Skip to main content

Part of the book series: Biofuels and Biorefineries ((BIOBIO,volume 2))

Abstract

Hydrogen bonding (HB) in supercritical water (SCW) is much less extensive than in water at ambient conditions. Still, it plays an important role in the structural and dynamic properties of SCW and its capacity as a solvent. In order to deal with the HB it is necessary to have definite criteria that specify when a hydrogen bond exists or not, and these are provided. The extent of HB in SCW is expressed by means of the mean number of hydrogen bonds per water molecule, the fractions of water molecules with 0, 1, 2… hydrogen bonds, and the percolation limit determining regions of continuous HB. The HB in SCW deduced from diffraction, spectroscopy, and computer simulations is described. The ionic dissociation of SCW itself is more extensive at low temperatures and high pressures than of ambient water. The solvent power of SCW regarding organic solutes is described by its solubility parameters, but solvatochromic probes have found little use in SCW. The solubility of salts in SCW and the hydration and pairing of their ions are discussed. HB as well as its related ion product and thermodynamic data of water plays an important role in biomass dissolution and reactions in SCW. The appendix contains tables of physical properties of SCW at temperatures and pressures relevant to biorefining.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gorbaty Yu E, Gupta RB. The structural features of liquid and supercritical water. Ind Eng Chem Res. 1998;37:3026–35.

    Article  Google Scholar 

  2. Hoffmann MM, Conradi MS. Are there hydrogen bonds in supercritical water? J Am Chem Soc. 1997;119:3811–7.

    Article  Google Scholar 

  3. Kohl W, Lindner HA, Franck EU. Raman spectra of water to 400 °C and 3000 bar. Ber Bunsenges Phys Chem. 1991;95:1586–93.

    Article  Google Scholar 

  4. Blumberg RL, Stanley HE, Geiger A, Mausbach P. Connectivity of hydrogen bonds in liquid water. J Chem Phys. 1984;80:5230–40.

    Article  Google Scholar 

  5. Marcus Y. Supercritical water. A green solvent. New York: Wiley; 2012.

    Book  Google Scholar 

  6. Kumar R, Schmidt JR, Skinner JL. Hydrogen bond definitions and dynamics in liquid water. J Chem Phys. 2007;126:204107-1-12.

    Google Scholar 

  7. Voloshin VP, Naberukhin Y. Hydrogen bond lifetime distributions in computer-simulated water. J Struct Chem. 2009;50:78–89.

    Article  Google Scholar 

  8. Gupta RB, Panayiotou CG, Sanchez IC, Johnston KP. Theory of hydrogen bonding in supercritical fluids. AICHE J. 1992;38:1243–53.

    Article  Google Scholar 

  9. Smits PJ, Economou IG, Peters CJ, de Swaan Arons J. Equation of state description of thermodynamic properties of near-critical and supercritical water. J Phys Chem. 1994;98:12080–5.

    Article  Google Scholar 

  10. Huang SH, Radosz M. Equation of state for small, large, polydisperse, and associating molecules. Ind Eng Chem Res. 1990;29:2284–94.

    Article  Google Scholar 

  11. Vlachou T, Prinos I, Vera JH, Panayiotou CG. Nonrandom distribution of free volume in fluids and their mixtures: hydrogen-bonded systems. Ind Eng Chem Res. 2002;41:1057–63.

    Article  Google Scholar 

  12. Marcus Y. Supercritical water: relationships of certain measured properties to the extent of hydrogen bonding obtained from a semi-empirical model. Phys Chem Chem Phys. 2000;2:1465–72.

    Article  Google Scholar 

  13. Franck EU, Roth K. Infra-red absorption of HDO in water at high pressures and temperatures. Discuss Faraday Soc. 1967;43:108–14.

    Article  Google Scholar 

  14. Mountain RD. Molecular dynamics investigation of expanded water at elevated temperatures. J Chem Phys. 1989;90:1866–70.

    Article  Google Scholar 

  15. Gupta RB, Johnston KP. Lattice fluid hydrogen bonding model with a local segment density. Fluid Phase Equilib. 1994;99:135–51.

