Skip to main content

Remediation of Potentially Toxic Elements in Contaminated Soils

  • Chapter
  • First Online:
PHEs, Environment and Human Health

Abstract

This chapter aims to offer an overview of the main remediation methods of potentially toxic elements in contaminated soils, mainly heavy metals, metalloids and radionuclides, focusing on their essential characteristics, advantages and limitations. It consists of two main groups of technologies: the first group dealing with containment and confinement, minimizing their toxicity, mobility and bioavailability. Containment measures include covering, sealing, encapsulation and immobilization through solidification (cement-based, polyethylene and resine binders, bituminization or asphalt batching and vitrification or glassification) and stabilization with inorganic and organic amendments. The second group, remediation with decontamination is based on the remotion, clean up and/or destruction of contaminants. This group includes mechanical procedures (excavation, transport and disposal to landfills), physical separations, chemical technologies such as soil washing with leaching or precipitation of potentially toxic elements, soil flushing, thermal treatments (desorption, pyrometallurgical processes and incineration) and electrokinetic technologies (electromigration, electroosmosis, electrophoresis and combinations of electrokinetics with other techniques). There are also two approaches of biological nature: bioremediation (biosorption, bioreduction, biomineralization and bioleaching-with some examples from Korea) and phytoremediation (phytoextraction, including chelate-assisted phytoextraction, phytostabilization, phytoremediation in mining activities -with examples from Portugal, Spain, Ecuador, Peru and Chile mainly-, phytovolatilisation and phytomining).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrams MM, Shenan C, Zasoski RJ, Burau RG (1990) Selenomethionine uptake by wheat seedlings. Agronomy J 82:1127–1130

    CAS  Google Scholar 

  • Abreu MM, Santos ES, Ferreira M, Magalhães MCF (2012a) Cistus salviifolius a promising species for mine wastes remediation. J Geochem Explor 113:86–93

    Google Scholar 

  • Abreu MM, Santos ES, Magalhães MCF, Fernandes E (2012b) Trace elements tolerance, accumulation and translocation in Cistus populifolius, Cistus salviifolius and their hybrid growing in polymetallic contaminated mine areas. J Geochem Explor 123:52–60

    Google Scholar 

  • Acar YB, Gale RJ, Alshawabkeh RE, Marks S, Puppala M, Bricka M, Parker R (1995) Electrokinetic remediation: basics and technology status. J Hazard Mater 40:117–137

    CAS  Google Scholar 

  • Adriano DC (2001) Trace elements in terrestrial environments: biogeochemistry, bioavailability and risk of metals. Springer, New York

    Google Scholar 

  • Anderson JW, Scarf AR (1983) Selenium and plant metabolism. In: Robb DA, Pierpoint WS (eds) Metals and micronutrients: uptake and utilization by plants. Academic, New York, pp 241–275

    Google Scholar 

  • Anderson CWN, Brooks RR, Stewart RB, Simcock R (1998a) Harvesting a crop of gold in plants. Nature 395:553–554

    Google Scholar 

  • Anderson CWN, Brooks RR, Stewart RB, Simcock R (1998b) Gold uptake by plants. Gold Bull 32(2):48–51

    Google Scholar 

  • Anderson CWN, Brooks RR, Chiarucci A, LaCoste CJ, Leblanc M, Robinson BH, Simcock R, Stewart RB (1999) Phytomining for nickel, thallium and gold. J Geochem Explor 67:407–415

    CAS  Google Scholar 

  • Anderson CWN, Moreno F, Meech J (2005) A field demonstration of gold phytoextraction technology. Miner Eng 18:385–392

    CAS  Google Scholar 

  • Antonsiewicz DM, Escude-Duran C, Wierzbowska E, Sklodowska A (2008) Indigenous plant species with potential for the phytoremediation of arsenic and metal contaminated soil. Water Air Soil Pollut 19:197–210

    Google Scholar 

  • Baker AJM (1981) Accumulators and excluders: strategies in the response of plants to heavy metals. J Plant Nutr 3:643–654

    CAS  Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements – a review of their distribution, ecology and phytochemistry. Biorecovery 1:811–826

    Google Scholar 

  • Baker AJM, McGrath SP, Sidoli CMD, Reeves RD (1994) The possibility of in-situ heavy-metal decontamination of polluted soils using crops of metal-accumulating plants. Resour Conserv Recycl 11:41–49

    Google Scholar 

  • Bañuelos GS (2000) Factors influencing field phytoremediation of selenium-laden soils. In: Terry N, Bañuelos GS (eds) Phytoremediation of trace elements in soils and waters. CRC Press, Inc., Boca Raton, pp 41–60

    Google Scholar 

  • Bañuelos GS (2006) Phyto-products may be essential for sustainability and implementation of phytoremediation. Environ Pollut 144:19–23

    Google Scholar 

  • Barceló J, Poschenrieder C (2003) Phytoremediation: principles and perspectives. Contrib Sci 2:333–344

    Google Scholar 

  • Battelle Memorial Institute and EPA (1992) In situ electroacoustic soil decontamination, superfund innovative technology evaluation program, EPA, Technology Profiles, 7th edn, Columbus, pp 248–249

    Google Scholar 

  • Bech J, Poschenrieder CH, Llugany M, Barceló J, Tume P, Tobías FJ, Barranzuela JL, Vásquez ER (1997) Arsenic and heavy metal contamination of soil and vegetation around a copper mine in Northern Peru. Sci Total Environ 203:83–91

    CAS  Google Scholar 

  • Bech J, Poschenrieder C, Barceló J, Lansac A (2002) Plants from mine spoils in the South American area as potential sources of germplas, for phytoremediation technologies. Acta Biotechnol 22(1–2):5–11

    CAS  Google Scholar 

  • Bech J, Suarez M, Reverter F, Tume P, Sanchez P, Roca N, Lansac A (2010) Selenium and other trace element in phosphorites: a comparison between those of bayovar-sechura and other provenancaes. J Geochem Explor 167:146–160

