Skip to main content

Transcriptional Regulation by Mutant p53 and Oncogenesis

  • Chapter
  • First Online:
Mutant p53 and MDM2 in Cancer

Part of the book series: Subcellular Biochemistry ((SCBI,volume 85))

Abstract

More than half of all human cancers carry p53 gene mutations whose resulting proteins are mostly full-length with a single aminoacid change, abundantly present in cancer cells and unable to exert oncosuppressor activities. Frequently, mutant p53 proteins gain oncogenic functions through which they actively contribute to the establishment, the maintenance and the spreading of a given cancer cell. Intense research effort has been devoted to the deciphering of the molecular mechanisms underlying the gain of function of mutant p53 proteins. Here we mainly review the oncogenic transcriptional activity of mutant p53 proteins that mainly occurs through the aberrant cooperation with bona-fide transcription factors and leads to either aberrant up-regulation or down-regulation of selected target genes. Thus, mutant p53 proteins are critical components of oncogenic transcriptional networks that have a profound impact in human cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bartek J, Bartkova J, Lukas J (2007) DNA damage signalling guards against activated oncogenes and tumour progression. Oncogene 26:7773–7779

    Article  CAS  PubMed  Google Scholar 

  2. Bonnefoi H, Diebold-Berger S, Therasse P, Hamilton A, van de Vijver M, MacGrogan G et al (2003) Locally advanced/inflammatory breast cancers treated with intensive epirubicin-based neoadjuvant chemotherapy: are there molecular markers in the primary tumour that predict for 5-year clinical outcome? Ann Oncol 14:406–413

    Article  CAS  PubMed  Google Scholar 

  3. Brooks CL, Gu W (2003) Ubiquitination, phosphorylation and acetylation: the molecular basis for p53 regulation. Curr Opin Cell Biol 15:164–171

    Article  CAS  PubMed  Google Scholar 

  4. Burns TF, Fei P, Scata KA, Dicker DT, El-Deiry WS (2003) Silencing of the novel p53 target gene Snk/Plk2 leads to mitotic catastrophe in paclitaxel (taxol)- exposed cells. Mol Cell Biol 23:5556–5571

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Bykov VJ, Issaeva N, Selivanova G, Wiman KG (2002) Mutant p53-dependent growth suppression distinguishes PRIMA-1 from known anticancer drugs: a statistical analysis of information in the National Cancer Institute database. Carcinogenesis 23:2011–2018

    Article  CAS  PubMed  Google Scholar 

  6. Bykov VJ, Issaeva N, Shilov A, Hultcrantz M, Pugacheva E, Chumakov P et al (2002) Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound. Nat Med 8:282–288

    Article  CAS  PubMed  Google Scholar 

  7. Coffill CR, Muller PA, Oh HK, Neo SP, Hogue KA, Cheok CF et al (2012) Mutant p53 interactome identifies nardilysin as a p53R273H-specific binding partner that promotes invasion. EMBO Rep 13:638–644

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Deb S, Jackson CT, Subler MA, Martin DW (1992) Modulation of cellular and viral promoters by mutant human p53 proteins found in tumor cells. J Virol 66:6164–6170

    Google Scholar 

  9. Dell’Orso S, Fontemaggi G, Stambolsky P, Goeman F, Voellenkle C, Levrero M et al (2011) ChIP-on-chip analysis of in vivo mutant p53 binding to selected gene promoters. OMICS 15:305–312

    Article  PubMed  Google Scholar 

  10. Di Agostino S, Strano S, Emiliozzi V, Zerbini V, Mottolese M, Sacchi A et al (2006) Gain of function of mutant p53: the mutant p53/NF-Y protein complex reveals an aberrant transcriptional mechanism of cell cycle regulation. Cancer Cell 10:191–202

    Article  PubMed  Google Scholar 

  11. Di Agostino S, Cortese G, Monti O, Dell’Orso S, Sacchi A, Eisenstein M, Citro G, Strano S, Blandino G (2008) The disruption of the protein complex mutant p53/p73 increases selectively the response of tumor cells to anticancer drugs. Cell Cycle 7:3440–3447

