Skip to main content

Coffee and Cocoa Production in Agroforestry—A Climate-Smart Agriculture Model

  • Chapter
  • First Online:
Climate Change and Agriculture Worldwide

Abstract

Agroforestry should be a major climate-smart agriculture option as it combines sustainable production with adaptation and mitigation of climate change. In recent decades, cocoa and coffee cultivation have been responsible for the loss of more than 30 million ha of primary and secondary forests, and thus for increased greenhouse gas emissions. However, they also have a substantial mitigation potential via the 20 million ha currently in production, only part of which is managed under agroforestry. These agroforestry plantations are more stable over time and resilient against climate change and price volatility of agricultural products, by combining ecological services with diversified production. This chapter illustrates these features through research results obtained on three continents and proposes recommendations on the management of these systems and on public policies—from the farm to the territory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Cannavo P, Sansoulet J, Harmand JM, Siles Gutierrez P, Dreyer E, Vaast P (2011) Agroforestry associating coffee and Inga densiflora results in complementarity for water uptake and decreases deep drainage in Costa Rica. Agric Ecosyst Environ 140(1–2):1–13

    Article  Google Scholar 

  • Cerda R, Deheuvels O, Calvache D, Niehaus L, Saenz Y, Kent J, Vilchez S, Villota A, Martinez C, Somarriba E (2014) Contribution of cocoa agroforestry systems to family income and domestic consumption: looking toward intensification. Agrofor Syst 88:957–981. doi:10.1007/s10457-014-9691-8

    Article  Google Scholar 

  • Cerdán CR, Rebolledo MC, Soto G, Rapidel B, Sinclair FL (2012) Local knowledge of impacts of tree cover on ecosystem services in smallholder coffee production systems. Agric Syst 110:119–130

    Article  Google Scholar 

  • Chethana AN, Raghavendra HN, Gracy CP, Nagaraj N, Marie-Vivien D, Garcia CA, Vaast P (2009) Shade trees and income diversification from coffee agroforestry farms: field evidence from Kodagu district, South India (abstract). In: 2nd World congress of agroforestry. agroforestry, the future of global land use, 23–28 Aug 2009, Nairobi, Kenya (book of abstracts), p 474

    Google Scholar 

  • Clough Y, Faust H, Tscharntke T (2009) Cacao boom and bust: sustainability of agroforests and opportunities for biodiversity conservation. Conserv Lett 2:197–205

    Article  Google Scholar 

  • Deheuvels O, Rousseau GX, Soto Quiroga G, Decker Franco M, Cerda R, Vilchez Mendoza SJ, Somarriba E (2014) Biodiversity is affected by changes in management intensity of cocoa-based agroforests. Agrofor Syst 88:1081–1099. doi:10.1007/s10457-014-9710-9

    Article  Google Scholar 

  • FAO (2014) FAOSTAT Online database, FAO-UN. http://faostat.fao.org (consulté en juillet 2014)

  • Fischer J, Batary P, Bawa KS, Brussaard L, Chappell MJ, et al (2011) Conservation: limits of land sparing. Science 334:593–593

    Google Scholar 

  • Harmand JM, Hergoualc’h K, De Miguel S, Dzib B, Siles P, Vaast P (2007) Carbon sequestration in coffee agroforestry plantations of Central America. In: Proceedings of the 21st ASIC Colloquium, Montpellier, ASIC, Paris, pp 1071–1074

    Google Scholar 

  • Hergoualc’h K, Skiba U, Harmand JM, Hénault C (2008) Fluxes of greenhouse gases from andosols in coffee monoculture or shaded by Inga densiflora in Costa Rica. Biogeochemistry 89(3):329–345

    Article  Google Scholar 

  • Hergoualc’h K, Blanchart E, Skiba U, Hénault C, Harmand JM (2012) Changes in carbon stock and greenhouse gas balance in a coffee (Coffea arabica) monoculture versus an agroforestry system with Inga densiflora, in Costa Rica. Agric Ecosyst Environ 148(1):102–110

    Article  Google Scholar 

  • IPCC, Climate Change (2013) The physical science basis. Contribution of working group I to the fifth assessment report of IPCC, WMO, UNEP. http://www.ipcc.ch/report/ar5/wg1

  • Jagoret P, Michel-Dounias I, Malezieux E (2011) Long-term dynamics of cocoa agroforests: a case study in central Cameroon. Agrofor Syst 81(3):267–278

    Article  Google Scholar 

  • Jagoret P, Michel-Dounias I, Snoeck D, Todem Ngnogué H, Malézieux E (2012) Afforestation of savannah with cocoa agroforestry systems: a small-farmer innovation in central Cameroon. Agrofor Syst 86:493–504

    Article  Google Scholar 

  • Jagoret P, Kwesseu J, Messie C, Michel-Dounias I, Malézieux E (2014) Farmers’ assessment of the use value of agrobiodiversity in complex cocoa agroforestry systems in central Cameroon. Agrofor Syst 88:983–1000. doi:10.1007/s10457-014-9698-1

