Skip to main content

Reef Biology and Geology – Not Just a Matter of Scale

  • Chapter
Coral Reefs in the Anthropocene

Abstract

The geological distribution and developmental history of coral reefs have been largely controlled by physical factors such as plate tectonics, sea-level changes, wave energy, salinity, light, temperature, nutrients, sediment, and antecedent topography. Although the geological and biological patterns have generally been consistent over the past 12,000 years, sub-millennial intervals of variation remind us that long-term patterns provide only part of the picture. Looking forward, changes in seawater temperature, storm intensity, aragonite saturation state and pH may bring a major shift in the balance between carbonate production, destruction and export. While rising sea level alone will probably not significantly change reef communities or over-top low reef islands, even small increases of water depth will have disproportionate effects on the wave energy passing over the reef crest. Moreover, the impacts of increasing storminess will rival declining coral cover as a major control over the carbonate budget of coral reefs in the coming century. Understanding what is to come will require a perspective that is impossible from any single discipline.

Nature is what nature is….. science is what we think nature is on a given day.

(A. Conrad Neumann)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adey WH, Burke RB (1977) Holocene bioherms of the Lesser Antilles – geologic control of development. In: Frost SH, Weiss MP, Saunders JB (eds) Reefs and related carbonates – ecology and sedimentology. Amer Assoc Petr Geol Bull Spec Publ 4, Tulsa, pp 67–82

    Google Scholar 

  • Adey WH, Macintyre IG, Stuckenrath R, Dill RF (1977) Relict barrier reef system off St. Croix: its implications with respect to late Cenozoic coral reef development in the western Atlantic. Proc 3rd Int Coral Reef Symp 2:15–21

    Google Scholar 

  • Alvarez-Filip L, Dulvy NK, Gill JA, Côté IM, Watkinson AR (2009) Flattening of Caribbean coral reefs: region-wide declines in architectural complexity. Proc R Soc 276:3019–3025

    Google Scholar 

  • Aronson R, Precht W (2001a) Applied paleoecology and the crisis on Caribbean coral reefs. Palaios 16:195–196

    Article  Google Scholar 

  • Aronson RB, Precht WF (2001b) White-band disease and the changing face of Caribbean coral reefs. Hydrobiologia 460:25–38

    Article  Google Scholar 

  • Blanchon P (2011) Back-stepping. In: Hopley D (ed) Encyclopedia of modern coral reefs. Springer, Dordrecht, pp 77–84

    Chapter  Google Scholar 

  • Bosscher H, Schlager W (1992) Computer simulation of reef growth. Sedimentology 39:503–512

    Article  Google Scholar 

  • Bruckner AW, Hill RL (2009) Ten years of change to coral communities off Mona and Desecheo Islands, Puerto Rico, from disease and bleaching. Dis Aquat Organ 87:19–31

    Article  PubMed  Google Scholar 

  • Buddemeier RW, Maragos JE, Knutson DW (1974) Radiographic studies of reef coral exoskeletons: rates and patterns of coral growth. J Exp Mar Biol Ecol 14:179–200

    Article  Google Scholar 

  • Burke L, Reytar K, Spalding M, Perry A (2011) Reefs at risk revisited. World Resources Institute, Washington, DC, 112 p

    Google Scholar 

  • Carpenter KE, Abrar M, Aeby G, Aronson RB, Banks S, Bruckner A, Chiriboga A, Cortes J, Delbeen JC, Devantier J, Edgar GJ, Edwards AJ, Fenner D, Guzman HM, Hoeksema BW, Hodgeson G, Johan O, Licuanan WY, Livingstone SR, Lovell ER, Moore JA, Obura DO, Ochavillo D, Polidoro BA, Precht WF, Quibilan MC, Robotan C, Richards ZT, Rogers AD, Sanciangco J, Sheppard A, Sheppard C, Smith J, Stuart S, Turak E, Veron JE, Wallace C, Weil E, Wood E (2008) One-third of reef-building corals face elevated extinction risks from climate change and local impacts. Science 321:560–563

    Article  CAS  PubMed  Google Scholar 

  • Church JA, White NJ (2011) Sea-level rise from the late 19th to the early 21st century. Surv Geophys 32:585–602

    Article  Google Scholar 

  • Cortes J, Risk M (1985) Are reefs under siltation stress: Cahuita, Costa Rica. Bull Mar Sci 36:339–356