    Article  Google Scholar 

  16. Swiata-Wojcik D, Szala-Bilnik J. Transition from patchlike to clusterlike inhomogeneity arising from hydrogen bonding in water. J Chem Phys. 2011;134:054121-1-9.

    Google Scholar 

  17. Dyer PJ, Cummings PT. Hydrogen bonding and induced dipole moments in water. Predictions from the Gaussian charge polarizable model and Car-Parinello molecular dynamics. J Chem Phys. 2006;125:144519-1-6.

    Google Scholar 

  18. Matubayasi N, Wakai C, Nakahara M. Structural study of supercritical water. I. Nuclear magnetic resonance spectroscopy. J Chem Phys. 1997;107:9133–40.

    Article  Google Scholar 

  19. Soper AK, Bruni F, Ricci MA. Site-site correlation functions of water from 25 to 400 °C: revised analysis of new and old diffraction data. J Chem Phys. 1997;106:247–54.

    Article  Google Scholar 

  20. Kalinichev AG, Bass JD. Hydrogen bonding in supercritical water: a Monte Carlo simulation. Chem Phys Lett. 1994;231:301–7.

    Article  Google Scholar 

  21. Yoshii N, Yoshie H, Miura S, Okazaki S. A molecular dynamics study of sub- and supercritical water using a polarizable potential model. J Chem Phys. 1998;109:4873–84.

    Article  Google Scholar 

  22. Lamanna R, Delmelle M, Cannistrato S. Role of hydrogen-bond cooperativity and free-volume fluctuations in the non-Arrhenius behavior of water self-diffusion: a continuity of states model. Phys Rev E. 1994;49:2841–50.

    Article  Google Scholar 

  23. Marcus Y. The structuredness of supercritical water up to 600 °C and 100 MPa as obtained from relative permittivity data. J Mol Liq. 1999;81:101–13.

    Article  Google Scholar 

  24. Jedlovszky P, Brodhold JP, Bruni F, Ricci MA, Soper AK, Vallauri R. Analysis of the hydrogen-bonded structure of water from ambient to supercritical conditions. J Chem Phys. 1998;108:8528–40.

    Article  Google Scholar 

  25. Pártay L, Jedlovszky P. Line of percolation in supercritical water. J Chem Phys. 2005;123:024502-1-5.

    Google Scholar 

  26. Pártay L, Jedlovszky P, Brovchenko I, Oleinikova A. Percolation transitions in supercritical water: a Monte Carlo simulation. J Phys Chem B. 2007;111:7603–9.

    Article  Google Scholar 

  27. Bernabei M, Botti A, Bruni F, Ricci MA, Soper AK. Percolation and three-dimensional structure of supercritical water. Phys Rev E. 2008;78:021505-1-9.

    Google Scholar 

  28. Bernabi M, Ricci MA. Percolation and clustering in supercritical aqueous fluids. J Phys Cond Matt. 2008;20:494208-14-7.

    Google Scholar 

  29. Gorbaty Yu E, Dem’yanets Yu N. X-ray diffraction study of liquid and supercritical water at high temperatures and pressures. I. Molecular functions of structurally sensitive scattering components at 100 bar and 298–773 K. Zhur Strukt Khim. 1982;23:73–85.

    Google Scholar 

  30. Gorbaty Yu E, Dem’yanets Yu N. X-ray diffraction study of liquid and supercritical water at high temperatures and pressures. II. Functions of the radial distribution of molecular density and pair correlation functions. Zhur Strukt Khim. 1983;24:66–74.

    Google Scholar 

  31. Gorbaty Yu E, Dem’yanets Yu N. The pair correlation function of water at a pressure of 1000 bar in the temperature range 25–500 °C. Chem Phys Lett. 1983;100:450–4.

    Article  Google Scholar 

  32. Gorbaty YE, Kalinichev AG. Hydrogen bonding in supercritical water. 1. Experimental results. J Phys Chem. 1995;99:5336–40.

    Article  Google Scholar 

  33. Botti A, Bruni F, Ricci MA, Soper AK. Neutron diffraction study of high density supercritical water. J Chem Phys. 1998;109:3180–4.