    Article  Google Scholar 

  • Jha S, Bacon CM, Philpott SM, Mendez VE, Läderach P, Rice RA (2014) Shade coffee: update on a disappearing refuge for biodiversity. Bioscience 64(5):416–428

    Article  Google Scholar 

  • Läderach P, Martinez-Valle A, Schroth G, Castro N (2013a) Predicting the future climatic suitability for cocoa farming of the world’s leading producer countries, Ghana and Côte d’Ivoire. Clim Change 119:841–854

    Article  Google Scholar 

  • Läderach P, Haggar J, Lau C, Eitzinger A, Ovalle O, Baca M, Jarvis A, Lundy M (2013b) Mesoamerican coffee: building a climate change adaptation strategy. CIAT, policy brief, 4 p

    Google Scholar 

  • Lin BB, Perfecto I, Vandermeer J (2008) Synergies between agricultural intensification and climate change could create surprising vulnerabilities for crops. Bioscience 58:847–854

    Article  Google Scholar 

  • Noponen MRA, Haggar J, Edwards-Jones G, Healey J (2013) Intensification of coffee systems can increase the effectiveness of REDD mechanisms. Agric Syst 119:1–9

    Article  Google Scholar 

  • Nygren P, Fernandez MP, Harmand JM, Leblanc HA (2012) Symbiotic dinitrogen fixation by trees: an underestimated resource in agroforestry systems? Nutr Cycl Agroecosyst 94(2–3):123–160. http://dx.doi.org/10.1007/s10705-012-9542-9

    Google Scholar 

  • Phalan B, Onial M, Balmford A, Green RE (2011) Reconciling food production and biodiversity conservation: land sharing and land sparing compared. Science 333:1289–1291

    Article  CAS  PubMed  Google Scholar 

  • Ruf F (2011) The myth of complex cocoa agroforests: the case of Ghana. Human Ecol 39(3):373–388. doi:10.1007/s10745-011-9392-0

    Article  Google Scholar 

  • Saj S, Jagoret P, Todem Ngogue H (2013) Carbon storage and density dynamics of associated trees in three contrasting Theobroma cacao agroforests of Central Cameroon. Agrofor Syst 87(6):1309–1320. doi:10.1007/s10457-013-9639-4

    Article  Google Scholar 

  • Schwendenmann L, Veldkamp E, Moser G, Hölscher D, Köhler M, Clough Y, Anas I, Djajakirana G, Erasmi S, Hertel D, Leitner D, Leuschner C, Michalzik B, Propastin P, Tjoa A, Tscharntke T, van Straaten O (2010) Effects of an experimental drought on the functioning of a cacao agroforestry system, Sulawesi, Indonesia. Glob Change Biol 16:1515–1530

    Article  Google Scholar 

  • Siles P, Harmand JM, Vaast P (2010) Effects of Inga densiflora on the microclimate of coffee (Coffea arabica L.) and overall biomass under optimal cultivation conditions in Costa Rica. Agrofor Syst 78(3):269–286

    Article  Google Scholar 

  • Vaast P, Somarriba E (2014) Trade-offs between crop intensification and ecosystem services: the role of agroforestry in cocoa cultivation. Agrofor Syst 88:947–956. doi:10.1007/s10457-014-9762-x

    Article  Google Scholar 

  • Vaast P, Bertrand B, Perriot JJ, Guyot B, Génard M (2006) Fruit thinning and shade improve bean characteristics and beverage quality of coffee (Coffea arabica L.) under optimal conditions. J Sci Food Agric 86(2):197–204

    Article  CAS  Google Scholar 

  • Vaast P, Guillemot J, Vignault C, Charbonnier F, Manjunatha M, Devakumar AS (2011) Shade level and species composition affect carbon sequestration in coffee agroforestry systems of the Kodagu district, South-Western India. In: 23rd International conference on coffee science (ASIC 2010), 3–8 Oct 2010, Bali, Indonesia

    Google Scholar 

  • Vaast P, Martínez M, Boulay A, Dzib Castillo B, Harmand JM (2013) Diversification dans les caféières d’Amérique centrale avec des arbres d’ombrage et de rapport. In: Ruf F, Schroth G (eds) Cultures pérennes tropicales: enjeux économiques et écologiques de la diversification. Éditions Quæx, Versailles, pp 223–230

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Vaast .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Éditions Quæ

About this chapter

Cite this chapter

Vaast, P., Harmand, JM., Rapidel, B., Jagoret, P., Deheuvels, O. (2016). Coffee and Cocoa Production in Agroforestry—A Climate-Smart Agriculture Model. In: Torquebiau, E. (eds) Climate Change and Agriculture Worldwide. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7462-8_16

Download citation

Publish with us

Policies and ethics