    Google Scholar 

  • Daly RA (1915) The glacial-control theory of coral reefs. Proc Am Acad Arts Sci 51:155–251

    Article  Google Scholar 

  • Darwin CR (1842) The structure and distribution of coral reefs. Smith, Elder and Co, London, 207p

    Google Scholar 

  • Darwin C (1913) Journal of researches into the natural history and geology of the countries visited during the voyage round the world of H.M.S. Beagle. John Murray, London, p 538

    Google Scholar 

  • Davi WM (1923) The marginal belts of the coral seas. Proc Natl Acad Sci 9:292–296

    Article  Google Scholar 

  • Davies PJ, Hopley D (1983) Growth fabrics and growth rates of Holocene reefs in the Great Barrier Reef. Bur Min Res J Austr Geol Geophys 8:237–251

    Google Scholar 

  • Davies PJ, Symonds PA, Feary DA, Pigram CJ (1987) Horizontal plate motion: a key allocyclic factor in the evolution of the Great Barrier Reef. Science 238:1697–1700

    Article  CAS  PubMed  Google Scholar 

  • Davies PJ, Feary DA, Kershaw AP, Pigram CJ, Symonds PA, de Deckker P (1991) The evolution of the carbonate platforms of Northeast Australia. In: Williams MA (ed) Cainozoic in Australia: a re-appraisal of the evidence, vol 18. Geol Soc Australia Spec Pub, Sydney, pp 44–78

    Google Scholar 

  • De’ath G, Fabricius KE, Sweatman H, Puotinen M (2012) The 27–year decline of coral cover on the Great Barrier Reef and its causes. Proc Natl Acad Sci 109:17995–17999

    Article  PubMed Central  PubMed  Google Scholar 

  • DiCaprio MRD, Müller RD, Gurnis M (2010) A dynamic process for drowning carbonate reefs on the northeastern Australian margin. Geology 38:11–14

    Article  CAS  Google Scholar 

  • Doney SC, Fabry JF, Feely RA, Kleypas JA (2009) Ocean acidification: the other CO2 problem. Mar Sci 1:169–192

    Article  Google Scholar 

  • Dubois R, Towle EL (1985) Coral harvesting and mining management practices. In: Clarke JT (ed) Coasts-coastal resource management development case studies. Research Planning Institute, Columbia SC, Coast Publ, vol 3. pp 203–283

    Google Scholar 

  • Dullo W-C (2005) Coral growth and reef growth: a brief review. Coral Reefs 51:33–48

    Google Scholar 

  • Dunham RJ (1970) Stratigraphic reefs versus ecologic reefs. Am Assoc Petr Geol Bull 54:1931–1932

    Google Scholar 

  • Dustan P (1975) Growth and form in the reef-building coral Montastrea annularis. Mar Biol 33:101–107

    Article  Google Scholar 

  • Emiliani C (1966) Isotopic paleotemperatures. Science 154:851–857

    Article  CAS  PubMed  Google Scholar 

  • Endean R (1973) Population explosions of Acanthaster planci and associated destruction of hermatypic corals in the Indo-West Pacific region. In: Jones OA, Endean R (eds) Biology and geology of coral reefs, vol 2. Academic, London, pp 389–438

    Chapter  Google Scholar 

  • Estep A, Erickson T, Hubbard DK (2008) A comparison of rates and styles of bioerosion with varying sedimentation: holocene reefs in the western Dominican Republic versus modern reefs off St. Croix, USVI 11th Intl Coral Reef Symp Abstracts and Program, p 261

    Google Scholar 

  • Fagerstrom JA (1987) The evolution of reef communities. Wiley, New York, 600 p

    Google Scholar 

  • Fairbanks RG (1989) A 17,000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature 342:637–642

    Article  Google Scholar 

  • Fairbridge R, Teichert C (1948) The low isles of the Great Barrier Reefs: a new analysis. Geogr J 3:67–88

    Article  Google Scholar 

  • Frost SH (1977) Cenozoic reef systems of Caribbean – prospects for paleoecologic synthesis. In: Frost SH, Weiss MP, Saunders JB (eds) Reefs and related carbonates – ecology and sedimentology, Bull Studies in Geology No. 4. American Association of Petroleum Geologists, Tulsa, pp 93–110

    Google Scholar 

  • Gardner TA, Coté IM, Gill JA, Grant A, Watkinson AR (2003) Long-term region-wide declines in Caribbean corals. Science 301:958–960