    Article  Google Scholar 

  34. Tassaing T, Danten Y, Besnard M. Supercritical water: local order and molecular dynamics. Pure Appl Chem. 2004;76:133–9.

    Article  Google Scholar 

  35. Luck WAP. Zur Assoziation des Wassers. III Die Temperaturabhängigkeit der Wasserbanden bis zum kritischen Punkt. Ber Bunsenges Phys Chem. 1965;60:626 + −63.5.

    Google Scholar 

  36. Luck WAP. Spectroscopic studies concerning the structure and the thermodynamic behaviour of H2O, CH3OH, and C2H5OH. Discuss Faraday Soc. 1967;43:115–27.

    Article  Google Scholar 

  37. Luck WAP, Ditter W. Die Temperatur-abhängigkeit der D2O und HOD Spektren im nahen IR bis in überkritische Bereiche. Z Naturforsch. 1969;24b:482–94.

    Google Scholar 

  38. Kandratsenka A, Schwarzer D, Vöhringer P. Relating linear vibrational spectroscopy to condensed-phase hydrogen-bonded structures: liquid-to-supercritical water. J Chem Phys. 2008;128:244510-1-6.

    Google Scholar 

  39. Tassaing T, Garrain PA, Bégué D, Baraille I. On the cluster composition of supercritical water combining molecular modeling and vibrational spectroscopic data. J Chem Phys. 2010;133:0324103-1-9.

    Google Scholar 

  40. Frantz JD, Dubessy J, Mysen B. An optical cell for Raman spectroscopic studies of supercritical fluids and its application to the study of water to 500 °C and 2000 bar. Chem Geol. 1993;106:9–26.

    Article  Google Scholar 

  41. Walrafen GE, Chu TC. Linearity between structural correlation length and correlated-proton Raman intensity from amorphous ice and supercooled water up to dense supercritical steam. J Phys Chem. 1995;99:1122511229.

    Google Scholar 

  42. Walrafen GE, Yang W-H, Chu YC. Raman spectra from saturated water vapor to the supercritical fluid. J Phys Chem B. 1999;103:1332–8.

    Article  Google Scholar 

  43. Yasaka Y, Kubo M, Matubayasi N, Nakahara M. High sensitivity Raman spectroscopy of supercritical water and methanol over a wide range of density. Bull Chem Soc Jpn. 2007;80:1764–9.

    Article  Google Scholar 

  44. Yui K, Uchida H, Itatani K, Koda S. Raman OH stretching frequency shifts in supercritical water and in O2– and acetone-aqueous solutions near the water critical point. Chem Phys Lett. 2009;477:85–9.

    Article  Google Scholar 

  45. Wang Z, Pang Y, Dlott DD. Hydrogen-bond disruption by vibrational excitations in water. J Phys Chem A. 2007;111:3196–208.

    Article  Google Scholar 

  46. Wernet P, Testemale D, Hazemann J-L, et al. Spectroscopic characterization of microscopic hydrogen-bonding disparities in supercritical water. J Chem Phys. 2005;123:154503-1-7.

    Google Scholar 

  47. Jonas J, DeFries T, Lamb WJ. NMR proton relaxation in compressed supercritical water. J Chem Phys. 1978;68:2988–89.

    Google Scholar 

  48. Lamb WJ, Jonas J. NMR study of compressed supercritical water. J Chem Phys. 1981;74:913–21.

    Article  Google Scholar 

  49. Matubayasi N, Wakai C, Nakahara M. NMR study of water in super- and subcritical conditions. Phys Rev Lett. 1997;78:2573–6.

    Article  Google Scholar 

  50. Yoshida K, Matubayasi N, Nakahara M. Solvation shell dynamics studied by molecular dynamics simulation in relation to the translational and rotational dynamics of supercritical water and benzene. J Chem Phys. 2007;127:174509-1-13.

    Google Scholar 

  51. Yoshida K, Matubayasi N, Uosaki Y, Nakahara M. Self-diffusion in supercritical water and benzene in high-temperature high-pressure conditions studied by NMR and dynamic solvation-shell model. J Phys Conf Ser. 2010;215:012093-1-6.