    Google Scholar 

  • Bech J, Duran P, Roca N, Poma W, Sánchez I, Barceló J, Boluda R, Roca-Pérez L, Poschenrieder C (2012a) Shoot accumulation of several trace elements in native plant species from contaminated soils in the Peruvian Andes. J Geochem Explor 113:106–111

    Google Scholar 

  • Bech J, Duran P, Roca N, Poma W, Sánchez I, Barceló J, Boluda R, Roca-Pérez L, Poschenrieder C (2012b) Accumulation of Pb and Zn in Bidens triplinervia and Senecio sp. Spontaneous species from mine spoils in Peru and their potential use in phytoremediation. J Geochem Explor 123:109–113

    Google Scholar 

  • Bech J, Roca N, Barceló J, Duran P, Tume P, Poschenrieder C (2012c) Soil and plant contamination by lead mining in Bellmunt (Western Mediterranean Area). J Geochem Explor 113:94–99

    CAS  Google Scholar 

  • Bech J, Corrales I, Tume P, Barceló J, Duran P, Roca N, Poschenrieder C (2012d) Accumulation of antimony and other potentially toxic elements in plant around a former antimony mine located in the Ribes Valley (eastern Pyrenees). J Geochem Explor 113:100–105

    CAS  Google Scholar 

  • Bergkvist B, Folkeson L, Berggren D (1989) Fluxes of Cu, Zn, Pb, Cr and Ni in temperate forest ecosystems – a literature review. Water Air Soil Pollut 47:217–286

    CAS  Google Scholar 

  • Bes C, Mench M (2008) Remediation of copper-contaminated topsoils from a wood treatment facility using in situ stabilization. Environ Pollut 156:1128–1138

    CAS  Google Scholar 

  • Beukes JP, Van Zyl PG, Ras M (2012) Treatment of Cr(VI)- containing wastes in the South African ferrochrome industry- a review of currently applied methods. J S Afr Inst Mining Metalurgy 112:347–352

    CAS  Google Scholar 

  • Beveridge TJ, Murray RGE (1980) Sites of metal deposition in the cell wall of Bacillus subtilis. J Bacteriol 141:876–887

    CAS  Google Scholar 

  • Bhat PN, Gosh DK, Desai MVN (2002) Immobiisation of beryllium in solid waste (red-mud) by fixation and vitrification. Waste Manag 22:549–556

    CAS  Google Scholar 

  • Bini C, Wahsha M, Fontana S, Maleci L (2012) Effects of heavy metals on morphological characteristics of Taraxacum officinale Web growing on mine soils in NE Italy. J Geochem Explor 123:101–108

    CAS  Google Scholar 

  • Bisbjerg B, Gissel-Nielsen G (1969) The uptake of applied selenium by agricultural plants. 1. The influence of soil type and plant species. Plant and Soil 31:287–291

    CAS  Google Scholar 

  • Bizily SP, Rugh CL, Summers AO, Meagher RB (1999) Phytoremediation of methylmercury pollution: merB expression in Arabidopsis thaliana confers resistance to organomercurials. Proc Natl Acad Sci USA 96, pp 6808–6813

    Google Scholar 

  • Bizily SP, Rugh CL, Meagher RB (2000) Phytodetoxification of hazardous organomercurials by genetically engineered plants. Nat Biotechnol 18:213–217

    CAS  Google Scholar 

  • Bradbury D, Scrivens S (1995) Remediation of radioactive and heavy metal contaminated soils and groundwater using the ACT*DE*CONSM and MAG*SEPSM processes. Contam Soil 95:1161–1162

    Google Scholar 

  • Bricka RM (1997) An overview of remediation technologies for treating military heavy metal contaminated soils. In: Proceedings of the 4th international conference on biogeochemistry of trace elements, Berkeley, 23–25 June 1997

    Google Scholar 

  • Carsten S, Heinz-Jurgen B (2004) Impact of aminopolycarboxilates on aquatic organisms and eutophication: overview of available data. Environ Toxicol 19:620–637

    Google Scholar 

  • Cassina L, Tassi E, Pedron F, Petruzzelli G, Ambrosini P, Barbafieri M (2012) Using a plant hormone and a thioligand to improve phytoremediation of Hg-contaminated soil from a petrochemical plant. J Hazard Mater 231–232:36–42

    Google Scholar 

  • Chaney RL (1983) Plant uptake of inorganic waste constituents. In: Parr JF (ed) Land treatment of hazardous wastes. Noyes Data Corp, Park Ridge, pp 50–76

    Google Scholar 

  • Chaney RL, Broadhurst CL, Centofanti T (2010) Phytoremediaton of soil trace elements. In: Hooda PS (ed) Trace elements in soils. Wiley, Chichester

    Google Scholar 

  • Chang TC, Yen JH (2006) On site mercury contaminated soils remediation by using thermal desorption technology. J Hazard Mater B128:208–217

    Google Scholar 

  • Chen Y, Li X, Shen Z (2004) Leaching and uptake of heavy metals by ten different species of plants during an EDTA-assisted phytoextraction process. Chemosphere 57:187–196

    CAS  Google Scholar 

  • Chiu KK, Ye ZH, Wong MH (2005) Enhanced uptake of as, Zn, and Cu by Vetiveria zizanoides and Zea mays using chelating agents. Chemosphere 60:1365–1375

    CAS  Google Scholar 

  • Chon HT, Lee JS, Lee JU (2011) Heavy metal contamination of soil, its risk assessment and bioremediation. Geosyst Eng 14:191–206

    Google Scholar 

  • Chrysochoous M, Dermatas D, Grubb D (2007) Phosphate application to firing range soils for Pb immobilization: the unclear role of phosphate. J Hazard Mater 144:1–14

    Google Scholar 

  • Conesa HM, Faz A, Arnaldos R (2006) Heavy metal accumulation and tolerance in plants from mine tailings of the semiarid Cartagena–La Unión mining district (SE Spain). Sci Total Environ 366:1–11

    CAS  Google Scholar 

  • Conesa HM, Schulin R (2010) The Cartagena–La Unión mining district (SE Spain): a review of environmental problems and emerging phytoremediation solutions after fifteen years research. J Environ Monit 12:1225–1233

