Skip to main content

Assessing Dead Wood by Airborne Laser Scanning

  • Chapter
  • First Online:
Forestry Applications of Airborne Laser Scanning

Part of the book series: Managing Forest Ecosystems ((MAFE,volume 27))

Abstract

This chapter reviews the existing research concerning coarse woody debris (CWD) characterization by means of airborne laser scanning (ALS) data. The research so far has concentrated on modelling and mapping CWD on different scales, from single tree to stands, and to the use of ALS as auxiliary data in sampling-based inventories. In general the accuracy of ALS-based CWD models has varied considerably, from accurate predictions in different nature conservation areas to hardly statistically significant models in managed forests with a very low amount of CWD. A large-scale case study carried out in Norway showed that the classification of the presence of notable CWD quantities is more reliable than characterization of CWD volumes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aakala T (2010) Tree mortality and deadwood dynamics in late-successional boreal forests. Dissertationes Forestales 100. 41 p

    Google Scholar 

  • Andersen H-E, Strunk J, Temesgen H, Atwood D, Winterberger K (2011) Using multilevel remote sensing and ground data to estimate forest biomass resources in remote regions: a case study in the boreal forests of interior Alaska. Can J Remote Sens 37:596–611

    Article  Google Scholar 

  • Asner GP, Powell GVN, Mascaro J, Knapp DE, Clark JK, Jacobsen J, Kennedy-Bowdoin T, Balaji A, Paez-Acosta G, Victoria E, Secada L, Valqui M, Hughes RF (2010) High-resolution forest carbon stocks and emissions in the Amazon. Proc Natl Acad Sci 107:16738–16742

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bater CW, Coops NC, Gergel SE, LeMay V, Collins D (2009) Estimation of standing dead tree class distributions in northwest coastal forests using lidar remote sensing. Can J For Res 39:1080–1091

    Article  Google Scholar 

  • Blanchard SD, Jakubowski MK, Kelly M (2011) Object-based image analysis of downed logs in disturbed forested landscapes using lidar. Remote Sens 2:2420–2439

    Article  Google Scholar 

  • Bradshaw CJA, Warkentin IG, Sodhi NS (2009) Urgent preservation of boreal carbon stocks and biodiversity. Trends Ecol Evol 24:541–554

    Article  PubMed  Google Scholar 

  • Brin A, Bouget C, Valladares L, Brustel H (2013) Are stumps important for the conservation of saproxylic beetles in managed forests? – insights from a comparison of assemblages on logs and stumps in oak-dominated forests and pine plantations. Insect Conserv Divers 6:255–264

    Article  Google Scholar 

  • Bütler R, Schlaepfer R (2004) Spruce snag quantification by coupling colour infrared aerial photos and a GIS. For Ecol Manag 195:325–339

    Article  Google Scholar 

  • Crookston NL, Finley A (2008) yaImpute: an R package for kNN imputation. J Stat Softw 23:1–16

    Google Scholar 

  • Ducey MJ, Williams MS, Gove JH, Roberge S, Kenning RS (2013) Distance-limited perpendicular distance sampling for coarse woody debris: theory and field results. Forestry 86:119–126

    Article  Google Scholar 

  • Eaton JM, Lawrence D (2006) Woody debris stocks and fluxes during succession in a dry tropical forest. For Ecol Manage 232:46–55

    Article  Google Scholar 

  • Ene LT, Næsset E, Gobakken T, Gregoire TG, Ståhl G, Holm S (2013) A simulation approach for accuracy assessment of two-phase post-stratified estimation in large-area LiDAR biomass surveys. Remote Sens Environ 133:210–224

    Article  Google Scholar 

  • Enrong Y, Xihua W, Jianjun H (2006) Concept and classification of coarse woody debris in forest ecosystems. Front Biol China 1:76–84

    Google Scholar 

  • Eskelson BNI, Hagar JC, Temesgen H (2012) Estimation of snag density and snag quality attributes in western Washington and Oregon. For Ecol Manag 272:26–34

