Skip to main content

RNA Folding: Structure Prediction, Folding Kinetics and Ion Electrostatics

  • Chapter
  • First Online:
Advance in Structural Bioinformatics

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 827))

Abstract

Beyond the “traditional” functions such as gene storage, transport and protein synthesis, recent discoveries reveal that RNAs have important “new” biological functions including the RNA silence and gene regulation of riboswitch. Such functions of noncoding RNAs are strongly coupled to the RNA structures and proper structure change, which naturally leads to the RNA folding problem including structure prediction and folding kinetics. Due to the polyanionic nature of RNAs, RNA folding structure, stability and kinetics are strongly coupled to the ion condition of solution. The main focus of this chapter is to review the recent progress in the three major aspects in RNA folding problem: structure prediction, folding kinetics and ion electrostatics. This chapter will introduce both the recent experimental and theoretical progress, while emphasize the theoretical modelling on the three aspects in RNA folding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bloomfield VA, Crothers DM, Tinoco IJ (2000) Nucleic acids: structure, properties and functions. University Science Books, Sausalito

    Google Scholar 

  2. Walter NG, Woodson SA, Batey RT (eds) (2009) Non-coding RNA. Non-protein coding RNAs. Springer, Berlin

    Google Scholar 

  3. Cruz JA, Westhof E (2009) The dynamic landscapes of RNA architecture. Cell 136:604–609

    CAS  PubMed  Google Scholar 

  4. Zuker M, Stiegler P (1981) Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res 9:133–148

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Hofacker IL, Fontana W, Stadler PF, Bonhoeffer S, Tacker M, Schuster P (1994) Fast folding and comparison of RNA secondary structures. Monatsh Chem 125:167–188

    CAS  Google Scholar 

  6. Ding Y, Lawrence CE (2003) A statistical sampling algorithm for RNA secondary structure prediction. Nucleic Acids Res 31:7280–7301

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Do CB, Woods DA, Batzoglou S (2006) CONTRAfold: RNA secondary structure prediction without physics-based models. Bioinformatics 23:90–98

    Google Scholar 

  8. Mathews DH, Turner DH (2006) Prediction of RNA secondary structure by free energy minimization. Curr Opin Struct Biol 16:270–278

    CAS  PubMed  Google Scholar 

  9. Massire C, Westhof E (1998) MANIP: an interactive tool for modelling RNA. J Mol Graph Model 16(197–205):255–257

    Google Scholar 

  10. Zwieb C, Mueller F (1997) Three-dimensional comparative modeling of RNA. Nucleic Acids Symp Ser 36:69–71

    CAS  PubMed  Google Scholar 

  11. Jossinet F, Westhof E (2005) Sequence to Structure (S2S): display, manipulate and interconnect RNA data from sequence to structure. Bioinformatics 21:3320–3321

    CAS  PubMed  Google Scholar 

  12. Jossinet F, Ludwig TE, Westhof E (2010) Assemble: an interactive graphical tool to analyze and build RNA architectures at the 2D and 3D levels. Bioinformatics 26:2057–2059

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Martinez HM, Maizel JV, Shapiro BA (2008) RNA2D3D: a program for generating, viewing, and comparing 3-dimensional models of RNA. J Biomol Struct Dyn 25:669–683

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Rother M, Rother K, Puton T, Bujnicki JM (2011) ModeRNA: a tool for comparative modeling of RNA 3D structure. Nucleic Acids Res 1–16

    Google Scholar 

  15. Flores SC, Wan YQ, Russell R, Altman RB (2010) Predicting RNA structure by multiple template homology modeling. Pac Symp Biocomput 15:216–227

    Google Scholar 

  16. Paliy M, Melnik R, Shapiro BA (2010) Coarse-graining RNA nanostructures for molecular dynamics simulations. Phys Biol 7:036001

    PubMed Central  PubMed  Google Scholar 

  17. Tan RKZ, Petrov AS, Harvey SC (2006) YUP: molecular simulation program for coarse-grained and multiscaled models. J Chem Theory Comput 2:529–540

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Jonikas MA, Radmer RJ, Laederach A, Das R, Pearlman S, Herschlag D, Altman RB (2009) Coarse-grained modeling of large RNA molecules with knowledge-based potentials and structural filters. RNA 15:189–199

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Jonikas MA, Radmer RJ, Altman RB (2009) Knowledge-based instantiation of full atomic detail into coarse-grain RNA 3D structural models. Bioinformatics 25:3259–3266

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Taxilaga-Zetina O, Pliego-Pastrana P, Carbajal-Tinoco MD (2010) Three-dimensional structures of RNA obtained by means of knowledge-based interaction potentials. Phys Rev E 81:041914

    Google Scholar 

  21. Cao S, Chen SJ (2011) Physics-based de novo prediction of RNA 3D structures. J Phys Chem B 115:4216–4226

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Cao S, Chen SJ (2006) Predicting RNA pseudoknot folding thermodynamics. Nucleic Acids Res 34:2634–2652

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Cao S, Chen SJ (2005) Predicting RNA folding thermodynamics with a reduced chain representation model. RNA 11:1184–1897

    Google Scholar 

  24. Ding F, Sharma S, Chalasani P, Demidov VV, Broude NE, Dokholyan NV (2008) Ab initio RNA folding by discrete molecular dynamics: from structure prediction to folding mechanisms. RNA 14:1164–1173

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Sharma S, Ding F, Dokholyan NV (2008) iFoldRNA: three-dimensional RNA structure prediction and folding. Bioinformatics 24:1951–1952

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Ding F, Lavender CA, Weeks KM, Dokholyan NV (2012) Three-dimensional RNA structure refinement by hydroxyl radical probing. Nat Methods 9:603–608