    CAS  Google Scholar 

  • Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott H (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745

    CAS  Google Scholar 

  • Davison J (2010) GM plants: science, politics and EC regulations. Plant Sci 178:94–98

    CAS  Google Scholar 

  • Delschen T (2000) Soil covering as remediation technique for heavy metal contamination gardens. In: First international conference on soils of urban, industrial, traffic and mining areas. Proceedings vol III. Essen, Germany, pp 789–794

    Google Scholar 

  • Dermont G, Bergeron M, Mercier G, Richer-Lafleche M (2008) Soil washing for metal removal: a review of physical/chemical technologies and field applications. J Hazard Mater 152(1):1–31

    CAS  Google Scholar 

  • Dhillon KS, Dhillon SK, Dogra R (2010) Selenium accumulation by forage and grain crops and volatilization from seleniferous soils amended with different organic materials. Chemosphere 78:548–556

    CAS  Google Scholar 

  • Di Palma L, Medici F (2002) Recovery of copper from contaminated soil by flushing. Waste Manag 22:883–886

    Google Scholar 

  • Ernst WHO (1989) Mine vegetation in Europe. In: Shaw AJ (ed) Heavy metal tolerance in plants: evolutionary aspects. CRC Press, Inc., Boca Raton, pp 21–37

    Google Scholar 

  • Evangelou MWH, Ebel M, Schaeffer A (2007) Chelate assisted phytoextraction of heavy metals from soil. Effect, mechanism, toxicity, and fate of chelating agents, review. Chemosphere 68:989–1003

    CAS  Google Scholar 

  • Fein JB, Daughney CJ, Yee N, Davis T (1997) A chemical equilibrium model for metal adsorption onto bacterial surfaces. Geochim Cosmochim Acta 61:3319–3328

    CAS  Google Scholar 

  • Fernàndez J, Zacchini M, Isabel Fleck I (2012) Photosynthetic and growth responses of Populus clones Eridano and I-214 submitted to elevated Zn concentrations. J Geochem Explor 123:77–86

    Google Scholar 

  • Flores-Tavizón E, Alarcón-Herrera MT, González Elizondo S, Olguin EJ (2003) Arsenic tolerating plants from mine sites and hot springs in the semiarid region of Chihuahua, México. Acta Biotechnol 23:113–119

    Google Scholar 

  • Fox B, Walsh CT (1982) Mercuric reductase. Purification and characterization of a transposon-encoded flavoprotein containing an oxidation–reduction-active disulphide. J Biol Chem 257:2498–2503

    CAS  Google Scholar 

  • Freitas H, Prasad MNV, Pratas J (2004) Plant community tolerant to trace elements growing on the degraded soils of São Domingos mine in the south east of Portugal: environmental implications. Environ Int 30:65–72

    CAS  Google Scholar 

  • Freitas EV, Nascimento CW, Souza A, Silva FB (2013) Citric acid-assisted phytoextraction of lead: a field experiment. Chemosphere 92:213–217

    CAS  Google Scholar 

  • FRTR, Federal Remediation Technologies Roundtable (2002) Remediation technologies screening matrix and reference guide (ath ed). http://www.frtr.Gov/matrix2/section1/toc.html

  • Gent DB, Bricka RM, Alshawabkeh AN, Larsom SL, Fabian G, Granade S (2004) Bench and field scale extraction by electrokinetics. J Hazard Mater 110:53–62

    CAS  Google Scholar 

  • Gheju M, Stelescu I (2013) Chelant-assisted phytoextraction and accumulation of Zn by Zea mays. J Environ Manage 128:631–636

    CAS  Google Scholar 

  • Ghosh M, Singh SP (2005) A review on phytoremediation of heavy metals and utilization of its byproducts. Appl Ecol Environ Res 3:1–18

    Google Scholar 

  • Ginocchio R, Baker A (2004) Metallophytes in Latin America: a remarkable biological and genetic resource scarcely known and studied in the region. Rev Chil Hist Nat 77(1):185–194

    Google Scholar 

  • González RC, González-Chávez MCA (2006) Metal accumulation in wild plants surrounding mining wastes. Environ Pollut 144:84–92

    Google Scholar 

  • González I, Cortes A, Neaman A, Rubio P (2011) Biodegradable chelate enhances the phytoextraction of Cu by Oenothera picensis grown in Cu-contaminated acid soils. Chemosphere 84:490–496

    Google Scholar 

  • Grace S, Harris M, Roushey W (1995) Results of treatability studies for the remediation of plutonium and americium from surface soils at the rocky flats superfund site. Contam Soil 95:1221–1222

    Google Scholar 

  • Grĉman H, Velikonja-Bolta S, Vodnik D, Kos B, Leštan D (2001) EDTA enhanced heavy metal phytoextraction: metal accumulation, leaching, and toxicity. Plant and Soil 235:105–114

    Google Scholar 

  • Grĉman H, Vodnik D, Velikonja-Bolta S, Leštan D (2003) Ethylenediamine dissuccinate as a new chelate for environmentally safe enhanced lead phytoextraction. J Environ Qual 32:500–506

    Google Scholar 

  • Guo G, Zhou Q, Ma LQ (2006) Availability and assessment of fixing additives for the in situ remediation of heavy metal contaminated soils: a review. Environ Monit Assess 116(1):513–528

    CAS  Google Scholar 

  • Harris AT, Bali R (2008) On the formation and extent of uptake of silver nanoparticles by live plants. J Nanopart Res 10:691–695

    CAS  Google Scholar 

  • Hartley W, Edwards R, Lepp NW (2004) Arsenic and heavy metal mobility in iron-oxide amended contaminated soils as evaluated by short and long-term leaching tests. Environ Pollut 131(3):495–504

    CAS  Google Scholar 

  • Ho SV, Sheridan PW, Athmer CJ, Heitkamp MA, Brackin JM, Weber D, Brodsky PH (1995) Integrated in situ soil remediation technology: the lasagna process. Environ Sci Technol 29:2528–2534