    Google Scholar 

  52. Matubayasi N, Nakao N, Nakahara N. Structural study of supercritical water. III. Rotational dynamics. J Chem Phys. 2001;114:4107–15.

    Article  Google Scholar 

  53. Sebastiani D, Parrinello M. Ab-initio study of NMR chemical shifts of water under normal and supercritical conditions. ChemPhysChem. 2002;3:675–9.

    Article  Google Scholar 

  54. Tsukahara T, Harada M, Tomiyasu H, Ikeda Y. 17O Chemical shift and spin-lattice relaxation measurements of water in liquid and supercritical states y using high-resolution multinuclear NMR. J Supercrit Fluids. 2003;26:73–82.

    Article  Google Scholar 

  55. Okada K, Yao M, Hiejima Y, Kohno H, Kajihara Y. Dielectric relaxation of water and heavy water in the whole fluid phase. J Chem Phys. 1999;110:3026–36.

    Article  Google Scholar 

  56. Yao M, Hiejima Y. Dielectric relaxation of supercritical water and methanol. J Mol Liq. 2002;96–97:207–20.

    Article  Google Scholar 

  57. O’Shea SF, Tremaine PR. Thermodynamics of liquid and supercritical water to 900 °C by a Monte-Carlo method. J Phys Chem. 1980;84:3304–6.

    Article  Google Scholar 

  58. Bastea S, Fried LE. Exp6-polar thermodynamics of dense supercritical water. J Chem Phys. 2008;128:174502–4.

    Article  Google Scholar 

  59. Kalinichev AG. Monte Carlo simulations of water under supercritical conditions. I. Thermodynamic and structural properties. Z Naturforsch. 1991;46a:433–44.

    Google Scholar 

  60. Kalinichev AG, Bass JD. Hydrogen bonding in supercritical water. 2. Computer simulations. J Phys Chem A. 1997;101:9720–7.

    Article  Google Scholar 

  61. Kalinichev AG, Churakov SV. Thermodynamics and structure of molecular clusters in supercritical water. Fluid Phase Equilib. 2001;183–184:271–8.

    Article  Google Scholar 

  62. Matubayasi N, Wakai C, Nakahara M. Structural study of supercritical water. II. Computer simulations. J Chem Phys. 1999;110:8000–11.

    Article  Google Scholar 

  63. Krishtal S, Kiselev M, Puhovski Y, et al. Study of the hydrogen bond network in sub- and supercritical water by molecular dynamics simulation. Z Naturforsch. 2001;56a:579–84.

    Google Scholar 

  64. Mizan TI, Savage PE, Ziff RM. Molecular dynamics of supercritical water using a flexible SPC model. J Phys Chem. 1994;98:13067–76.

    Article  Google Scholar 

  65. Dang LX. Importance of polarization effects in modeling the hydrogen bond in water using classical molecular dynamics techniques. J Phys Chem B. 1998;102:620–4.

    Article  Google Scholar 

  66. Liew CC, Inomata H, Arai K, Saito S. Three-dimensional structure and hydrogen bonding of water in sub- and supercritical regions: a molecular dynamics study. J Supercrit Fluids. 1998;13:83–91.

    Article  Google Scholar 

  67. Petrenko VE, Antipova ML, Ved’ OV, Borovkov AV. Molecular dynamic simulation of sub- and supercritical water with new interaction potential. Struct Chem. 2007;18:505–9.

    Article  Google Scholar 

  68. Skarmoutsos I, Guardia E. Effect of the local hydrogen bonding network on the reorientational and translational dynamics in supercritical water. J Chem Phys. 2010;132:074502-1-10.

    Google Scholar 

  69. Quist AS, Marshall WL. Electrical conductances of aqueous potassium nitrate and tetramethylammonium bromide solutions to 800 deg. and 4000 bars. J Chem Eng Data. 1970;15:375–6.

    Article  Google Scholar 

  70. Marshall WL, Franck EU. Ion product of water substance, 0–1000 °C, 1–10,000 bars New international formulation and its background. J Phys Chem Ref Data. 1981;10:295–304.

