases. In: Kroneck, P., Torres, M. (eds) The Metal-Driven Biogeochemistry of Gaseous Compounds in the Environment. Metal Ions in Life Sciences, vol 14. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9269-1_4

Download citation

Publish with us

Policies and ethics