    CAS  Google Scholar 

  • Hussein HS, Ruiz ON, Terry N, Daniell H (2007) Phytoremediation of mercury and organomercurials in chloroplast transgenic plants: enhanced root uptake, translocation to shoots, and volatilization. Environ Sci Technol 41:8439–8446

    CAS  Google Scholar 

  • Jang HY, Chon HT, Lee JU (2009) In-situ precipitation of arsenic and copper in soil by microbiological sulfate reduction. Econ Environ Geol 42:445–455 (Korean with English abstract)

    Google Scholar 

  • Jung MC, Thornton I (1996) Heavy metal contamination of soils and plants in the vicinity of a lead–zinc mine, Korea. Appl Geochem 11:53–59

    CAS  Google Scholar 

  • Kabata-Pendias A, Mukherjee AB (2007) Trace elements from soil to human. Springer, Berlin/New York

    Google Scholar 

  • Kagami T, Narita T, Kuroda M, Notaguchi E, Yamashita M, Sei K, Soda S, Ike M (2013) Effective selenium volatilization under aerobic conditions and recovery from the aqueous phase by Pseudomonas stutzeri NT-I. Water Res 47:1361–1368

    CAS  Google Scholar 

  • Karvounis Y, Kelepertsis A (2000) Chemical clean up and properties of soils polluted with heavy metals near mining areas. In: First international conference on soils of urban, industrial, traffic and mining areas. Proceedings vol III. Essen, Germany, pp 799–804

    Google Scholar 

  • Khan AG, Kuek C, Chaudhry TM, Khoo CS, Hayes WJ (2000) Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere 41:197–207

    CAS  Google Scholar 

  • Khan FI, Husain T, Hejazi R (2004) An overview and analysis of site remediation technologies. J Environ Manage 71:95–122

    Google Scholar 

  • Kim SH, Chon HT, Lee JU (2009a) Biosorption of Pb and Cd by indigenous bacteria isolated from soil contaminated with oil and heavy metals. Econ Environ Geol 42:427–434 (Korean with English abstract)

    Google Scholar 

  • Kim SH, Chon HT, Lee JU (2009b) Removal of dissolved heavy metals through biosorption onto indigenous bacterial biofilm developed in soil. Econ Environ Geol. 42:435–444 (Korean with English abstract)

    Google Scholar 

  • Kim SH, Lee JU, Ko MS, Yun YH, Lee JS, Hong SJ (2011a) The effects of carbon sources supply to contaminated soil in the vicinity of Pungjeong mine on geomicrobiological behavior of heavy metals and arsenic. J Korean Soc Geosyst Eng 48:584–597 (Korean with English abstract)

    Google Scholar 

  • Kim YS, Chon HT, Lee JU (2011b) Bioleaching of heavy metals and arsenic in contaminated soil by microbiological sulfur oxidation. J Korean Soc Geosyst Eng 48:294–308 (Korean with English abstract)

    Google Scholar 

  • Komárek M, Vanĕk A, Mrnka L, Sudová R, Száková J, Tejnecký V, Chrastný V (2010) Potential and drawbacks of EDDS-enhanced phytoextraction of copper from contaminated soils. Environ Pollut 158:2428–2438

    Google Scholar 

  • Kos B, Leštan D (2003) Influence of a biodegradable ([S, S]- EDDS) and nondegradable (EDTA) chelate and hydrogel modified soil water sorption capacity on Pb phytoextraction and leaching. Plant and Soil 251:403–411

    Google Scholar 

  • Krämer U (2010) Metal hyperaccumulation in plants. Annu Rev Plant Biol 61:517–534

    Google Scholar 

  • Krämer U, Cotter-Howells JD, Charnock JM, Baker AJM, Smith JAC (1996) Free histidine as a metal chelator in plants that accumulate nickel. Nature 379:635–638

    Google Scholar 

  • Kumpiene J (2010) Trace element immobilization in soil using amendments. In: Hooda P (ed) Trace elements in soils. Wiley-Blackwell, Chichester, pp 353–380

    Google Scholar 

  • Kumpiene J, Lagerkvist A, Maurice C (2008) Stabilization of Pb and Cu contaminated soils using coal fly ash and peat. Environ Pollut 145:365–373

    Google Scholar 

  • Kumpiene J, Ore S, Renella G, Mench M, Lagerkvist A, Maurice C (2006) Assessment of zerovalent iron for stabilization of chromium, copper, and arsenic in soil. Environ Pollut 144:62–69

    CAS  Google Scholar 

  • Kuzovkina YA, Quigley MF (2005) Willows beyond wetlands: uses of Salix L. species for environmental projects. Water Air Soil Pollut 162:183–204

    CAS  Google Scholar 

  • La Grega MD, Buckinham PL, Evnas JC (2001) Hazardous waste management. McGraw-Hill, New York

    Google Scholar 

  • Lamb AE, Anderson CWN, Haverkamp RG (2001) The extraction of gold from plants and its applications to phytomining. Chem N Z 3:1–33

    Google Scholar 

  • Lee SE (2006) Geomicrobiological characteristics and bioremediation of Cr (VI) by indigenous bacteria in Cr-contaminated sediment. PhD thesis, Seoul National University

    Google Scholar 

  • Lee JU, Beveridge TJ (2001) Interaction between iron and Pseudomonas aeruginosa biofilms attached to Sepharose surfaces. Chem Geol 180:67–80

    CAS  Google Scholar 

  • Lee SE, Lee JS, Chon HT (2005) Environmental contamination of heavy metals and effects of sediment bacteria on the cadmium speciation in the vicinity of the Hwacheon mine. Key Eng Mater 277–279:438–444

    Google Scholar 

  • Lee SE, Lee J-U, Lee JS, Chon HT (2006) Effects of indigenous bacteria on Cr (VI) reduction in Cr-contaminated sediment with industrial wastes. J Geochem Explor 88:41–44