    Article  Google Scholar 

  71. Mesmer RE, Marshall WL, Palmer DA, Simonson JM, Holmes HF. Thermodynamics of aqueous association and ionization reactions at high temperatures and pressures. J Solut Chem. 1988;17:699–718.

    Article  Google Scholar 

  72. Tanger IV JC, Pitzer KS. Calculation of the ionization constant of H2O to 2,273 K and 500 MPa. AICHE J. 1989;35:1631–8.

    Article  Google Scholar 

  73. Tawa GJ, Pratt LR. Theoretical calculation of the water ion product K W. J Am Chem Soc. 1995;117:1625–8.

    Article  Google Scholar 

  74. Bandura AV, Lvov SN. The ionization constant of water over wide ranges of temperature and density. J Phys Chem Ref Data. 2006;35:15–30.

    Article  Google Scholar 

  75. Takahashi H, Sato W, Hori T, Nitta T. An application of the novel quantum mechanical/molecular mechanical method combined with the theory of energy representation: an ionic dissociation of a water molecule in the supercritical water. J Chem Phys. 2005;122:044504-1-9.

    Google Scholar 

  76. Halstead SJ, Masters AJ. A classical molecular dynamics study of anomalous ionic product in near critical and supercritical water. Mol Phys. 2010;108:193–203.

    Article  Google Scholar 

  77. Goldman S, Gray CG, Li W, et al. Predicting solubilities in supercritical fluids. J Phys Chem. 1996;100:7246–9.

    Google Scholar 

  78. Soave G. Equilibrium constants from a modified Redlich-Kwong equation of state. Chem Eng Sci. 1972;27:1197–203.

    Article  Google Scholar 

  79. Peng DY, Robinson DBA. A new two-constant equation of state. Ind Eng Chem Fundam. 1976;15:59–64.

    Article  MATH  Google Scholar 

  80. Marcus Y. Are solubility parameters relevant to supercritical fluids? J Supercrit Fluids. 2006;38:7–16.

    Article  Google Scholar 

  81. Marcus Y. Hansen solubility parameters for supercritical water. J Supercrit Fluids. 2012;62:60–4.

    Article  Google Scholar 

  82. Williams LL, Rubin JB, Edwards HW. Calculation of Hansen solubility parameter values for a range of pressure and temperature conditions, including the supercritical fluid region. Ind Eng Chem Res. 2004;43:4967–72.

    Article  Google Scholar 

  83. Morimoto M, Sato S, Takanohashi T. Conditions of supercritical water for good miscibility with heavy oils. J Jpn Petrol Inst. 2010;53:61–2.

    Article  Google Scholar 

  84. Bennett GE, Johnston KP. UV-visible spectroscopy of organic probes in supercritical water. J Phys Chem. 1994;98:441–7.

    Article  Google Scholar 

  85. Marshall WL, Jones EV. Liquid-vapor critical temperatures of several aqueous-organic and organic-organic solution systems. J Inorg Nucl Chem. 1974;36:2319–23.

    Article  Google Scholar 

  86. Fonseca TL, George HC, Coutinho K, Canuto S. Polarization and spectral shift of benzophenone in supercritical water. J Phys Chem A. 2009;113:5112–8.

    Article  Google Scholar 

  87. Oka H, Kajimoto O. UV absorption solvatochromic shift of 4-nitroaniline in su7percritical water. Phys Chem Chem Phys. 2003;5:2535–40.

    Article  Google Scholar 

  88. Fujisawa T, Terazima M, Kimura Y. Solvent effects on the local structure of p-nitroaniline in supercritical water and supercritical alcohols. J Phys Chem A. 2008;112:5515–26.

    Article  Google Scholar 

  89. Minami K, Ohashi T, Suzuki M, et al. Estimation of local density augmentation and hydrogen bonding between pyridazine and water under sub- and supercritical conditions using UV-vis spectroscopy. Anal Sci. 2006;22:1417–23.