    Article  PubMed  Google Scholar 

  12. Di Como CJ, Gaiddon C, Prives C (1999) p73 function is inhibited by tumor-derived p53 mutants in mammalian cells. Mol Cell Biol 19:1438–1449

    PubMed Central  PubMed  Google Scholar 

  13. Dittmer D, Pati S, Zambetti G, Chu S, Teresky AK, Moore M et al (1993) Gain of function mutations in p53. Nat Genet 4:42–46

    Article  CAS  PubMed  Google Scholar 

  14. Do PM, Varanasi L, Fan S, Li C, Kubacka I, Newman V et al (2012) Mutant p53 cooperates with ETS2 to promote etoposide resistance. Genes Dev 26:830–845

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Donehower LA, Lozano G (2009) 20 years studying p53 functions in genetically engineered mice. Nat Rev Cancer 9:831–841

    Article  CAS  PubMed  Google Scholar 

  16. Dong P, Karaayvaz M, Jia N, Kaneuchi M, Hamada J, Watari H et al (2012). Mutant p53 gain-of-function induces epithelial-mesenchymal transition through modulation of the miR-130b-ZEB1 axis. Oncogene 32:3286–3295

    Google Scholar 

  17. Donzelli S, Fontemaggi G, Fazi F, Di Agostino S, Padula F, Biagioni F et al (2012) MicroRNA-128-2 targets the transcriptional repressor E2F5 enhancing mutant p53 gain of function. Cell Death Differ 19:1038–1048

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Flores ER, Tsai KY, Crowley D, Sengupta S, Yang A, McKeon F et al (2002) p63 and p73 are required for p53-dependent apoptosis in response to DNA damage. Nature 416:560–564

    Article  CAS  PubMed  Google Scholar 

  19. Fontemaggi G, Dell’Orso S, Trisciuoglio D, Shay T, Melucci E, Fazi F et al (2009) The execution of the transcriptional axis mutant p53, E2F1 and ID4 promotes tumor neo-angiogenesis. Nat Struct Mol Biol 16:1086–1093

    Article  CAS  PubMed  Google Scholar 

  20. Foster BA, Coffey HA, Morin MJ, Rastinejad F (1999) Pharmacological rescue of mutant p53 conformation and function. Science 286:2507–2510

    Article  CAS  PubMed  Google Scholar 

  21. Frazier MW, He X, Wang J, Gu Z, Cleveland JL, Zambetti GP (1998) Activation of c-myc gene expression by tumor-derived p53 mutants requires a discrete C-terminal domain. Mol Cell Biol 18:3735–3743

    Google Scholar 

  22. Friedler A, Hansson LO, Veprintsev DB, Freund SM, Rippin TM, Nikolova PV et al (2002) A peptide that binds and stabilizes p53 core domain: chaperone strategy for rescue of oncogenic mutants. Proc Natl Acad Sci U S A 99:937–942

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Friedler A, Veprintsev DB, Hansson LO, Fersht AR (2003) Kinetic instability of p53 core domain mutants: implications for rescue by small molecules. J Biol Chem 278:24108–24112

    Article  CAS  PubMed  Google Scholar 

  24. Gaiddon C, Lokshin M, Ahn J, Zhang T, Prives C (2001) A subset of tumor- derived mutant forms of p53 down-regulate p63 and p73 through a direct interaction with the p53 core domain. Mol Cell Biol 21:1874–1887

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Goeman F, Fontemaggi G, Blandino G (2012) ChIP-on-chip to identify mutant p53 targets. Methods Mol Biol 962:211–226

    Article  Google Scholar 

  26. Gurtner A, Starace G, Norelli G, Piaggio G, Sacchi A, Bossi G (2010) Mutant p53-induced up-regulation of mitogen-activated protein kinase kinase 3 contributes to gain of function. J Biol Chem 285:14160–14169