    CAS  Google Scholar 

  • Lee SE, Lee JU, Chon HT, Lee JS (2008a) Reduction of Cr(VI) by indigenous bacteria in Cr-contaminated sediment under aerobic condition. J Geochem Explor 96:144–147

    CAS  Google Scholar 

  • Lee SE, Lee JU, Chon HT, Lee JS (2008b) Microbiological reduction of hexavalent chromium by indigenous chromium-resistant bacteria in sand column experiments. Environ Geochem Health 30:141–145

    CAS  Google Scholar 

  • Lee SR, Chon HT, Lee JU (2011) Bioleaching of As in contaminated soils using metal-reducing bacteria. J Korean Soc Geosyst Eng 48:420–429 (Korean with English abstract)

    Google Scholar 

  • Leonard TL, Taylor GE, Gustin MS, Fernandez GCJ (1998a) Mercury and plants in contaminated soils: 1. Uptake, partitioning, and emission to the atmosphere. Environ Toxicol Chem 17:2063–2071

    CAS  Google Scholar 

  • Leonard TL, Taylor GE, Gustin MS, Fernandez GCJ (1998b) Mercury and plants in contaminated soils: 2. Environmental and physiological factors governing mercury flux to the atmosphere. Environ Toxicol Chem 17:2072–2079

    CAS  Google Scholar 

  • Lorestani B, Cheraghi M, Yousefi N (2011) Phytoremediation potential of native plants growing on a heavy metals contaminated soils of copper mine in Iran. World Acad Sci Eng Technol 53:377–382

    Google Scholar 

  • Lovley DR, Phillips EJP (1992) Bioremediation of uranium contamination with enzymatic uranium reduction. Environ Sci Technol 26:2228–2234

    CAS  Google Scholar 

  • Lovley DR, Baedecker MJ, Lonergan DJ, Cozzarelli IM, Phillips EJP, Siegel DI (1989) Oxidation of aromatic contaminants coupled to microbial iron reduction. Nature 339:297–299

    CAS  Google Scholar 

  • Lu Q, He ZL, Graetz DA, Stoffella PJ, Yang X (2011) Uptake and distribution of metals by water lettuce (Pistia stratiotes L.). Environ Sci Pollut Res Int 18(6):978–986

    CAS  Google Scholar 

  • Luo C, Shen Z, Li X (2005) Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS. Chemosphere 59:1–11

    CAS  Google Scholar 

  • Luo CL, Shen ZG, Li XD (2008) Root exudates increase metal accumulation in mixed cultures: implications for naturally enhanced phytoextraction. Water Air Soil Pollut 193:147–154

    CAS  Google Scholar 

  • Ma LQ, Komar KM, Tu C, Zhang W, Cai Y (2001) A fern that hyperaccumulates arsenic. Nature 409:579

    CAS  Google Scholar 

  • Manning BA, Fendorf SE, Bostick B, Suarez DL (2002a) Arsenic (III) and arsenic (V) adsorption reactions on synthetic birnessite. Environ Sci Technol 36:976–981

    Google Scholar 

  • Marchiol L, Sacco P, Assolari S, Zerbi G (2004) Reclamation of polluted soils: phytoremediation potential of crop-related Brassica species. Water Air Soil Pollut 158(1):345–356

    CAS  Google Scholar 

  • Marques APGC, Rangel AOSS, Castro PML (2009) Remediation of heavy metal contaminated soils: phytoremediation as a potentially promising clean-up technology. Crit Rev Environ Sci Technol 39:622–654

    CAS  Google Scholar 

  • Marques APGC, Rangel AOSS, Castro PML (2011) Remediation of heavy metal contaminated soils: an overview of site remediation techniques. Crit Rev Environ Sci Technol 41:879–914

    Google Scholar 

  • Martínez-Sánchez MJ, García-Lorenzo ML, Pérez-Sirvent C, Bech J (2012) Trace element accumulation in plants from an aridic area affected by mining activities. J Geochem Explor 123:8–12

    Google Scholar 

  • Mascia M, Palmas S, Polcaro AM, Vacca A, Muntoni A (2007) Experimental study and mathematical model on remediation of Cd spiked kaolinite by electrokinetics. Electrochim Acta 52:3360–3365

    CAS  Google Scholar 

  • Mayer R (1998) Soil acidification and cycling of metal elements: cause–effect relationships with regard to forestry practices and climatic changes. Agr Ecosyst Environ 67:145–152

    CAS  Google Scholar 

  • McCabe OM, Otte ML (2000) The wetland grass glyceria fluitans for revegetation of mine tailings. Wetlands 20:548–559

    Google Scholar 

  • McGrath SP, Zhao FJ (2003) Phytoextraction of metals and metalloids from contaminated soils. Curr Opin Biotechnol 14:1–6

    Google Scholar 

  • McGrath SP, Chaudri AM, Giller KE (1995) Long-term effects of metals in sewage sludge on soils, microorganisms and plants. J Ind Microbiol 14:94–104

    CAS  Google Scholar 

  • Meagher RB, Heaton ACP (2005) Strategies for the engineered phytoremediation of toxic element pollution: mercury and arsenic. J Ind Microbiol Biotechnol 32:502–513

    CAS  Google Scholar 

  • Means JL, Kucak T, Cerar DA (1980) Relative degradation rates of NTA, EDTA and DTPA and environmental implications. Environ Pollut Ser B 1:45–60

    CAS  Google Scholar 

  • Meers E, Ruttens A, Hopgood MJ, Samson D, Tack FMG (2005) Comparison of EDTA and EDDS as potential soil amendments for enhanced phytoextraction of heavy metals. Chemosphere 58:1011–1022

    CAS  Google Scholar 

  • Meers E, Vandecasteele B, Ruttens A, Vangronsveld J, Tack FMG (2007) Potential of five willow species (Salix spp.) for phytoextraction of heavy metals. Environ Exp Bot 60:57–68

    CAS  Google Scholar 

  • Meers E, Tack FMG, Verloo MG (2008) Degradability of ethylenediamine disuccinic acid (EDDS) in metal contaminated soils: implications for its use in soil remediation. Chemosphere 70:358–363