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Xia Z, Gardner DP, Gutell RR, Ren P (2010) Coarse-grained model for simulation of RNA three-dimensional structures. J Phys Chem B 114:13497–13506

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Pasquali S, Derreumaux P (2010) HiRE-RNA: a high resolution coarse-grained model for RNA. J Phys Chem B 114:11957–11966

    CAS  PubMed  Google Scholar 

  29. Zhang J, Dundas J, Lin M, Chen M, Wang W, Liang J (2009) Prediction of geometrically feasible three-dimensional structures of pseudoknotted RNA through free energy estimation. RNA 15:2248–2263

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Zhang J, BianYQ Wang W (2012) RNA fragment modeling with a nucleobase discrete-state model. Phys Rev E 85:021909

    Google Scholar 

  31. Das R, Baker D (2007) Automated de novo prediction of native-like RNA tertiary structures. Proc Natl Acad Sci 104:14664–14669

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Das R, Karanicolas J, Baker D (2010) Atomic accuracy in predicting and designing noncanonical RNA structure. Nat Methods 7:291–294

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Bida JP, Maher LJ III (2012) Improved prediction of RNA tertiary structure with insights into native state dynamics. RNA 18:385–393

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Parisien M, Major F (2008) The MC-Fold and MC-Sym pipeline infers RNA structure from sequence data. Nature 452:51–55

    CAS  PubMed  Google Scholar 

  35. Lemieux S, Major F (2006) Automated extraction and classification of RNA tertiary structure cyclic motifs. Nucleic Acids Res 34:2340–2346

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Zhao YJ, Gong Z, Xiao Y (2011) Improvement of the hierarchical approach for predicting RNA tertiary structure. J Biomol Struct Dyn 28:815–826

    CAS  PubMed  Google Scholar 

  37. Gong Z, Zhao Y, Xiao Y (2010) RNA stability under different combinations of amber force fields and solvation models. J Biomol Struct Dyn 28(3):431–441

    CAS  PubMed  Google Scholar 

  38. Seetin MJ, Mathews DH (2011) Automated RNA tertiary structure prediction from secondary structure and low-resolution restraints. J Comput Chem 32:2232–2244

    CAS  PubMed  Google Scholar 

  39. Baumstark T, Schroder AR, Riesner D (1997) Viroid processing: switch from cleavage to ligation is driven by a change from a tetraloop to a loop E conformation. EMBO J 16:599–610

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Perrotta AT, Been MD (1998) A toggle duplex in hepatitis delta virus self-cleaving RNA that stabilizes an inactive and a salt-dependent pro-active ribozyme conformation. J Mol Biol 279:361–373

    CAS  PubMed  Google Scholar 

  41. Schultes EA, Bartel DP (2000) One sequence, two ribozymes: implications for the emergence of new ribozyme folds. Science 289:448–452

    CAS  PubMed  Google Scholar 

  42. Kruger K, Grabowski P, Zaug AJ, Sands J, Gottschling DE, Cech TR (1982) Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell 31:147–157

    CAS  PubMed  Google Scholar 

  43. Bartel DP, Szostak JW (1993) Isolation of new ribozymes from a large pool of random sequences. Science 261:1411–1418

    CAS  PubMed  Google Scholar 

  44. Joyce GF (1989) Amplication, mutation and selection of catalytic RNA. Gene 82:83–87

    CAS  PubMed  Google Scholar 

  45. Ellington AE, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822

    CAS  PubMed  Google Scholar 

  46. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510

    CAS  PubMed  Google Scholar 

  47. Mironov AS, Gusarov I, Rafikov R, Lopez LE, Shatalin K, Kreneva RA, Perumov DA, Nudler E (2002) Sensing small molecules by nascent RNA: a mechanism to control transcription in bacteria. Cell 111:747–756

    CAS  PubMed  Google Scholar 

  48. Nahvi A, Sudarsan N, Ebert MS, Zou X, Brown KL, Breaker RR (2002) Genetic control by metabolite binding mRNA. Chem Biol 9:1043–1049

    CAS  PubMed  Google Scholar 

  49. Winkler WC, Breaker RR (2003) Genetic control by metabolite-binding riboswitches. Chem Bio Chem 4:1024–1032

    CAS  PubMed  Google Scholar 

  50. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism and function. Cell 116:281–297

    CAS  PubMed  Google Scholar 

  51. Nudler E, Mironov AS (2004) The riboswitch control of bacterial metabolism. Trends Biochem Sci 29:11–17

    CAS  PubMed  Google Scholar 

  52. He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nature Rev Genet 5:522–531

    CAS  PubMed  Google Scholar 

  53. Winkler WC, Nahvi A, Roth A, Collins JA, Breaker RR (2004) Control of gene expression by a natural metabolite-responsive ribozyme. Nature 428:281–286

    CAS  PubMed  Google Scholar 

  54. Gerdes K, Wagner EGH (2007) RNA antitoxins. Curr Opin Microbiol 10:117

    CAS  PubMed  Google Scholar 

  55. Nagel JHA, Gultyaev AP, Gerdes K, Pleij CWA (1999) Metastable structures and refolding kinetics in hok mRNA of plasmid R1. RNA 5:1408–1419

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Groeneveld H, Thimon K, Duin J (1995) Translational control of maturation-protein synthesis in phage MS2: a role for the kinetics of RNA folding? RNA 1:79–88

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Porschke D (1977) Elementary steps of base recognition and helix-coil transitions in nucleic acids. Mol Biol Biochem Biophys 24:191–218

    CAS  PubMed  Google Scholar 

  58. Craig ME, Crothers DM, Doty P (1971) Relaxation kinetics of dimer formation by self complementary oligonucleotides. J Mol Biol 62:383–401