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Harvey M, McArthur MJ, Montgomery CA Jr, Butel JS, Bradley A, Donehower LA (1993) Spontaneous and carcinogen-induced tumorigenesis in p53-deficient mice. Nat Genet 5:225–229

    Article  CAS  PubMed  Google Scholar 

  28. Haupt S, Haupt Y (2004) Improving cancer therapy through p53 management. Cell Cycle 3:912–916

    CAS  PubMed  Google Scholar 

  29. Haupt S, Haupt Y (2012) Mutant p53 subverts PLK2 function in a novel, reinforced loop of corruption. Cell Cycle 11:217–218

    Article  CAS  PubMed  Google Scholar 

  30. Hensel M, Schneeweiss A, Sinn HP, Egerer G, Solomayer E, Haas R et al (2002) P53 is the strongest predictor of survival in high-risk primary breast cancer patients undergoing high-dose chemotherapy with autologous blood stem cell support. Int J Cancer 100:290–296

    Article  CAS  PubMed  Google Scholar 

  31. Hussain SP, Harris CC (1998) Molecular epidemiology of human cancer. Toxicol Lett 102–103:219–225

    Article  PubMed  Google Scholar 

  32. Irwin MS, Kondo K, Marin MC, Cheng LS, Hahn WC, Kaelin WG Jr (2003) Chemosensitivity linked to p73 function. Cancer Cell 3:403–410

    Article  CAS  PubMed  Google Scholar 

  33. Iwakuma T, Lozano G, Flores ER (2005) Li-Fraumeni syndrome: a p53 family affair. Cell Cycle 4:865–867

    Article  CAS  PubMed  Google Scholar 

  34. Jacks T, Remington L, Williams BO, Schmitt EM, Halachmi S, Bronson RT et al (1994) Tumor spectrum analysis in p53-mutant mice. Curr Biol 4:1–7

    Article  CAS  PubMed  Google Scholar 

  35. Kato S, Han SY, Liu W, Otsuka K, Shibata H, Kanamaru R et al (2003) Understanding the function-structure and function-mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis. Proc Natl Acad Sci U S A 100:8424–8429

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Kim E, Deppert W (2004) Transcriptional activities of mutant p53: when mutations are more than a loss. J Cell Biochem 93:878–886

    Article  CAS  PubMed  Google Scholar 

  37. Koga H, Deppert W (2000) Identification of genomic DNA sequences bound by mutant p53 protein (Gly245→Ser) in vivo. Oncogene 19:4178–4183

    Article  CAS  PubMed  Google Scholar 

  38. Kravchenko JE, Ilyinskaya GV, Komarov PG, Agapova LS, Kochetkov DV, Strom E et al (2008) Small-molecule RETRA suppresses mutant p53-bearing cancer cells through a p73-dependent salvage pathway. Proc Natl Acad Sci U S A 105:6302–6307

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Lane DP, Hupp TR (2003) Drug discovery and p53. Drug Discov Today 8:347–355

    Article  CAS  PubMed  Google Scholar 

  40. Lang GA, Iwakuma T, Suh YA, Liu G, Rao VA, Parant JM et al (2004) Gain of function of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome. Cell 119:861–872

    Article  CAS  PubMed  Google Scholar 

  41. Lehmann S, Bykov VJ, Ali D, Andren O, Cherif H, Tidefelt U et al (2012) Targetingp53 in vivo: a first-in-human study with p53-targeting compound APR- 246 in refractory hematologic malignancies and prostate cancer. J Clin Oncol 30:3633–3639

    Article  CAS  PubMed  Google Scholar 

  42. Liu G, McDonnell TJ, Montes de Oca Luna R, Luna R, Kapoor M, Mims B, El-Naggar AK et al (2000) High metastatic potential in mice inheriting a targeted p53 missense mutation. Proc Natl Acad Sci U S A 97:4174–4179

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Ludes-Meyers JH, Subler MA, Shivakumar CV, Munoz RM, Jiang P, Bigger JE et al (1996) Transcriptional activation of the human epidermal growth factor receptor promoter by human p53. Mol Cell Biol 16:6009–6019