    CAS  Google Scholar 

  • Melitas N, Wang J, Conklin M, O’Day P, Farrell J (2002) Understanding soluble arsenate removal kinetics of zerovalent iron media. Environ Sci Technol 36:2074–2081

    CAS  Google Scholar 

  • Mertens J, Van Nevel L, De Schrijver A, Piesschaert F, Oosterbaan A, Tack FMG, Verheyen K (2007) Tree species effect on the redistribution of soil metals. Environ Pollut 149:173–181

    CAS  Google Scholar 

  • Meuser H (2013) Soil remediation and rehabilitation. Springer, Dordrecht/New York, p 406

    Google Scholar 

  • Moreno FN, Anderson CWN, Stewart RB, Robinson BH, Nomura R, Ghomshei M, Meech JA (2005) Effect of thioligands on plant-Hg accumulation and volatilisation from mercury-contaminated mine tailings. Plant and Soil 275:233–246

    CAS  Google Scholar 

  • Moutsatsou A, Gregou M, Matsas D, Protonotarios V (2006) Washing as a remediation technology applicable in soils heavily polluted by mining-metallurgical activities. Chemosphere 63:1632–1640

    CAS  Google Scholar 

  • Msuya FA, Brooks RR, Anderson CWN (2000) Chemically-induced uptake of gold by root crops: its significance for phytomining. Gold Bull 33(4):134–137

    CAS  Google Scholar 

  • Muhabadi AA, Hajabbasi MA, Khademi H, Kazemian H (2007) Soil cadmium stabilization using an Iranian natural zeolite. Geoderma 137:388–393

    Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF (2001) Engin. Geology 60:193–207

    Google Scholar 

  • Mullins CE (1991) Physical properties of soils in urban areas. In: Bullock P, Gregory PJ (eds) Soils in the urban environment. Blackwell, Oxford, pp 87–118

    Google Scholar 

  • Mutlu H, Meier MAR (2010) Castor oil as a renewable resource for the chemical industry. Eur J Lipid Sci Technol 112:10–30

    CAS  Google Scholar 

  • Navarro MC, Pérez-Sirvent C, Martínez-Sánchez MJ, Vidal J, Tovar PJ, Bech J (2008) Abandoned mine sites as a source of contamination by heavy metals: a case study in a semi-arid zone. J Geochem Explor 96:183–193

    CAS  Google Scholar 

  • Neale N (1997) Development of extraction techniques for the removal heavy metals from contaminated soils. In: Fourth international conference on the biogeochemistry of trace elements, Berkeley, California

    Google Scholar 

  • Nedelkoska TV, Doran PM (2000) Characteristics of heavy metal uptake by plant species with potential for phytoremediation and phytomining. Miner Eng 13(5):549–561

    CAS  Google Scholar 

  • Nickson RT, McArthur JM, Ravenscroft P, Burgess WG, Ahmed KM (2000) Mechanism of arsenic release to groundwater, Bangladesh and West Bengal. Appl Geochem 15:403–413

    CAS  Google Scholar 

  • Olguín EJ, Sánchez-Galván G (2012) Heavy metal removal in phytofiltration and phycoremediation: the need to differentiate between bioadsorption and bioaccumulation. N Biotechnol 30(1):3–8

    Google Scholar 

  • Oviedo C, Rodriguez J (2003) EDTA: the chelating agent under environmental scrutiny. Quimica Nova 26:901–905

    CAS  Google Scholar 

  • Page GW (1997) Contaminated sites and environmental cleanup. Academic, San Diego, p 212

    Google Scholar 

  • Page MM, Page CL (2002) Electroremediation of contaminated soils. J Environ Eng 128(3):208–219

    CAS  Google Scholar 

  • Park JM, Lee JS, Lee JU, Chon HT, Jung MC (2006) Microbial effects on geochemical behavior of arsenic in as-contaminated sediments. J Geochem Explor 88:134–138

    CAS  Google Scholar 

  • Pedron F, Petruzzelli G, Barbafieri M, Tassi E (2013) Remediation of a mercury-contaminated industrial soil using bioavailable contaminant stripping. Pedosphere 23(1):104–110

    Google Scholar 

  • Pérez- Sánchez D, Thorne MC, Limer LMC (2012) A mathematical model for the behaviour of Se-79 in soils and plants that takes account of seasonal variations in soil hydrology. J Radiol Prot 32:11–37

    Google Scholar 

  • Pérez-Esteban J, Escolástico C, Moliner A, Masaguer A (2013) Chemical speciation and mobilization of copper and zinc in naturally contaminated mine soils with citric and tartaric acids. Chemosphere 90:276–283

    Google Scholar 

  • Pilon-Smits EAH, de Souza MP, Lytle CM, Shang C, Lgo T, Terry N (1998) Selenium volatilization and assimilation by hybrid poplar (Populus tremula x alba). J Exp Bot 49:1889–1892

    CAS  Google Scholar 

  • Poschenrieder C, Bech J, Llugany M, Pace A, Fenés E, Barceló J (2001) Copper in plant species in a copper gradient in Catalonia (North East Spain) and their potential for phytoremediation. Plant and Soil 230:247–256

    CAS  Google Scholar 

  • Poschenrieder C, Llugany M, Lombini A, Dinelli E, Bech J, Barceló J (2012) Smilax aspera L. an evergreen Mediterranean climber for phytoremediation. J Geochem Explor 123:41–44

    CAS  Google Scholar 

  • Prasad MNV (2004) Phytoremediation of metals and radionuclides in the environment: the case of natural hyperaccumulators, metal transporters, soil-amending chelators and transgenic plants. In: Prasad (ed) Heavy metal stress in plants from biomolecules to ecosystems, 2nd edn. Springer, Berlin Heidelberg, pp 345–391

    Google Scholar 

  • Pulford ID, Watson C (2003) Phytoremediation of heavy metal-contaminated land by trees – a review. Environ Int 29(4):529–540