    Google Scholar 

  90. Xiang T, Johnston KP. Acid-base behavior of organic compounds in supercritical water. J Phys Chem. 1994;98:7915–22.

    Article  Google Scholar 

  91. Osada M, Toyoshima K, Mizutani T, et al. Estimation of the degree of hydrogen bonding between quinoline and water by ultraviolet-visible absorbance spectroscopy in sub- and supercritical water. J Chem Phys. 2003;118:4573–7.

    Google Scholar 

  92. Aizawa T, Kanakubo M, Ikushima Y, et al. Local density augmentation around acetophenone N, N, N′, N′-tetramethylbenzidine exciplex in supercritical water. Chem Phys Lett. 2004;393:31–5.

    Google Scholar 

  93. Aizawa T, Kanakubo M, Hiejima Y, et al. Temperature dependence of local density augmentation for acetophenone N, N, N′, N′-tetramethylbenzidine exciplex in supercritical water. J Phys Chem A. 2005;109:7375–8.

    Google Scholar 

  94. Minami K, Mizuta M, Suzuki M, et al. Determination of Kamlet-Taft solvent parameter π* of high pressure and supercritical water by UV-vis absorption spectral shift of 4-nitroaniline. Phys Chem Chem Phys. 2006;8:2257–64.

    Google Scholar 

  95. Osawa K, Hamamoto T, Fujisawa T, et al. Raman spectroscopic study on the solvation of p-aminobenzonitrile in supercritical water and methanol. J Phys Chem A. 2009;113:3143–54.

    Google Scholar 

  96. Takebayashi Y, Yoda Y, Sugeta T, et al. Acetone hydration in supercritical water: 13C NMR spectroscopy and Monte Carlo simulation. J Chem Phys. 2004;120:6100–10.

    Google Scholar 

  97. Valyashko V, Urusova M. Solubility behavior in ternary water-salt systems under sub- and supercritical conditions. Monatsh Chem. 2003;134:679–92.

    Article  Google Scholar 

  98. Valyashko VM. Phase equilibria of water-salt systems at high temperatures and pressures. In: Palmer DA, Fernandez-Prini R, Havey AH, editors. Aqueous systems at elevated temperatures and pressures. Amsterdam: Elsevier; 2004. p. 597–641.

    Chapter  Google Scholar 

  99. Cohen-Adad R, Tranquard A, Perrone R, et al. The system water-sodium hydroxide. Compt Rend C. 1960;251:2035–7.

    Google Scholar 

  100. Kerschbaum S, Franck EU. High pressure supercritical PVT-data of water-sodium hydroxide mixtures and of liquid sodium hydroxide to 673 K and 400 MPa. Ber Bunsenges Phys Chem. 1995;99:624–32.

    Article  Google Scholar 

  101. Eberz A, Franck EU. High pressure electrolyte conductivity of the homogeneous, fluid water-sodium hydroxide system to 400 °C and 3000 bar. Ber Bunsenges Phys Chem. 1995;99:1091–103.

    Article  Google Scholar 

  102. Anderko A, Pitzer KS. Equation-of-state representation of phase equilibria and volumetric properties of the system NaCl-H2O above 573 K. Geochim Cosmochim Acta. 1993;57:1657–80.

    Article  Google Scholar 

  103. Bischoff JL. Densities of liquids and vapors in boiling sodium chloride-water solutions: a PVTX summary from 300° to 500 °C. Am J Sci. 1991;291:309–38.

    Article  Google Scholar 

  104. Armellini FJ, Tester JW. Solubility of sodium chloride and sulfate in sub- and supercritical water vapor from 450-550 °C and 100–250 bar. Fluid Phase Equilib. 1993;84:123–42.

    Article  Google Scholar 

  105. DiPippo MM, Sako K, Tester JW. Ternary phase equilibria for the sodium chloride-sodium sulfate-water system at 200 and 250 bar up to 400 °C. Fluid Phase Equilib. 1999;157:229–55.

    Article  Google Scholar 

  106. Dell’Orco P, Eaton H, Reynolds T, Buelow S. The solubility of 1:1 nitrate electrolytes in supercritical water. J Supercrit Fluids. 1995;8:217–27.