    Article  Google Scholar 

  • Esseen P-A, Ehnström B, Ericson L, Sjöberg K (1997) Boreal forests. Ecol Bull 46:16–47

    Google Scholar 

  • Garczarek UM (2002) Classification rules in standardized partition spaces. Doctoral thesis, University of Dortmund, Germany. Available from http://hdl.handle.net/2003/2789

  • Gobakken T, Næsset E, Nelson R, Bollandsås OM, Gregoire TG, Ståhl G, Holm S, Ørka HO, Astrup R (2012) Estimating biomass in Hedmark County, Norway using national forest inventory field plots and airborne laser scanning. Remote Sens Environ 123:443–456

    Article  Google Scholar 

  • Gossner MM, Thibault L, Brunet J, Isacsson G, Bouget C, Brustel H, Brandl R, Weisser WW, Müller J (2013) Current near-to-nature forest management effects on functional trait composition of saproxylic beetles in beech forests. Conserv Biol 27:605–614

    Article  PubMed  Google Scholar 

  • Gove JH, van Deusen PC (2011) On fixed-area sampling for downed coarse woody debris. Forestry 82:109–117

    Article  Google Scholar 

  • Gove JH, Ringvall A, Ståhl G, Ducey MJ (1999) Point relascope sampling of downed coarse woody debris. Can J For Res 29:1718–1726

    Article  Google Scholar 

  • Gove JH, Williams MS, Ståhl G, Ducey MJ (2005) Critical point relascope sampling for unbiased volume estimation of downed coarse woody debris. Forestry 78:417–431

    Article  Google Scholar 

  • Gove JH, Ducey MJ, Valentine HT, Williams MS (2013) A comprehensive comparison of perpendicular distance sampling methods for sampling downed coarse woody debris. Forestry 86:129–143

    Article  Google Scholar 

  • Gregoire TG, Ståhl G, Næsset E, Gobakken T, Nelson R, Holm S (2011) Model-assisted estimation of biomass in a lidar sample survey in Hedmark county, Norway. Can J For Res 41:83–95

    Article  Google Scholar 

  • Haara A, Nevalainen S (2002) Detection of dead or defoliated spruces using digital aerial data. For Ecol Manage 160:97–107

    Article  Google Scholar 

  • Harmon ME, Franklin JF, Swanson FJ, Sollins P, Gregory SV, Lattin JD, Andersson NH, Cline SP, Aumen NG, Sedell JR, Lienkaemper GW, Cromack K Jr, Cummins KW (1986) Ecology of coarse woody debris in temperate ecosystems. Adv Ecol Res 15:133–302

    Article  Google Scholar 

  • Hottola J, Siitonen J (2008) Significance of woodland key habitats for polypore diversity and red-listed species in boreal forests. Biodivers Conserv 17:2559–2577

    Article  Google Scholar 

  • Hyvönen R, Ågren GI (2001) Decomposer invasion rate, decomposer growth rate, and substrate chemical quality: how they influence soil organic matter turnover. Can J For Res 31:1594–1601

    Article  Google Scholar 

  • Ihalainen A, Mäkelä H (2009) Kuolleen puuston määrä Etelä- ja Pohjois-Suomessa 2004–2007. Metsätieteen aikakauskirja 1:35–56 (In Finnish)

    Google Scholar 

  • Jonsson BG, Kruys N, Ranius T (2005) Ecology of species living on dead wood: lessons for dead wood management. Silva Fenn Monogr 39:289–309

    Google Scholar 

  • Jordan GJ, Ducey MJ, Gove JH (2004) Comparing line-intersect, fixed-area and point relascope sampling for dead and downed coarse woody material in a managed northern hardwood forest. Can J For Res 34:1766–1775

    Article  Google Scholar 

  • Kangas A (2006) Sampling rare populations. In: Kangas A, Maltamo M (eds) Forest inventory. Methodology and applications, vol 10, Managing forest ecosystems. Springer, Dordrecht