    CAS  PubMed  Google Scholar 

  59. Crothers DM, Cole PE, Hilbers CW, Shulman RG (1974) The molecular mechanism of thermal unfolding of Escherichia coli formylmethionine transfer RNA. J Mol Biol 87:63–88

    CAS  PubMed  Google Scholar 

  60. Micura R, Hobartner C (2003) On secondary structure rearrangements and equilibria of small RNAs. Chem Biochem 4:984–990

    CAS  Google Scholar 

  61. Furtig B, Buck J, Manoharan V, Bermel W, Jaschke A, Wenter P, Pitsch S, Schwalbe H (2007) Time-resolved NMR studies of RNA folding. Biopolymers 86:360–383

    PubMed  Google Scholar 

  62. Harlepp S, Marchal T, Robert J, Leger J, Xayaphoummine A, Isambert H, Chatenay D (2003) Probing complex RNA structures by mechanical force. Eur Phys J E-Soft Matter 12:605–615

    CAS  PubMed  Google Scholar 

  63. Jean JM, Hall KB (2001) 2-Aminopurine fluorescence quenching and lifetimes: role of base stacking. Proc Natl Acad Sci USA 98:37–41

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Liphardt J, Onoa B, Smith SB, Tinoco IJ, Bustamante C (2001) Reversible unfolding of single RNA molecules by mechanical force. Science 292:733–737

    CAS  PubMed  Google Scholar 

  65. Bonnet G, Krichevsky O, Libchaber A (1998) Kinetics of conformational fluctuations in DNA hairpin-loops. Proc Natl Acad Sci USA 95:8602–8606

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Ansari A, Kunznetsov SV, Shen Y (2001) Configurational diffusion down a folding funnel describes the dynamics of DNA hairpins. Proc Natl Acad Sci USA 98:7771–7776

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Wallace MI, Ying L, Balasubramanian S, Klenerman D (2001) Non-arrhenius kinetics for the loop closure of a DNA hairpin. Proc Natl Acad Sci USA 98:5584–5589

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Bai Y, Das R, Millett IS, Herschlag D, Doniach S (2005) Probing counterion modulated repulsion and attraction between nucleic acid duplexes in solution. Proc Natl Acad Sci USA 102:1035–1040

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Chu VB, Herschlag D (2008) Unwinding RNA’s secrets: advances in the biology, physics, and modeling of complex RNAs. Curr Opin Struct Biol 18:305–314

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Draper DE (2008) RNA folding: thermodynamic and molecular descriptions of the roles of ions. Biophys J 95:5489–5495

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Chen SJ (2008) RNA folding: conformational statistics, folding kinetics, and ion electrostatics. Annu Rev Biophys 37:197–214

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Tan ZJ, Chen SJ (2011) Importance of diffuse ions binding to RNA. Met Ions Life Sci 9:101–124

    CAS  PubMed  Google Scholar 

  73. Bowman JC, Lenz TK, Hud NV, Williams LD (2012) Cations in charge: magnesium ions in RNA folding and catalysis. Curr Opin Struct Biol 22:262–272

    CAS  PubMed  Google Scholar 

  74. Cruz JA et al (2012) RNA-puzzles: A CASP-like evaluation of RNA three-dimensional structure prediction. RNA 18:610–625

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Shapiro BA, Yingling YG, Kasprzak W, Bindewald E (2007) Bridging the gap in RNA structure prediction. Curr Opn Struct Biol 17:157–165

    CAS  Google Scholar 

  76. Hajdin CE, Ding F, Dokholyan NV, Weeks KM (2010) On the significance of an RNA tertiary structure prediction. RNA 16:1340–1349

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Laing C, Schlick T (2011) Computational approaches to RNA structure prediction, analysis, and design. Curr Opin Struct Biol 21:1–13

    Google Scholar 

  78. Laing C, Schlick T (2010) Computational approaches to 3D modeling of RNA. J Phys Condens Matter 22:283101

    PubMed  Google Scholar 

  79. Rother K, Rother M, Boniecki M, Puton T, Bujnicki JM (2011) RNA and protein 3D structure modeling: similarities and differences. J Mol Model 17:2325–2336

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Levitt M (1969) Detailed molecular model for transfer ribonucleic acid. Nature 224:759–763

    CAS  PubMed  Google Scholar 

  81. Chothia C, Gerstein M (1997) How far can sequences diverge? Nature 385:579–581

    CAS  PubMed  Google Scholar 

  82. Anfinsen CB (1973) Principles that govern the folding of protein chains. Science 181:223–230

    CAS  PubMed  Google Scholar 

  83. Baker D, Sali A (2001) Protein structure prediction and structural genomics. Science 294:93–96

    CAS  PubMed  Google Scholar 

  84. Zhang Y, Skolnick J (2004) Automated structure prediction of weakly homologous proteins on a genomic scale. Proc Natl Acad Sci USA 101:7594–7599

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Simons KT, Kooperberg C, Huang E (1997) Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and bayesian scoring functions. J Mol Biol 268:209–225

    CAS  PubMed  Google Scholar 

  86. Zhang WB, Chen SJ (2002) RNA hairpin-folding kinetics. Proc Natl Acad Sci USA 99:1931–1936

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Zhang WB, Chen SJ (2003) Master equation approach to finding the rate-limiting steps in biopolymer folding. J Chem Phys 118:3413

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Konishi Y, Ooi T, Scheraga HA (1982) Regeneration of ribonuclease a from the reduced protein rate-limiting steps. Biochemistry 21:4734–4740

    CAS  PubMed  Google Scholar 

  89. Zhang WB, Chen SJ (2003) Analyzing the biopolymer folding rates and pathways using kinetic cluster method. J Chem Phys 119:8716–8729

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Flamm C, Fontana W, Hofacker IL, Schuster P (2000) RNA folding at elementary step resolution. RNA 6:325–338