    Article  Google Scholar 

  107. Leusbrock I, Metz S, Rexwinkel G, Versteeg GF. Quantitative approaches for the description of solubilities of inorganic compounds in near-critical and supercritical water. J Supercrit Fluids. 2008;47:117–27.

    Article  Google Scholar 

  108. Leusbrock I, Metz S, Rexwinkel G, Versteeg GF. Solubility of 1:1 alkali nitrates and chlorides in near-critical and supercritical water. J Chem Eng Data. 2009;54:3215–23.

    Article  Google Scholar 

  109. Leusbrock I, Metz S, Rexwinkel G, Versteeg GF. The solubility of magnesium chloride and calcium chloride in near-critical and supercritical water. J Supercrit Fluids. 2010;53:17–24.

    Article  Google Scholar 

  110. Leusbrock I, Metz S, Rexwinkel G, Versteeg GF. The solubility of phosphate and sulfate salts in supercritical water. J Supercrit Fluids. 2010;54:1–8.

    Article  Google Scholar 

  111. Marshall WL. Complete equilibrium constants, electrolyte equilibria, and reaction rates. J Phys Chem. 1970;74:346–55.

    Article  Google Scholar 

  112. Ryzhenko BN, Bryzgalin OV. Electrolytic dissociation of acids during hydrothermal processes. Geokhimiya. 1987;1:137–42.

    Google Scholar 

  113. Cummings PT, Cochran HD, Simonson JM, Mesmer RE, Karaboni S. Simulation of supercritical water and of supercritical aqueous solutions. J Chem Phys. 1991;94:5606–21.

    Article  Google Scholar 

  114. Cochran HD, Cummings PT, Karaboni S. Solvation in supercritical water. Fluid Phase Equilib. 1992;71:1–16.

    Article  Google Scholar 

  115. Cui ST, Harris JG. Ion association and liquid structure in supercritical water solutions of sodium chloride: a microscopic view from molecular dynamics simulations. Chem Eng Sci. 1994;49:2749–63.

    Article  Google Scholar 

  116. Bondarenko GV, Gorbaty Yu E, Okhulkov AV, Kalinichev GA. Structure and hydrogen bonding in liquid and supercritical aqueous NaCl solutions at a pressure of 1000 bar and temperatures up to 500 °C: a comprehensive experimental and computational study. J Phys Chem A. 2006;110:4042–52.

    Article  Google Scholar 

  117. Flanagan LW, Balbuena PB, Johnston KP, Rossky PJ. Ion solvation in supercritical water based on adsorption analogy. J Phys Chem B. 1997;101:7998–8005.

    Article  Google Scholar 

  118. Luo H, Tucker SC. A case against large cluster-induced nonequilibrium solvent effects in supercritical water. Theor Chem Acc. 1997;96:84–91.

    Article  Google Scholar 

  119. Yamaguchi T, Ohzono H, Yamagami M, et al. Ion hydration in aqueous solutions of lithium chloride, nickel chloride, and cesium chloride in ambient to supercritical water. J Mol Liq. 2010;153:2–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yizhak Marcus .

Editor information

Editors and Affiliations

Appendix

Appendix

Some physicochemical properties of SCW at the temperatures and pressures applicable to bio-refining are required in order to benefit fully from the book. The values recorded here are adapted from Marcus [5], where references to the original publications are available. The critical temperature of water is T c = 647.096 K = 373.946 °C and its critical pressure is P c = 22.064 MPa = 217.8 atm. The critical density of water is ρ c = 322 kg·m–3 and its critical molar volume is V c = 56.0 × 10–6 m3·mol–1. Molar volumes, V, corresponding to the densities, ρ, are obtained by division of the molar mass of water, 0.01802 kg·mol–1 by the densities (and multiplication by 106 cm3·m–3 in order to obtain the volumes in cm3·mol–1).

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Marcus, Y. (2014). Hydrogen Bonding in Supercritical Water. In: Fang, Z., Xu, C. (eds) Near-critical and Supercritical Water and Their Applications for Biorefineries. Biofuels and Biorefineries, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8923-3_1

Download citation

Publish with us

Policies and ethics