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Luu Y, Bush J, Cheung KJ Jr, Li G (2002) The p53 stabilizing compound CP- 31398 induces apoptosis by activating the intrinsic Bax/mitochondrial/caspase-9 pathway. Exp Cell Res 276:214–222

    Article  CAS  PubMed  Google Scholar 

  45. Malamou-Mitsi V, Gogas H, Dafni U, Bourli A, Fillipidis T, Sotiropoulou M et al (2006) Evaluation of the prognostic and predictive value of p53 and Bcl-2 in breast cancer patients participating in a randomized study with dose-dense sequential adjuvant chemotherapy. Ann Oncol 17:1504–1511

    Article  CAS  PubMed  Google Scholar 

  46. Martins CP, Brown-Swigart L, Evan GI (2006) Modeling the therapeutic efficacy of p53 restoration in tumors. Cell 127:1323–1334

    Article  CAS  PubMed  Google Scholar 

  47. Masciarelli S, Fontemaggi G, Di Agostino S, Donzelli S, Carcarino E, Strano S et al (2013). Gain of function mutp53 down-regulates miR223 contributing to chemoresistance of cultured tumor cells. Oncogene 33:1601–1608

    Google Scholar 

  48. Miller LD, Smeds J, George J, Vega VB, Vergara L, Ploner A et al (2005) An expression signature for p53 status in human breast cancer predicts mutation status, transcriptional effects, and patient survival. Proc Natl Acad Sci U S A 102:13550–13555

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Neilsen PM, Noll JE, Suetani RJ, Schulz RB, Al-Ejeh F, Evdokiou A et al (2011) Mutant p53 uses p63 as a molecular chaperone to alter gene expression and induce a pro-invasive secretome. Oncotarget 2:1203–1217

    PubMed Central  PubMed  Google Scholar 

  50. Neilsen PM, Noll JE, Mattiske S, Bracken CP, Gregory PA, Schulz RB et al (2012) Mutant p53 drives invasion in breast tumors through up-regulation of miR-155. Oncogene 32:2992–3000

    Google Scholar 

  51. O’Farrell TJ, Ghosh P, Dobashi N, Sasaki CY, Longo DL (2004) Comparison of the effect of mutant and wild-type p53 on global gene expression. Cancer Res 64:8199–8207

    Article  PubMed  Google Scholar 

  52. Olive KP, Tuveson DA, Ruhe ZC, Yin B, Willis NA, Bronson RT et al (2004) Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome. Cell 119:847–860

    Article  CAS  PubMed  Google Scholar 

  53. Olivier M, Langerod A, Carrieri P, Bergh J, Klaar S, Eyfjord J et al (2006) The clinical value of somatic TP53 gene mutations in 1,794 patients with breast cancer. Clin Cancer Res 12:1157–1167

    Article  CAS  PubMed  Google Scholar 

  54. Pastorcic M, Das HK (2000) Regulation of transcription of the human presenilin-1 gene by ets transcription factors and the p53 protooncogene. J Biol Chem 275:34938–34945

    Article  CAS  PubMed  Google Scholar 

  55. Preuss U, Kreutzfeld R, Scheidtmann KH (2000) Tumor-derived p53 mutant C174Y is a gain-of-function mutant which activates the fos promoter and enhances colony formation. Int J Cancer 88:162–171

    Google Scholar 

  56. Rippin TM, Bykov VJ, Freund SM, Selivanova G, Wiman KG, Fersht AR (2002) Characterization of the p53-rescue drug CP-31398 in vitro and in living cells. Oncogene 21:2119–2129

    Article  CAS  PubMed  Google Scholar 

  57. Sampath J, Sun D, Kidd VJ, Grenet J, Gandhi A, Shapiro LH et al (2001) Mutant p53 cooperates with ETS and selectively up-regulates human MDR1 not MRP1. J Biol Chem 276:39359–39367