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Isambert H, Siggia ED (2000) Modeling RNA folding paths with pseudoknots: application to hepatitis d-virus ribozyme. Proc Natl Acad Sci USA 97:6515–6520

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Danilova LV, Pervouchine DD, Favorov AV, Mironov AA (2006) RNA kinetics: a web server that models secondary structure kinetics of an elongating RNA. J Bioinf Comp Biol 4:589–596

    CAS  Google Scholar 

  93. Martinez HM (1984) An RNA folding rule. Nucleic Acids Res 12:323–335

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Gillespie DT (1976) A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J Comput Phys 22:403–434

    CAS  Google Scholar 

  95. Schmitz M, Steger G (1996) Discription of RNA folding by simulated annealing. J Mol Biol 255:254–266

    CAS  PubMed  Google Scholar 

  96. Gultyaev AP, Batenburg FH, Pleij CW (1995) The computer-simulation of RNA folding pathways using a genetic algorithm. J Mol Biol 250:37–51

    CAS  PubMed  Google Scholar 

  97. Mironov A, Kister A (1985) A kinetic approach to the prediction of RNA secondary structures. J Biomol Struct Dyn 2:953–962

    CAS  PubMed  Google Scholar 

  98. Mironov AA, Lebedev VF (1993) A kinetic model of RNA folding. Biosystems 30:49–56

    CAS  PubMed  Google Scholar 

  99. Isambert H, Siggia ED (2000) Modeling RNA folding paths with pseudoknots: application to hepatitis delta virus ribozyme. Proc Natl Acad Sci USA 97:6515–6520

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Danilova LV, Pervoud DD, Favorov AA, Mironov AA (2006) RNAKinetics: a web server that models secondary structure kinetics of an elongating RNA. J Bioinform Comput Biol 4:589–596

    CAS  PubMed  Google Scholar 

  101. Ndifon W (2005) A complex adaptive systems approach to the kinetic folding of RNA. Biosystems 82:257–265

    CAS  PubMed  Google Scholar 

  102. Zhao PN, Zhang WB, Chen SJ (2010) Predicting secondary structural folding kinetics for nucleic acids. Biophys J 98:1617–1625

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Tang X, Thomas S, Tapia L, Giedroc DP, Amato NM (2008) Simulating RNA folding kinetics on approximated energy landscapes. J Mol Biol 381:1055–1067

    CAS  PubMed  Google Scholar 

  104. Hofacker IL, Flamm C, Heine C, Wolfinger MT, Scheuermann G, Stadler PF (2010) BarMap: RNA folding on dynamic energy landscapes. RNA 16:1308–1316

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Geis M, Flamm C, Wolfinger MT, Tanzer A, Hofacker IL, Middendorf M, Mandl C, Stadler PF, Thurner C (2008) Enhancement of transactivation activity of Rta of Epstein-Barr virus by RanBPM. J Mol Biol 379:242–261

    Google Scholar 

  106. Flamm C, Hofacker IL, Stadler PF, Wolfinger MT (2002) Barrier trees of degenerate landscapes. Z Phys Chem 216:155–173

    CAS  Google Scholar 

  107. Wolfinger MT, Svrcek-Seiler WA, Flamm C, Hofacker IL, Stadler PF (2004) Efficient computation of RNA folding dynamics. J Phys A Math Gen 37:4731–4741

    CAS  Google Scholar 

  108. Tang X, Kirkpatrick B, Thomas S, Song G, Amato NM (2005) Using motion planning to study RNA folding kinetics. J Comp Biol 12:862–881

    CAS  Google Scholar 

  109. Zhang WB, Chen SJ (2006) Exploring the complex folding kinetics of RNA hairpins: I. general folding kinetics analysis. Biophys J 90:765–777

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Tacker M, Fontana W, Stadler PF, Schuster P (1994) Statistics of RNA melting kinetics. Eur Biophys J 23:29

    CAS  PubMed  Google Scholar 

  111. Suvernev AA, Frantsuzov PA (1995) Statistical description of nucleic acid secondary structure folding. J Biomol Struct Dyn 13:135–144

    CAS  PubMed  Google Scholar 

  112. Jacob C, Breton N, Daegelen P, Peccoud J (1997) Probability distribution of the chemical states of a closed system and thermodynamic law of mass action from kinetics: the RNA example. J Chem Phys 107:2913

    CAS  Google Scholar 

  113. Isambert H, Siggia ED (2000) Modeling RNA folding paths with pseudoknots: application to hepatitis delta virus ribozyme. Proc Natl Acad Sci USA 97:6515–6520

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Xia TB, SantaLucia J, Turner DH (1998) Thermodynamic parameters for an expanded nearest-neighbor model for formation of RNA duplexes with Watson–Crick base pairs. Biochemistry 37:14719–14735

    CAS  PubMed  Google Scholar 

  115. Mathews DH, Sabina J, Zuker M, Turner DH (1999) Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol 288:911–940

    CAS  PubMed  Google Scholar 

  116. Morgan SR, Higgs PG (1998) Barrier heights between ground states in a model of RNA secondary structure. J Phys A Math Gen 31:3153–3170

    CAS  Google Scholar 

  117. Henkin TM, Yanofsky C (2002) Regulation by transcription attenuation in bacteria: how RNA provides instructions for transcription termination/antitermination decisions. BioEssays 24:700–707

    CAS  PubMed  Google Scholar 

  118. Merino E, Yanofsky C (2005) Transcription attenuation: a highly conserved regulatory strategy used by bacteria. Trends Genet 21:260–264

    CAS  PubMed  Google Scholar 

  119. Franch T, Gultyaev AP, Gerder K (1997) Programmed cell death by hok/sok of plasmid R1: processing at the hok mRNA 3′-end triggers structural rearrangements that allow translation and antisense RNA binding. J Mol Biol 273:38–51