    Chapter  Google Scholar 

  • Karjalainen L, Kuuluvainen T (2002) Amount and diversity of coarse woody debris within a boreal forest landscape dominated by Pinus sylvestris in Vienansalo wilderness, eastern Fennoscandia. Silva Fenn 36:147–167

    Google Scholar 

  • Kim Y, Yang Z, Cohen WB, Pflugmacher D, Lauver CL, Vankat JL (2009) Distinguishing between live and dead standing tree biomass on the North Rim of Grand Canyon National Park, USA using small-footprint lidar data. Remote Sens Environ 113:2499–2510

    Article  Google Scholar 

  • Korpela I, Ørka H-O, Maltamo M, Tokola T, Hyyppä J (2010) Tree species classification in airborne LiDAR data: influence of stand and tree factors, intensity normalization and sensor type. Silva Fenn 44:319–339

    Article  Google Scholar 

  • Larsson JY, Hylen G (2007) Statistics of forest conditions and forest resources in Norway. Viten fra Skog og landskap 1/07. 91 p

    Google Scholar 

  • Lebart L, Morineau A, Warwick KM (1984) Multivariate descriptive statistical analysis: corresponding analysis and related techniques for large matrices. Wiley, New York

    Google Scholar 

  • Lonsdale D, Pautasso M, Holdenrieder O (2008) Wood-decaying fungi in the forest: conservation needs and management options. Eur J For Res 127:1–22

    Article  Google Scholar 

  • Magnussen S, Boudewyn P (1998) Derivation of stand heights from airborne laser scanner data with canopy-based quantile estimators. Can J For Res 28:1016–1031

    Article  Google Scholar 

  • Maltamo M, Bollandsås OM, Næsset E, Gobakken T, Packalén P (2011) Different sampling strategies for field training plots in ALS-assisted forest inventory. Forestry 84:23–31

    Article  Google Scholar 

  • Martinuzzi S, Vierling LA, Gould WA, Falkowski MJ, Evans JS, Hudak AT, Vierling KT (2009) Mapping snags and understory shrubs for a LiDAR-based assessment of wildlife habitat suitability. Remote Sens Environ 113:2533–2546

    Article  Google Scholar 

  • McRoberts RE, Tomppo E, Næsset E (2010) Advances and emerging issues in national forest inventories. Scand J For Res 25:368–381

    Article  Google Scholar 

  • McRoberts RE, Gobakken T, Næsset E (2012) Post-stratified estimation of forest area and growing stock volume using lidar-based stratifications. Remote Sens Environ 125:157–166

    Article  Google Scholar 

  • McRoberts RE, Næsset E, Gobakken T (2013) Inference for lidar-assisted estimation of forest growing. Remote Sens Environ 128:268–275

    Article  Google Scholar 

  • Mücke W, Hollaus M, Pfeifer N (2012) Identification of dead trees using small footprint full-waveform airborne laser scanning data. In: Proceedings of Silvilaser 2012, Vancouver

    Google Scholar 

  • Müller J, Bütler R (2010) A review of habitat thresholds for dead wood: a baseline for management recommendations in European forests. Eur J For Res 129:981–992

    Article  Google Scholar 

  • Næsset E (2001) Effects of differential single- and dual-frequency GPS and GLONASS observations on point accuracy under forest canopies. Photogramm Eng Remote Sens 67:1021–1026

    Google Scholar 

  • Næsset E (2002) Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data. Remote Sens Environ 80:88–99

    Article  Google Scholar 

  • Næsset E, Bollandsås OM, Gobakken T, Gregoire TG, Ståhl G (2013) Model-assisted estimation of change in forest biomass over an 11 year period in a sample survey supported by airborne LiDAR: a case study with post-stratification to provide “activity data”. Remote Sens Environ 128:299–314