    Article  CAS  PubMed  Google Scholar 

  58. Sankala H, Vaughan C, Wang J, Deb S, Graves PR (2011) Upregulation of the mitochondrial transport protein, Tim50, by mutant p53 contributes to cell growth and chemoresistance. Arch Biochem Biophys 512:52–60

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Scian MJ, Stagliano KE, Deb D, Ellis MA, Carchman EH, Das A et al (2004) Tumor-derived p53 mutants induce oncogenesis by transactivating growth-promoting genes. Oncogene 23:4430–4443

    Article  CAS  PubMed  Google Scholar 

  60. Scian MJ, Stagliano KE, Ellis MA, Hassan S, Bowman M, Miles MF et al (2004) Modulation of gene expression by tumor-derived p53 mutants. Cancer Res 64:7447–7454

    Article  CAS  PubMed  Google Scholar 

  61. Shivakumar CV, Brown DR, Deb S, Deb SP (1995) Wild-type human p53 transactivates the human proliferating cell nuclear antigen promoter. Mol Cell Biol 15:6785–6793

    Google Scholar 

  62. Solomon H, Buganim Y, Kogan-Sakin I, Pomeraniec L, Assia Y, Madar S, Goldstein I, Brosh R, Kalo E, Beatus T, Goldfinger N, Rotter V (2012) Various p53 mutant proteins differently regulate the Ras circuit to induce a cancer-related gene signature. J Cell Sci. 125:3144–3152

    Google Scholar 

  63. Song H, Xu Y (2007) Gain of function of p53 cancer mutants in disrupting critical DNA damage response pathways. Cell Cycle 6:1570–1573

    Article  CAS  PubMed  Google Scholar 

  64. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A 98:10869–10874

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Soussi T, Lozano G (2005) p53 mutation heterogeneity in cancer. Biochem Biophys Res Commun 331:834–842

    Article  CAS  PubMed  Google Scholar 

  66. Soussi T, Wiman KG (2007) Shaping genetic alterations in human cancer: the p53 mutation paradigm. Cancer Cell 12:303–312

    Article  CAS  PubMed  Google Scholar 

  67. Strano S, Fontemaggi G, Costanzo A, Rizzo MG, Monti O, Baccarini A et al (2002) Physical interaction with human tumor-derived p53 mutants inhibits p63 activities. J Biol Chem 277:18817–18826

    Article  CAS  PubMed  Google Scholar 

  68. Strano S, Blandino G (2003) p73-mediated chemosensitivity: a preferential target of oncogenic mutant p53. Cell Cycle 2:348–349

    Article  CAS  PubMed  Google Scholar 

  69. Strano S, Dell’Orso S, Di Agostino S, Fontemaggi G, Sacchi A, Blandino G (2007) Mutant p53: an oncogenic transcription factor. Oncogene 26:2212–2219

    Article  CAS  PubMed  Google Scholar 

  70. Sun Y, Cheung JM, Martel-Pelletier J, Pelletier JP, Wenger L, Altman RD et al (2000) Wild type and mutant p53 differentially regulate the gene expression of human collagenase-3 (hMMP-13). J Biol Chem 275:11327–11332

    Article  CAS  PubMed  Google Scholar 

  71. Takimoto R, Wang W, Dicker DT, Rastinejad F, Lyssikatos J, el-Deiry WS (2002) The mutant p53-conformation modifying drug, CP-31398, can induce apoptosis of human cancer cells and can stabilize wild-type p53 protein. Cancer Biol Ther 1:47–55

    Article  CAS  PubMed  Google Scholar 

  72. Tang Y, Luo J, Zhang W, Gu W (2006) Tip60-dependent acetylation of p53 modulates the decision between cell-cycle arrest and apoptosis. Mol Cell 24:827–839

    Article  CAS  PubMed  Google Scholar 

  73. Tepper CG, Gregg JP, Shi XB, Vinall RL, Baron CA, Ryan PE et al (2005) Profiling of gene expression changes caused by p53 gain-of-function mutant alleles in prostate cancer cells. Prostate 65:375–389