    CAS  PubMed  Google Scholar 

  120. Heilman-Miller SL, Woodson SA (2003) Effect of transcription on folding of the Tetrahymena ribozyme. RNA 9:722–733

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Brehm SL, Cech TR (1983) The fate of an intervening sequence RNA: excision and cyclization of the Tetrahymena ribosomal RNA intervening sequence in vivo. Biochemistry 22:2390–2397

    CAS  PubMed  Google Scholar 

  122. Zhang F, Ramsay ES, Woodson SA (1995) In vivo facilitation of Tetrahymena group I intron splicing in Escherichia coli pre-ribosomal RNA. RNA 1:284–292

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Treiber DK, Williamson JR (2001) Beyond kinetic traps in RNA folding. Curr Opin Struct Biol 11:309–314

    CAS  PubMed  Google Scholar 

  124. Woodson SA (2002) Folding mechanisms of group I ribozymes: role of stability and contact order. Biochem Soc Trans 30:1166–1169

    CAS  PubMed  Google Scholar 

  125. Zhang LB, Bao P, Michael JL, Zhang Y (2009) Slow formation of a pseudoknot structure is rate limiting in the productive co-transcriptional folding of the self-splicing Candida intron. RNA 15:1986–1992

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Pan T, Artsimovitch I, Fang X, Landick R, Sosnick TR (1999) Folding of a large ribozyme during transcription and the effect of the elongation factor NusA. Proc Natl Acad Sci USA 96:9545–9550

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Zhao PN, Zhang WB, Chen SJ (2011) Cotranscriptional folding kinetics of ribonucleic acid secondary structures. J Chem Phys 135:245101

    PubMed Central  PubMed  Google Scholar 

  128. Das R, Mills TT, Kwok LW, Maskel GS, Millett IS, Doniach S, Finkelstein KD, Herschlag D, Pollack L (2003) Counterion distribution around DNA probed by solution X-ray scattering. Phys Rev Lett 90:188103

    CAS  PubMed  Google Scholar 

  129. Andresen K, Qiu X, Pabit SA, Lamb JS, Park HY, Kwok LW, Pollack L (2008) Mono- and trivalent ions around DNA: a small-angle scattering study of competition and interactions. Biophys J 95:287–295

    CAS  PubMed Central  PubMed  Google Scholar 

  130. Pabit SA, Qiu X, Lamb JS, Li L, Meisburger SP, Pollack L (2009) Both helix topology and counterion distribution contribute to the more effective charge screening in dsRNA compared with dsDNA. Nucleic Acids Res 37:3887–3896

    CAS  PubMed Central  PubMed  Google Scholar 

  131. Kirmizialtin S, Pabit SA, Meisburger SP, Pollack L, Elber R (2012) RNA and its ionic cloud: solution scattering experiments and atomically detailed simulations. Biophys J 102:819–828

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Bai Y, Greenfeld M, Travers KJ, Chu VB, Lipfert J, Doniach S, Herschlag D (2007) Quantitative and comprehensive decomposition of the ion atmosphere around nucleic acids. J Am Chem Soc 129:14981–14988

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Krakauer H (1971) The binding of Mg++ ions to polyadenylate, polyuridylate, and their complexes. Biopolymers 10:2459–2490

    CAS  PubMed  Google Scholar 

  134. Clement RM, Sturm J, Daune MP (1973) Interaction of metallic cations with DNA VI. Specific binding of Mg2+ and Mn2+. Biopolymers 12:405–421

    CAS  Google Scholar 

  135. Soto M, Misra V, Draper DE (2007) Tertiary structure of an RNA pseudoknot is stabilized by “diffuse” Mg2+ ions. Biochemistry 46:2973–2983

    CAS  PubMed  Google Scholar 

  136. Grilley D, Misra V, Caliskan G, Draper DE (2007) Importance of partially unfolded conformations for Mg2+-induced folding of RNA tertiary structure: structural models and free energies of Mg2+ interactions. Biochemistry 46:10266–10278

    CAS  PubMed  Google Scholar 

  137. Rialdi G, Levy J, Biltonen R (1972) Thermodynamic studies of transfer ribonucleic acids. I. Magnesium binding to yeast phenylalanine transfer ribonucleic acid. Biochemistry 11:2472–2479

    CAS  PubMed  Google Scholar 

  138. Romer R, Hach R (1975) tRNA conformation and magnesium binding. A study of a yeast phenylalanine-specific tRNA by a fluorescent indicator and differential melting curves. Eur J Biochem 55:271–284

    CAS  PubMed  Google Scholar 

  139. Stellwagen E, Dong Q, Stellwagen NC (2007) Quantitative analysis of monovalent counterion binding to random-sequence, double-stranded DNA using the replacement ion method. Biochemistry 46:2050–2058

    CAS  PubMed Central  PubMed  Google Scholar 

  140. Smith SB, Cui YJ, Bustamante C (1996) Overstretching B-DNA: The elastic response of individual double-stranded and single-stranded DNA molecules. Science 271:795–799

    CAS  PubMed  Google Scholar 

  141. Murphy MC, Rasnik I, Cheng W, Lohman TM, Ha T (2004) Probing single-stranded DNA conformational flexibility using fluorescence spectroscopy. Biophys J 86:2530–2537

    CAS  PubMed Central  PubMed  Google Scholar 

  142. Tinland B, Pluen A, Sturm J, Weill G (1997) Persistende length of single-stranded DNA. Macromolecules 30:5763–5765

    CAS  Google Scholar 

  143. McIntosh DB, Saleh O (2011) Slat species-dependent electrostatic effects on ssDNA elasticity. Macromolecules 44:2328–2333