    Article  Google Scholar 

  • Newton AC (2007) Forest ecology and conservation: a handbook of techniques. Oxford University Press, Oxford

    Book  Google Scholar 

  • Pasher J, King DJ (2009) Mapping dead wood distribution in a temperate hardwood forest using high resolution airborne imagery. For Ecol Manage 258:1536–1548

    Article  Google Scholar 

  • Pesonen A (2011) Comparison of field inventory methods and use of airborne laser scanning for assessing coarse woody debris. Dissertationes Forestales 113. 56 p

    Google Scholar 

  • Pesonen A, Maltamo M, Eerikäinen K, Packalén P (2008) Airborne laser scanning-based prediction of coarse woody debris volumes in a conservation area. For Ecol Manage 255:3288–3296

    Article  Google Scholar 

  • Pesonen A, Leino O, Maltamo M, Kangas A (2009) The comparison of field sampling methods and the use of airborne laser scanning as auxiliary information for assessing coarse woody debris. For Ecol Manage 257:1532–1541

    Article  Google Scholar 

  • Pesonen A, Kangas A, Maltamo M, Packalén P (2010a) The effects of auxiliary data source and inventory unit size on the efficiency of sample-based coarse woody debris inventory. For Ecol Manage 259:1890–1899

    Article  Google Scholar 

  • Pesonen A, Maltamo M, Kangas A (2010b) The comparison of airborne laser scanning-based probability layers as auxiliary information for assessing coarse woody debris. Int J Remote Sens 31:1245–1259

    Article  Google Scholar 

  • Ranius T, Jonsson BG, Kruys N (2004) Modeling dead wood in Fennoscandian old-growth forests dominated by Norway spruce. Can J For Res 34:1025–1034

    Article  Google Scholar 

  • Reitberger J, Schnörr CI, Krzystek P, Stilla U (2009) 3D segmentation of single tree exploiting full waveform LIDAR data. ISPRS J Photogramm Remote Sens 64:561–574

    Article  Google Scholar 

  • Ringvall A, Ståhl G (1999) On the field performance of transect relascope sampling for assessing downed coarse woody debris. Scand J For Res 14:552–557

    Article  Google Scholar 

  • Rosenfield GH, Fitzpatrick-Lins K (1986) A coefficient of agreement as a measure of thematic classification accuracy. Photogramm Eng Remote Sens 52:223–227

    Google Scholar 

  • Rouvinen S (2002) Amount, diversity and spatio-temporal availability of dead wood in old forests in boreal Fennoscandia. PhD dissertation, University of Joensuu, Faculty of Forestry

    Google Scholar 

  • Samuelsson J, Gustafsson L, Ingelog T (1994) Dying and dead trees: a review of their importance for biodiversity. Swedish Threatened Species Unit, Uppsala

    Google Scholar 

  • Seielstad CA, Queen LP (2003) Using airborne laser altimetry to determine fuel models for estimating fire behaviour. J For 101:10–15

    Google Scholar 

  • Sherrill KR, Lefsky MA, Bradford JB, Ryan MG (2008) Forest structure estimation and pattern exploration from discrete-return lidar in subalpine forests of the central Rockies. Can J For Res 38:2081–2096

    Article  Google Scholar 

  • Siitonen J (2001) Forest management, coarse woody debris and saproxylic organisms: Fennoscandian boreal forests as an example. Ecol Bull 49:11–41

    Google Scholar 

  • Sippola A-L, Siitonen J, Kallio R (1998) Amount and quality of coarse woody debris in natural and managed coniferous forests near the timberline in Finnish Lapland. Scand J For Res 13: 204–214

    Article  Google Scholar 

  • Ståhl G (1998) Transect relascope sampling – a method for the quantification of coarse woody debris. For Sci 44:58–63

    Google Scholar 

  • Ståhl G, Ringvall A, Lämås T (2000) Guided transect sampling for assessing sparse populations. For Sci 46:108–115

