Skip to main content

Neutron Detectors Based on 10B-Containing Nanomaterials

  • Conference paper
  • First Online:
Nuclear Radiation Nanosensors and Nanosensory Systems

Abstract

Due to of deep penetration ability and strong secondary ionization, neutron-radiation is the mostly dangerous ionizing radiation for humans and environment. Developments in materials science provide neutron-sensor devices with enhanced selectivity and sensitivity. Among them, detectors based on boron-containing thin films are the naturally best because of special neutron-capture properties of 10B isotope. In this work, there are evaluated the key physical-technical characteristics of neutron detectors made from 10B-enriched semi-conducting materials: thickness of the effective working layer ~10 μm, releasing rate of the 10B – n interaction products ~1015/cm3 s, electron–hole pairs generating rate in process of neutron absorption ~1022/cm3 s, rate of rise in the temperature ~10 K/s, and device mean operating time ~10−4 s.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Martin JE (2008) Physics for radiation protection: a handbook. Wiley/VCH, Weinheim

    Google Scholar 

  2. Potapov SP (1961) On application of stable isotopes of boron. At Energy 10:244–252

    Google Scholar 

  3. Plešek J (1992) Potential applications of the boron cluster compounds. Chem Rev 92(2):269–273

    Article  Google Scholar 

  4. Grimes RN (2004) Boron clusters come of age. J Chem Educ 81(5):658–672

    Article  Google Scholar 

  5. Chkhartishvili LS (2009) Isotopic effects of boron (Review). Trends Inorg Chem 11:105–167

    Google Scholar 

  6. James RB, Burger A, Franks LA, Fiederle M (eds) (2012) Hard X-ray, gamma-ray, and neutron detector physics XIV. SPIE Proc, 8507:1–237

    Google Scholar 

  7. Cooper HS (1961) Boron. In: Hampel CA (ed) Rare metals handbook. Reynolds Publ. Corp/Chapman & Hall Ltd, New York/London, pp 69–81

    Google Scholar 

  8. Gaulé GK, Ross RL, Bloom JL (1965) 10B/11B thermistors pairs and their applications. In: Boron: preparation, properties and applications. Plenum Press, New York, pp 317–338

    Chapter  Google Scholar 

  9. Costato M, Fontanesi S (1969) Studio delle propretiá fisiche del Boro. Semin. Mat e Fis Univ Modena Atti, 18:231–281

    Google Scholar 

  10. Lund JC, Olscher F, Shah KS (1990) Solid state neutron detectors from boron-rich semiconducting compounds. In: Abstract 10th international symposium Boron, Borides & Rel. Comp. New Mexico University, Albuquerque, 100–100

    Google Scholar 

  11. Emin D, Aselage TL (2005) A proposed boron-carbide-based solid-state neutron detector. J Appl Phys 97:013529, 1–3

    Article  ADS  Google Scholar 

  12. Emin D (2008) Unusual properties of icosahedral boron-rich solids. J Solid State Chem 179(9):2791–2798

    Article  ADS  Google Scholar 

  13. Robertson BW, Adenwalla S, Harken A, Welsch P, Brand JI, Dowben PA, Claassen JP (2002) A class of boron-rich solid-state neutron detectors. Appl Phys Lett 80(19):3644–3646

    Article  ADS  Google Scholar 

  14. Oda K, Miyake H, Michijima M (1987) CR39 – BN detector for thermal neutron dosimetry. J Nucl Sci Technol 24(2):129–134

    Article  Google Scholar 

  15. Tanaka H, Sakurai Y, Suzuki M, Masunaga S, Kinashi Y, Marunashi A, Ono K (2013) Study on the dose evaluation using glass rod dosimeter for boron neutron capture therapy. IFMBE Proc 39:1142–1144

    Article  Google Scholar 

  16. Majety S, Li J, Cao XK, Dahal R, Lin JY, Jiang HX (2012) Metal–semiconductor–metal neutron detectors based on hexagonal boron nitride epitaxial layers. SPIE Proc 85070R:1–9

    Google Scholar 

  17. Robinson JA, Wetherington M, Hughes Z, la Bella III M, Bresnehan M (2012) Investigation of graphene-based nanoscale radiation sensitive materials. SPIE Proc 83730J:1–9

    Google Scholar 

  18. Kumashiro Y, Kudo K, Matsumoto K, Okada Y, Koshira T (1987) Thermal neutron irradiation experiments on 10BP single crystal wafers. In: Proceedings of the 9th international symposium Boron, Borides & Rel. Comp. Duisburg University Press, Duisburg, pp 371–372

    Google Scholar 

  19. Griffith RV, Hankins DE, Gammage RB, Wheeler RV (1979) Recent developments in personnel neutron dosimeters-alpha (Review). Health Phys 36(3):253–260

    Article  Google Scholar 

  20. Tsuruta T, Takagaki M (1982) Neutron dosimetry by the spark counting of tracks in boron-doped film. Health Phys 43(5):705–710

    Article  Google Scholar 

  21. Tsuruta T, Juto N (1984) Neutron dosimetry with boron-doped CR – 39 plastic. J Nucl Sci Technol 21(11):871–876

    Article  Google Scholar 

  22. Kikuchi R, Kawamoto T, Lee CH, Kawanishi M (1983) The TSEE from the sintered Li2B4O7 crystals, the glass ceramics of Li2B4O7 + SiO2 and the thin evaporated layer of Li2B4O7 on the LiF single crystal. Radiat Prot Dosim 4(3–4):196–200

    Google Scholar 

  23. Kervalishvili PJ (2012) Boron isotopes doped germanium and silicon based gamma and neutron radiation nanosensors. In: Cont. 2nd international conference “Nanotechnologies”. Nekeri, Tbilisi, pp 120–121

    Google Scholar 

  24. Chkhartishvili L (2014) Neutron-fluence nanosensors based on boron-containing materials. In: Nanomaterials for environmental protection. Wiley, Hoboken, Chap 26, pp 445–449

    Google Scholar 

  25. Murty KL, Charit I (2012) An introduction to nuclear materials: fundamentals and applications. Wiley/VCH, Berlin

    Google Scholar 

  26. Chkhartishvili L (2013) Interaction between neutron-radiation and boron-containing materials. In: Radiation synthesis of materials and compounds. CRC Press/Taylor & Francis Group, Boca Raton, Chap3, pp 43–80

    Google Scholar 

  27. Chkhartishvili L, Tsagareishvili O, Gabunia D (2012) 10B-based materials for neutron-shielding. In: Proceedings of the international conference Mod. Technol. & Meth. Inorg. Mater. Sci. Meridian, Tbilisi, pp 188–202

    Google Scholar 

  28. Tsagareishvili GV, Tavadze FN (1978) Semiconducting boron. Nauka, Moscow

    Google Scholar 

  29. Tsagareishvili GV, Tsagareishvili DS (1990) Thermal and elastic properties of boron. Metsniereba, Tbilisi

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Levan Chkhartishvili .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Chkhartishvili, L., Tsagareishvili, O., Tavadze, G. (2016). Neutron Detectors Based on 10B-Containing Nanomaterials. In: Kervalishvili, P., Yannakopoulos, P. (eds) Nuclear Radiation Nanosensors and Nanosensory Systems. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7468-0_12

Download citation

Publish with us

Policies and ethics