    CAS  Google Scholar 

  144. Sim AYL, Lipfert J, Herschlag D, Doniach S (2012) Salt dependence of the radius of gyration and flexibility of single-stranded DNA in solution probed by small-angle x-ray scattering. Phys Rev E 86:021901

    Google Scholar 

  145. Chen H, Meisburger SP, Pabit SA, Sutton JL, Webb WW, Pollack L (2012) Ionic strength-dependent persistence lengths of single-stranded RNA and DNA. Proc Natl Acad Sci USA 109:799–804

    CAS  PubMed Central  PubMed  Google Scholar 

  146. Bizarro CV, Alemany A, Ritort F (2012) Non-specific binding of Na+ and Mg2+ to RNA determined by force spectroscopy methods. Nucleic Acids Res 40:6922–6935

    CAS  PubMed Central  PubMed  Google Scholar 

  147. Tan ZJ, Chen SJ (2006) Electrostatic free energy landscape for nucleic acid helix assembly. Nucleic Acids Res 34:6629–6639

    CAS  PubMed Central  PubMed  Google Scholar 

  148. Williams P, Longfellow CE, Freier SM, Kierzek R, Turner DH (1989) Laser temperature-jump, spectroscopic, and thermodynamic study of salt effects on duplex formation by dGCATGC. Biochemistry 28:4283–4291

    CAS  PubMed  Google Scholar 

  149. Nakano S, Fujimoto M, Hara H, Sugimoto N (1999) Nucleic acid duplex stability: influence of base composition on cation effects. Nucleic Acids Res 27:2957–2965

    CAS  PubMed Central  PubMed  Google Scholar 

  150. Serra MJ, Baird JD, Dale T, Fey BL, Retatagos K, Westhof E (2002) Effects of magnesium ions on the stabilization of RNA oligomers of defined structures. RNA 8:307–323

    CAS  PubMed Central  PubMed  Google Scholar 

  151. Owczarzy R, Moreira BG, You Y, Behlke MA, Walder JA (2008) Predicting stability of DNA duplexes in solutions containing magnesium and monovalent cations. Biochemistry 47:5336–5353

    CAS  PubMed  Google Scholar 

  152. Kuznetsov SV, Ren CC, Woodson SA, Ansari A (2008) Loop dependence of the stability and dynamics of nucleic acid hairpins. Nucleic Acids Res 36:1098–1112

    CAS  PubMed Central  PubMed  Google Scholar 

  153. Vieregg J, Cheng W, Bustamante C, Tinoco I Jr (2007) Measurement of the effect of monovalent cations on RNA hairpin stability. J Am Chem Soc 129:14966–14973

    CAS  PubMed Central  PubMed  Google Scholar 

  154. Tan ZJ, Chen SJ (2006) Nucleic acid helix stability: effects of salt concentration, cation valency and size, and chain length. Biophys J 90:1175–1190

    CAS  PubMed Central  PubMed  Google Scholar 

  155. Tan ZJ, Chen SJ (2007) RNA helix stability in mixed Na+/Mg2+ solution. Biophys J 92:3615–3632

    CAS  PubMed Central  PubMed  Google Scholar 

  156. Tan ZJ, Chen SJ (2008) Salt dependence of nucleic acid hairpin stability. Biophys J 95:738–752

    CAS  PubMed Central  PubMed  Google Scholar 

  157. Nixon PL, Giedroc DP (1998) Equilibrium unfolding (folding) pathway of a model H-type pseudoknotted RNA: the role of magnesium ions in stability. Biochemistry 37:16116–16129

    CAS  PubMed  Google Scholar 

  158. Stellwagen E, Muse JM, Stellwagen NC (2011) Monovalent cation size and DNA conformational stability. Biochemistry 50:3084–3094

    CAS  PubMed  Google Scholar 

  159. Anthony PC, Sim AY, Chu VB, Doniach S, Block SM, Herschlag D (2012) Electrostatics of nucleic acid folding under conformational constraint. J Am Chem Soc 134:4607–4614

    CAS  PubMed Central  PubMed  Google Scholar 

  160. SantaLucia JJ (1998) A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc Natl Acad Sci USA 95:1460–1465

    CAS  PubMed Central  PubMed  Google Scholar 

  161. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    CAS  PubMed Central  PubMed  Google Scholar 

  162. Chen SJ, Dill KA (2000) RNA folding energy landscapes. Proc Natl Acad Sci USA 97:646–651

    CAS  PubMed Central  PubMed  Google Scholar 

  163. SantaLucia J, Hicks D (2004) The thermodynamics of DNA structural motifs. Annu Rev Biophys Biomol Struct 33:415–440

    CAS  PubMed  Google Scholar 

  164. Zhang WB, Chen SJ (2006) Exploring the complex folding kinetics of RNA hairpins: II. Effect of sequence, length, and misfolded states. Biophys J 90:778–787

    CAS  PubMed Central  PubMed  Google Scholar 

  165. Theimer A, Giedroc DP (2000) Contribution of the intercalated adenosine at the helical junction to the stability of the gag-pro frameshifting pseudoknot from mouse mammary tumor virus. RNA 6:409–421

    CAS  PubMed Central  PubMed  Google Scholar 

  166. Koculi E, Hyeon C, Thirumalai D, Woodson SA (2007) Charge density of divalent metal cations determines RNA stability. J Am Chem Soc 129:2676–2682

    CAS  PubMed Central  PubMed  Google Scholar 

  167. Takamoto K, He Q, Morris S, Chance MR, Brenowitz M (2002) Monovalent cations mediate formation of native tertiary structure of the Tetrahymena thermophila ribozyme. Nature Struct Biol 9:928–933

    CAS  PubMed  Google Scholar 

  168. Moghaddam S, Caliskan G, Chauhan S, Hyeon C, Briber RM, Thirumalai D, Woodson SA (2009) Metal ion dependence of cooperative collapse transitions in RNA. J Mol Biol 393:753–764