    Article  CAS  PubMed  Google Scholar 

  74. Valenti F, Fausti F, Biagioni F, Shay T, Fontemaggi G, Domany E et al (2012) Mutant p53 oncogenic functions are sustained by Plk2 kinase through an autoregulatory feedback loop. Cell Cycle 10:4330–4340

    Article  Google Scholar 

  75. Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z et al (2004) In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303:844–848

    Article  CAS  PubMed  Google Scholar 

  76. Vaughan C, Windle B, Deb S (2013) ChIP sequencing to identify p53 targets. Methods Mol Biol 962:227–236

    Article  CAS  PubMed  Google Scholar 

  77. Ventura A, Kirsch DG, McLaughlin ME, Tuveson DA, Grimm J, Lintault L et al (2007) Restoration of p53 function leads to tumour regression in vivo. Nature 445:661–665

    Article  CAS  PubMed  Google Scholar 

  78. Weisz L, Zalcenstein A, Stambolsky P, Cohen Y, Goldfinger N, Oren M et al (2004) Transactivation of the EGR1 gene contributes to mutant p53 gain of function. Cancer Res 64:8318–8327

    Article  CAS  PubMed  Google Scholar 

  79. Weisz L, Oren M, Rotter V (2007) Transcription regulation by mutant p53. Oncogene 26:2202–2211

    Article  CAS  PubMed  Google Scholar 

  80. Will K, Warnecke G, Wiesmuller L, Deppert W (1998) Specific interaction of mutant p53 with regions of matrix attachment region DNA elements (MARs) with a high potential for base-unpairing. Proc Natl Acad Sci U S A 95:13681–13686

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Wu J, Smith LT, Plass C, Huang TH (2006) ChIP-chip comes of age for genome-wide functional analysis. Cancer Res 66:6899–6902

    Article  CAS  PubMed  Google Scholar 

  82. Wulf GM, Liou YC, Ryo A, Lee SW, Lu KP (2002) Role of Pin1 in the regulation of p53 stability and p21 transactivation, and cell cycle checkpoints in response to DNA damage. J Biol Chem 277:47976–47979

    Article  CAS  PubMed  Google Scholar 

  83. Xu Y (2003) Regulation of p53 responses by post-translational modifications. Cell Death Differ 10:400–403

    Article  CAS  PubMed  Google Scholar 

  84. Xue W, Zender L, Miething C, Dickins RA, Hernando E, Krizhanovsky V et al (2007) Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445:656–660

    Article  CAS  PubMed  Google Scholar 

  85. Yeudall WA, Vaughan CA, Miyazaki H, Ramamoorthy M, Choi MY, Chapman CG et al (2012) Gain-of-function mutant p53 upregulates CXC chemokines and enhances cell migration. Carcinogenesis 33:442–451

    Article  CAS  PubMed  Google Scholar 

  86. Zacchi P, Gostissa M, Uchida T, Salvagno C, Avolio F, Volinia S et al (2002) The prolyl isomerase Pin1 reveals a mechanism to control p53 functions after genotoxic insults. Nature 419:853–857

    Article  CAS  PubMed  Google Scholar 

  87. Zalcenstein A, Weisz L, Stambolsky P, Bar J, Rotter V, Oren M (2006) Repression of the MSP/MST-1 gene contributes to the antiapoptotic gain of function of mutant p53. Oncogene 25:359–369

    CAS  PubMed  Google Scholar 

  88. Zheng H, You H, Zhou XZ, Murray SA, Uchida T, Wulf G et al (2002) The prolyl isomerase Pin1 is a regulator of p53 in genotoxic response. Nature 419:849–853

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Blandino M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Santoro, R., Strano, S., Blandino, G. (2014). Transcriptional Regulation by Mutant p53 and Oncogenesis. In: Deb, S., Deb, S. (eds) Mutant p53 and MDM2 in Cancer. Subcellular Biochemistry, vol 85. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9211-0_5

Download citation

Publish with us

Policies and ethics