    CAS  Google Scholar 

  • Puppala SK, Alshawabkeh AN, Acar YB, Gale RJ, Bricka M (1997) Enhanced electrokinetic remediation of high sorption capacity soil. J Hazard Mater 55:203–220

    CAS  Google Scholar 

  • Purakayastha TJ, Chhonkar PK (2010) Phytoremediation of heavy metal contaminated soils. In: Sherameti I, Varma A (eds) Soil heavy metals. Springer, Heidelberg

    Google Scholar 

  • Quartacci MF, Irtelli B, Gonnelli C, Gabbrielli R, Navari-Izzo F (2009) Naturally-assisted metal phytoextraction by Brassica carinata: role of root exudates. Environ Pollut 157:2697–2703

    CAS  Google Scholar 

  • Rajkumar M, Freitas SH (2008) Influence of metal resistant-plant growthpromoting bacteria on the growth of Ricinus communis soil contaminated with heavy metals. Chemosphere 71:834–842

    CAS  Google Scholar 

  • Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180:169–181

    CAS  Google Scholar 

  • Reddy K, Chinthamredy S (1999) Electrokinetics remediation of heavy metal contaminated soils under reducing environments. Waste Manag 19:269–282

    CAS  Google Scholar 

  • Reeves RD, Baker AJM (2000) Metal accumulating plants. In: Raskin I, Ensley ED (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 193–229

    Google Scholar 

  • Riddell-Black D (1993) A review of the potential for the use of trees in the rehabilitation of contaminated land. WRc report CO 3467. Water Research Centre, Medmenham

    Google Scholar 

  • Rizzi L, Petruzzelli G, Poggio G, Vigna Guidi G (2004) Soil physical changes and plant availability of Zn and Pb in a treatability test of phytostabilization. Chemosphere 57:1039–1046

    CAS  Google Scholar 

  • Robinson BH, Brooks RR, Howes AW, Kirkman JH, Gregg PEH (1997) The potential of the high-biomass nicke1 hyperaccumulator Berkheya coddii for phytoremediation and phytomining. J Geochem Explor 60:115–126

    CAS  Google Scholar 

  • Robinson B, Schulin R, Nowack B, Roulier S, Menon M, Clothier B, Green S, Mills T (2006) Phytoremediation for the management of metal flux in contaminated sites. For Snow Landsc Res 80(2):221–234

    Google Scholar 

  • Ruíz ON, Daniell H (2009) Genetic engineering to enhance mercury phytoremediation. Curr Opin Chem Biol 20:213–219

    Google Scholar 

  • Ruíz-Olivares A, Carrillo-González R, González-Chávez MCA, Soto Hernández RM (2013) Potential of castor bean (Ricinus communis L.) for phytoremediation of mine tailings and oil production. J Environ Manage 114:316–323

    Google Scholar 

  • Sasaki Y, Hayakawa T, Inoue C, Miyazaki A, Silver S, Kusano T (2006) Generation of mercury-hyperaccumulating plants through transgenic expression of the bacterial mercury membrane transport protein MerC. Transgenic Res 15:615–625

    CAS  Google Scholar 

  • Schroeder K, Rufaut CG, Smith C, Mains D, Craw D (2005) Rapid plant-cover establishment on gold mine tailings in Southern New Zealand: glasshouse screening trials. Int J Phytoremediation 7:307–322

    CAS  Google Scholar 

  • Sharma HD (2004) Geoenvironmental engineering: site remediation, waste containment and emerging waste management technologies. Wiley, Hoboken

    Google Scholar 

  • Sheoran V, Sheora AS, Pooni P (2009) Phytomining: a review. Miner Eng 22:1007–1019

    CAS  Google Scholar 

  • Shestopalov A, Bezuglova O (2000) The remediation technique for polluted soils with heavy metals. In: First international conference on soils of urban, industrial, traffic and mining areas. Proceedings vol III. Essen, Germany, pp 795–798

    Google Scholar 

  • Shu WS, Ye ZH, Lan CY, Zhang ZQ, Wong MH (2002) Lead, zinc and copper accumulation and tolerance in populations of Paspalum distichum and Cynodon dactylon. Environ Pollut 120:445–453

    CAS  Google Scholar 

  • Sneddon I, Orueetxebarria M, Hodson M, Schofield P, Valsami-Jones E (2006) Use of bone meal amendments to immobilize Pb, Zn and Cd in soil: a leaching column study. Environ Pollut 144:816–825

    CAS  Google Scholar 

  • Sobral L, Thoming J (1998) Remediation of contaminate Residue from the chlor-alkali industry, with elemental mercury, by using an electrolytic process. In: Contaminated soil’98, vol II. Edinburgh, UK, pp 1133–1134

    Google Scholar 

  • Spencer NE, Siege SM (1978) Effects of sulfur and selenium oxyanions on Hg toxicity in turnip seed germination. Water Air Soil Pollut 9:423–427

    CAS  Google Scholar 

  • Sun Y, Zhou Q, Diao C (2008) Effects of cadmium and arsenic on growth and metal accumulation of Cd-hyperaccumulator Solanum nigrum L. Bioresour Technol 99:1103–1110

    CAS  Google Scholar 

  • Swab M, Zilka M, Mullerova M, Koci V, Muller V (2008) Semi-empirical approach to modelling of soil flushing: model development, application to soil polluted by zinc and copper. Sci Total Environ 392:187–197

    Google Scholar 

  • Svenson A, Kaj L, Björndal H (1989) Aqueous photolysis of the iron (III) complexes of NTA, EDTA and DTPA. Chemosphere 18:1805–1808

    CAS  Google Scholar 

  • Tahaoun SA, Abdel-Bary E.S.A. (2000) Chemical mitigation of lead pollution in urban soils. In: First international conference on soils of urban, industrial, traffic and mining areas. Proceedings vol III. Essen, Germany, pp 783–788

    Google Scholar 

  • Tandy S, Bossart K, Mueller R, Ritschel J, Hauser L, Schulin R, Nowack B (2004) Extraction of heavy metals from soils using biodegradable chelating agents. Environ Sci Tech 38:937–944