    CAS  PubMed Central  PubMed  Google Scholar 

  169. Heilman-Miller SL, Thirumalai D, Woodson SA (2001) Role of counterion condensation in folding of the Tetrahymena ribozyme. I. Equilibrium stabilization by cations. J Mol Biol 306:1157–1166

    CAS  PubMed  Google Scholar 

  170. Lambert D, Leipply D, Shiman R, Draper DE (2009) The influence of monovalent cation size on the stability of RNA tertiary structures. J Mol Biol 390:791–804

    CAS  PubMed Central  PubMed  Google Scholar 

  171. Walter NG, Burke JM, Millar DP (1999) Stability of hairpin ribozyme tertiary structure is governed by the interdomain junction. Nature Struct Biol 6:544–549

    CAS  PubMed  Google Scholar 

  172. Pljevaljcic G, Millar DP, Deniz AA (2004) Freely diffusing single hairpin ribozymes provide insights into the role of secondary structure and partially folded states in RNA folding. Biophys J 87:457–467

    CAS  PubMed Central  PubMed  Google Scholar 

  173. Leipply D, Draper DE (2011) Evidence for a thermodynamically distinct Mg2+ ion associated with formation of an RNA tertiary structure. J Am Chem Soc 133:13397–13405

    CAS  PubMed Central  PubMed  Google Scholar 

  174. Weixlbaumer A, Werner A, Flamm C, Westhof E, Schroeder R (2004) Determination of thermodynamic parameters for HIV DIS type loop-loop kissing complexes. Nucleic Acids Res 32:5126–5133

    CAS  PubMed Central  PubMed  Google Scholar 

  175. Lorenz C, Piganeau N, Schroeder R (2006) Stabilities of HIV-1 DIS type RNA loop-loop interactions in vitro and in vivo. Nucleic Acids Res 34:334–342

    CAS  PubMed Central  PubMed  Google Scholar 

  176. Vander Meulen KA, Butcher SE (2012) Characterization of the kinetic and thermodynamic landscape of RNA folding using a novel application of isothermal titration calorimetry. Nucleic Acids Res 40:2140–2151

    CAS  PubMed Central  PubMed  Google Scholar 

  177. Tan ZJ, Chen SJ (2010) Predicting ion binding properties for RNA tertiary structures. Biophys J 99:1565–1576

    CAS  PubMed Central  PubMed  Google Scholar 

  178. Tan ZJ, Chen SJ (2011) Salt contribution to RNA tertiary structure folding stability. Biophys J 101:176–187

    CAS  PubMed Central  PubMed  Google Scholar 

  179. Tan ZJ, Chen SJ (2012) Ion-mediated RNA structural collapse: effect of spatial confinement. Biophys J 103:827–836

    CAS  PubMed Central  PubMed  Google Scholar 

  180. Rau DC, Parsegian VA (1992) Direct measurement of the intermolecular forces between counterion-condensed DNA double helices. Evidence for long range attractive hydration forces. Biophys J 61:246–259

    CAS  PubMed Central  PubMed  Google Scholar 

  181. Rau DC, Parsegian VA (1992) Direct measurement of temperature-dependent solvation forces between DNA double helices. Biophys J 61:260–271

    CAS  PubMed Central  PubMed  Google Scholar 

  182. Bai Y, Chu VB, Lipfert J, Pande VS, Herschlag D, Doniach S (2008) Critical assessment of nucleic acid electrostatics via experimental and computational investigation of an unfolded state ensemble. J Am Chem Soc 130:12334–12341

    CAS  PubMed Central  PubMed  Google Scholar 

  183. Qiu X, Andresen K, Kwok LW, Lamb JS, Park HY, Pollack L (2007) Inter-DNA attraction mediated by divalent counterions. Phys Rev Lett 99:038104

    PubMed  Google Scholar 

  184. Qiu X, Parsegian VA, Rau DC (2010) Divalent counterion-induced condensation of triple-strand DNA. Proc Natl Acad Sci USA 107:21482–21486

    PubMed Central  PubMed  Google Scholar 

  185. Li L, Pabit SA, Meisburger SP, Pollack L (2011) Double-stranded RNA resists condensation. Phys Rev Lett 106:108101

    PubMed Central  PubMed  Google Scholar 

  186. Tan ZJ, Chen SJ (2009) Predicting electrostatic force in RNA folding. Methods Enzymol 469:465–487

    CAS  PubMed  Google Scholar 

  187. Manning GS (1978) The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides. Q Rev Biophys 11:179–246

    CAS  PubMed  Google Scholar 

  188. Schurr MJ (2009) Polyanion models of nucleic acid-metal ion interactions. In: Hud NV (ed) Nucleic acid-metal ion interactions. Royal Society of Chemistry, London, pp 307–344

    Google Scholar 

  189. Ray J, Manning GS (2000) Formation of loose clusters in polyelectrolyte solutions. Macromolecules 33:2901–2908

    CAS  Google Scholar 

  190. Lyubartsev P, Nordenskiold L (1995) Monte Carlo simulation study of ion distribution and osmotic pressure in hexagonally oriented DNA. J Phys Chem 99:10373–10382

    CAS  Google Scholar 

  191. Dai L, Mu Y, Nordenskiöld L, van der Maarel JR (2008) Molecular dynamics simulation of multivalent-ion mediated attraction between DNA molecules. Phys Rev Lett 100:118301

    PubMed  Google Scholar 

  192. Gilson MK, Sharp KA, Honig B (1987) Calculating the electrostatic potential of molecules in solution: method and error assessment. J Comput Chem 9:327–335

    Google Scholar 

  193. Boschitsch H, Fenley MO (2007) A new outer boundary formulation and energy corrections for the nonlinear Poisson-Boltzmann equation. J Comput Chem 28:909–921