    Google Scholar 

  • Ståhl G, Ringvall A, Fridman J (2001) Assessment of coarse woody debris – a methodological overview. Ecol Bull 49:57–70

    Google Scholar 

  • Ståhl G, Gove JH, Williams MS, Ducey MJ (2010) Critical length sampling: a method to estimate the volume of downed coarse woody debris. Can J For Res 129:993–1000

    Google Scholar 

  • Ståhl G, Holm S, Gregoire TG, Gobakken T, Næsset E, Nelson R (2011) Model-based inference for biomass estimation in a lidar sample survey in Hedmark County, Norway. Can J For Res 129:96–107

    Article  Google Scholar 

  • Stehman SV, Salzer D (2000) Estimating density from vegetation surveys employing unequal-area belt transects. Wetlands 20:512–519

    Article  Google Scholar 

  • Stokland JN, Siitonen J, Jonsson BG (2011) Biodiversity in dead wood. Ecology, biodiversity and conservation. Cambridge University Press, Cambridge

    Google Scholar 

  • Temesgen H, Barrett T, Latta G (2008) Estimating cavity tree abundance using nearest neighbor imputation methods for western Oregon and Washington forests. Silva Fenn 42:337–354

    Article  Google Scholar 

  • Thompson SK (1990) Adaptive cluster sampling. J Am Stat Assoc 85:1050–1059

    Article  Google Scholar 

  • Uuttera J, Hyppänen H (1998) Determination of potential key-biotope areas in managed forests of Finland using existing inventory data and digital aerial photographs. For Landsc Res 1:415–429

    Google Scholar 

  • Vaillancourt M, Drapeau P, Gauthier S, Robert M (2008) Availability of standing trees for large cavity-nesting birds in the eastern boreal forest of Québec, Canada. For Ecol Manage 255:2272–2285

    Article  Google Scholar 

  • Venables WN, Ripley BD (2002) Modern applied statistics with S, Statistics and computing. Springer, New York

    Book  Google Scholar 

  • Warren WG, Olsen PF (1964) A line intersect technique for assessing logging waste. For Sci 10:267–276

    Google Scholar 

  • Williams MS, Gove JH (2003) Perpendicular distance sampling: an alternative method for sampling downed coarse woody debris. Can J For Res 33:1564–1579

    Article  Google Scholar 

  • Wing BM, Ritchie MW, Boston K, Cohen WB, Olsen MJ (2012) Individual snag detection using airborne lidar data and 3D local-area point-based intensity filtration. In: Proceedings of Silvilaser 2012, Vancouver

    Google Scholar 

  • Woldendorp G, Keenan RJ, Barry S, Spencer RD (2004) Analysis of sampling methods for coarse woody debris. For Ecol Manage 198:133–148

    Article  Google Scholar 

  • Woodall CW, Rondeux J, Verkerk PJ, Ståhl G (2009) Estimating dead wood during national forest inventories: a review of inventory methodologies and suggestions for harmonization. Environ Manage 44:624–631

    Article  PubMed  Google Scholar 

  • Wulder MA, White JC, Nelson R, Næsset R, Ørka HO, Coops NC, Hilker T, Bater CV, Gobakken T (2012) Lidar sampling for large-area forest characterization: a review. Remote Sens Environ 121:196–209

    Article  Google Scholar 

  • Yao W, Krzystek P, Heurich M (2012) Identifying standing dead trees in forest area based on 3D single tree detection from full waveform lidar data. ISPRS Ann Photogramm Remote Sens Spat Inf Sci I–7:359–364

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matti Maltamo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Maltamo, M., Kallio, E., Bollandsås, O.M., Næsset, E., Gobakken, T., Pesonen, A. (2014). Assessing Dead Wood by Airborne Laser Scanning. In: Maltamo, M., Næsset, E., Vauhkonen, J. (eds) Forestry Applications of Airborne Laser Scanning. Managing Forest Ecosystems, vol 27. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8663-8_19

Download citation

Publish with us

Policies and ethics