    CAS  Google Scholar 

  • Terry N, Zayed AM, de Souza MP, Tarun AS (2000) Selenium in higher plants. Annu Rev Plant Physiol Plant Mol Biol 51:401–432

    CAS  Google Scholar 

  • Thöming J, Calmano W (1995) Remediation of heavy metal contaminated soils by acid leaching and electrolytic metal separation. In: Contaminated soil’95, vol II. Kluwer, Ac. Publ. Dordrecht, The Netherlands, pp 895–902

    Google Scholar 

  • Tsang DCW, Zhang W, Lo IMC (2007) Copper extraction effectiveness and soil dissolution issues of EDTA-flushing of artificially contaminated soils. Chemosphere 68:234–243

    CAS  Google Scholar 

  • Urlings LGCM (1990) In situ cadmium removal- full scale remedial action of contaminate soil. In: International symposium hazard waste treatment: treatment of contaminated soil, air and waste association and USEPA Risk Education Laboratory, Cincinatti,Ohio, 5–8 Feb

    Google Scholar 

  • USEPA (1989) Stabilization/Solidification of CERCLA and RCRA wastes. Technical report EPA/625/6-89/022. United States Environmental Protection Agency, Office of Research and Development, Cicinnati, OH

    Google Scholar 

  • USEPA (1995) Technical report EPA/540/R-94/520. United States Environmental Protection Agency, Office of Research and Development, Cicinnati, OH

    Google Scholar 

  • USEPA (1996) Engineering bulletin: technology alternatives for the remediation of soils contaminated with arsenic, cadmium, chromium, mercury and lead. U.S. Environmental Protection Agency, Office of Emergency and Remedial Response, Cincinnati

    Google Scholar 

  • USEPA (1997) Technical alternatives for the remediation of soils contaminated with As, Cd, Cr, Hg, and Pb EPA/540/S-97/500. United States Environmental Protection Agency, Office of Research and Development, Cicinnati, OH

    Google Scholar 

  • USEPA (2000) Introduction to phytoremediation. EPA 600/R-99/107. United States Environmental Protection Agency, Office of Research and Development, Cicinnati, OH.

    Google Scholar 

  • USEPA (2012) Technical EPA 542-F-12.012. United States Environmental Protection Agency, Office of Research and Development, Cicinnati, OH

    Google Scholar 

  • Van Cauwenberghe L (1997) Electrokinetics. GWRTAC. Series technology overview report. TO-97-03. http://www.gwrtac.org/pdf/electro_o.pdf

  • Van Nevel L, Mertens J, Oorts K, Verheyen K (2007) Phytoextraction of metals from soils: how far from practice? Environ Pollut 150:34–40

    Google Scholar 

  • Van Nevel L, Mertens J, Staelens J, De Schrijver A, Tack FMG, De Neve S, Meers E, Verheyen K (2011) Elevated Cd and Zn uptake by aspen limits the phytostabilization potential compared to five other tree species. Ecol Eng 37(7):1072–1080

    Google Scholar 

  • Vangronsveld J, van Assche F, Clijsters H (1995) Reclamation of a bare industrial area contaminated by non-ferrous metals: in situ metal immobilization and revegetation. Environ Pollut 87:51–59

    CAS  Google Scholar 

  • Virkutyte J, Sillanpää M, Latostenmaa P (2002) Electrokinetic soil remediation- critical overview. Sci Tot Environ 289:97–121

    CAS  Google Scholar 

  • Wang D, Shi X, Wei S (2003) Accumulation and transformation of atmospheric mercury in soil. Sci Total Environ 304:209–214

    CAS  Google Scholar 

  • Wang LQ, Luo L, Ma YB, Wei DP, Hua L (2009) In situ immobilization remediation of heavy metals- contaminated soils: a review. Chin J Appl Ecol 20(5):1214–1222

    CAS  Google Scholar 

  • Wang J, Fenga X, Anderson CWN, Xing Y, Shang L (2012) Remediation of mercury contaminated sites – a review. J Hazard Mater 221–222:1–18

    Google Scholar 

  • Warren LA, Ferris FG (1998) Continuum between sorption and precipitation of Fe (III) on microbial surfaces. Environ Sci Technol 32:2331–2337

    CAS  Google Scholar 

  • Witters N, Van Slycken S, Ruttens A, Adriaensen K, Meers E, Meiresonne L, Tack FMG, Thewys T, Laes E, Vangronsveld J (2009) Short-rotation coppice of willow for phytoremediation of a metal-contaminated agricultural area: a sustainability assessment. Bioenerg Res 2:144–152

    Google Scholar 

  • Wong MH (2003) Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere 50:775–780

    CAS  Google Scholar 

  • Wong JHC, Lim CH, Nolen GL (1997) Design of remediation systems. CRC. Lewis Publication, Boca Raton, p 263

    Google Scholar 

  • Wuana RA, Okieimen FQ (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. International Scholary Research Network ISRN Ecology, vol 2011. Article ID 402647, 20 pp

    Google Scholar 

  • Wuana RA, Okieimen FE, Imborvungu JA (2010) Removal of heavy metals from a contaminated soil using organic chelating acids. Environmental Pollution. Int J Environ Sci Technol 7(3):485–496

    CAS  Google Scholar 

  • Yoon J, Cao X, Zhou Q, Ma LQ (2006) Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci Total Environ 368:456–464

    CAS  Google Scholar 

  • Zanuzzi A, Faz A (2010) Phtyostabilization of lead-polluted sites by native plants. In: Sherameti I, Varma A (eds) Soil heavy metals. Springer, Heidelberg, pp 329–337

    Google Scholar 

  • Zhang YQ, Moore JN (1997) Environmental conditions controlling selenium volatilization from a wetland system. Environ Sci Technol 31(2):511–519

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaume Bech .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bech, J., Abreu, M.M., Chon, HT., Roca, N. (2014). Remediation of Potentially Toxic Elements in Contaminated Soils. In: Bini, C., Bech, J. (eds) PHEs, Environment and Human Health. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8965-3_7

Download citation

Publish with us

Policies and ethics