    CAS  PubMed  Google Scholar 

  194. Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2000) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci USA 98:10037–10041

    Google Scholar 

  195. Zhou YC, Feig M, Wei GW (2008) Highly accurate biomolecular electrostatics in continuum dielectric environments. J Comput Chem 29:87–97

    CAS  PubMed  Google Scholar 

  196. Lu B, Cheng X, Huang J, McCammon JA (2010) AFMPB: an adaptive fast multipole Poisson-Boltzmann solver for calculating electrostatics in biomolecular systems. Comput Phys Commun 181:1150–1160

    CAS  PubMed Central  PubMed  Google Scholar 

  197. Misra VK, Shiman R, Draper DE (2003) A thermodynamic framework for the magnesium-dependent folding of RNA. Biopolymers 69:118–136

    CAS  PubMed  Google Scholar 

  198. Tan ZJ, Chen SJ (2005) Electrostatic correlations and fluctuations for ion binding to a finite length polyelectrolyte. J Chem Phys 122:044903

    Google Scholar 

  199. Chu VB, Bai Y, Lipfert J, Herschlag D, Doniach S (2007) Evaluation of ion binding to DNA duplexes using a size-modified Poisson-Boltzmann theory. Biophys J 93:3202–3209

    CAS  PubMed Central  PubMed  Google Scholar 

  200. Kirmizialtin S, Silalahi AR, Elber R, Fenley MO (2012) The ionic atmosphere around A-RNA: Poisson-Boltzmann and molecular dynamics simulations. Biophys J 102:829–838

    CAS  PubMed Central  PubMed  Google Scholar 

  201. Gavryushov S (2008) Electrostatics of B-DNA in NaCl and CaCl2 solutions: ion size, interionic correlation, and solvent dielectric saturation effects. J Phys Chem B 112:8955–8965

    CAS  PubMed  Google Scholar 

  202. Grochowski P, Trylska J (2008) Continuum molecular electrostatics, salt effects and counterion binding. A review of the Poisson-Boltzmann theory and its modifications. Biopolymers 89:93–113

    CAS  PubMed  Google Scholar 

  203. Forsman J (2004) A simple correlation-corrected Poisson-Boltzmann theory. J Phys Chem B 108:9236–9245

    CAS  Google Scholar 

  204. Vlachy V (1999) Ionic effect beyond Poisson-Boltzmann theory. Annu Rev Phys Chem 50:145–165

    CAS  PubMed  Google Scholar 

  205. Wang K, Yu YX, Gao GH (2008) Density functional study on the structural and thermodynamic properties of aqueous DNA-electrolyte solution in the framework of cell model. J Chem Phys 128:185101

    PubMed  Google Scholar 

  206. Chen YG, Weeks JD (2006) Local molecular field theory for effective attractions between like charged objects in systems with strong Coulomb interactions. Proc Natl Acad Sci USA 103:7560–7565

    CAS  PubMed Central  PubMed  Google Scholar 

  207. Tan ZJ, Chen SJ (2006) Ion-mediated nucleic acid helix-helix interactions. Biophys J 91:518–536

    CAS  PubMed Central  PubMed  Google Scholar 

  208. Tan ZJ, Chen SJ (2008) Electrostatic free energy landscapes for DNA helix bending. Biophys J 94:3137–3149

    CAS  PubMed Central  PubMed  Google Scholar 

  209. Chen G, Tan ZJ, Chen SJ (2010) Salt-dependent folding energy landscape of RNA three-way junction. Biophys J 98:111–120

    CAS  PubMed Central  PubMed  Google Scholar 

  210. Chen G, Chen SJ (2011) Quantitative analysis of the ion-dependent folding stability of DNA triplexes. Phys Biol 8:066006

    PubMed Central  PubMed  Google Scholar 

  211. He Z, Chen SJ (2012) Predicting ion-nucleic acid interactions by energy landscape-guided sampling. J Chem Theo Compt 8:2095–2102

    CAS  Google Scholar 

  212. Cate JH, Gooding AR, Podell E, Zhou K, Golden BL, Kundrot CE, Cech TR, Doudna JA (1996) Crystal structure of a group I ribozyme domain: principles of RNA packing. Science 273:1678–1685

    CAS  PubMed  Google Scholar 

  213. Zhou HX, Rivas G, Minton AP (2008) Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences. Annu Rev Biophys 37:375–397

    CAS  PubMed Central  PubMed  Google Scholar 

  214. Lambert D, Leipply D, Draper DE (2010) The osmolyte TMAO stabilizes native RNA tertiary structures in the absence of Mg2+: evidence for a large barrier to folding from phosphate dehydration. J Mol Biol 404:138–157

    CAS  PubMed Central  PubMed  Google Scholar 

  215. Pincus DL, Hyeon C, Thirumalai D (2008) Effects of trimethylamine N-oxide (TMAO) and crowding agents on the stability of RNA hairpins. J Am Chem Soc 130:7364–7372

    CAS  PubMed  Google Scholar 

  216. Kilburn D, Roh JH, Guo L, Briber RM, Woodson SA (2010) Molecular crowding stabilizes folded RNA structure by the excluded volume effect. J Am Chem Soc 132:8690–8696

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhijie Tan or Wenbing Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Shanghai Jiaotong University Press, Shanghai and Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Tan, Z., Zhang, W., Shi, Y., Wang, F. (2015). RNA Folding: Structure Prediction, Folding Kinetics and Ion Electrostatics. In: Wei, D., Xu, Q., Zhao, T., Dai, H. (eds) Advance in Structural Bioinformatics. Advances in Experimental Medicine and Biology, vol 827. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9245-5_11

Download citation

Publish with us

Policies and ethics