    Article  CAS  PubMed  Google Scholar 

  • Gasse F (2000) Hydrological changes in the African tropics since the last glacial maximum. Quat Sci Rev 19:189–211

    Article  Google Scholar 

  • Geister J (1977) The influence of wave exposure on the ecological zonation of Caribbean reefs. Proc 3rd Int Coral Reef Symp 1:23–29

    Google Scholar 

  • Gischler E (2008) Accretion patterns in Holocene tropical coral reefs: do massive coral reefs in deeper water with slowly growing corals accrete faster than shallower branched corals with rapidly growing corals? Int J Earth Sci 97:851–859

    Article  Google Scholar 

  • Gladfelter W (1982) White band disease in Acropora palmata: implications for the structure and function of shallow reefs. Bull Mar Sci 32:639–643

    Google Scholar 

  • Glynn PW (1984) Widespread coral mortality and the 1982–1983 El Niño warming event. Environ Conserv 11:133–146

    Article  Google Scholar 

  • Glynn PJ, Stewart RH (1973) Distribution of coral reefs in the Pearl Islands (Gulf of Panama) in relation to thermal conditions. Limnol Oceanogr 18:367–378

    Article  Google Scholar 

  • Grauss R, Macintyre IG (1982) Variations in growth forms of the reef coral Montastrea annularis: a quantitative evaluation of growth response to light distribution under computer simulation. In: Rutzler K, Macintyre IG (eds) The Atlantic barrier reef ecosystem at Carrier Bow Cay, Belize I: structure and communities. Smithsonian Institution Contrib Mar Sci 12:441–464, Washington DC

    Google Scholar 

  • Grauss RB, Chamberlain JA, Boker A (1984) Structural modifications of corals in relation to waves and currents. In: Frost SH, Weis MP, Saunders JB (eds) Reefs and related carbonates – ecology and sedimentology. Am Assoc Petr Geol Bull Stud Geol 4:135–153, Tulsa OK

    Google Scholar 

  • Grauss R, Macintyre I (1998) Global warming and the future of Caribbean coral reefs. Carbonates Evaporites 13:43–47

    Article  Google Scholar 

  • Greenstein BJ (1999) Using the fossil record to approach modern ecological problems: a case study for coral reefs. Am Paleontol 7:2–4

    Google Scholar 

  • Grigg RW (1982) Darwin Point: a threshold for atoll formation. Coral Reefs 1:29–35

    Article  Google Scholar 

  • Grigg RW (2000) Coral reef evolution: short term instability versus evolutionary stasis. In: Integrated coastal zone management, 2nd edn. Univ. of Hawaii, Dept. of Oceanography, Honolulu, pp 65–68

    Google Scholar 

  • Hajek A (2001) Pascal’s wager. In: Zalta EN (ed) The Stanford encyclopedia of philosophy. Stanford University Center for the Study of Language and Information, Stanford CA

    Google Scholar 

  • Hallock P (1988) The role of nutrient availability in bioerosion: consequences to carbonate buildups. Paleogogr Paleoclimatol Paleoecol 63:275–291

    Article  Google Scholar 

  • Haq BU, Hardenbol J, Vail PR (1987) Chronology of fluctuating sea levels since the Triassic. Science 235:1156–1167

    Article  CAS  PubMed  Google Scholar 

  • Harvell C, Kim K, Burkholder JM, Colwell RR, Epstein PR, Grimes DJ, Hofmann EE, Lipp EK, Osterhaus ADME, Overstreet RM, Porter JW, Smith GW, Vasta GR (1999) Emerging marine diseases – climate links and anthropogenic factors. Science 285:1505–1510

    Article  CAS  PubMed  Google Scholar 

  • Harvell CD, Aronson R, Baron N, Connell J et al (2004) The rising tide of ocean diseases: unsolved problems and research priorities. Front Ecol Environ 2:375–382

    Article  Google Scholar 

  • Heckel PH (1974) Carbonate buildups in the geologic record: a review. In: Laporte LF (ed) Reefs in time and space. SEPM Spec Publ, Tulsa OK, vol 18, pp 90–154

    Google Scholar 

  • Hine AC, Neumann AC (1977) Shallow carbonate bank margin growth and structure, Little Bahama Bank. Am Assoc Petr Geol Bull 61:376–406

    Google Scholar 

  • Hodell DA, Curtis JH, Jones GA, Higuera-Gundy A, Brenner M, Binford MW, Dorsey KT (1991) Reconstruction of Caribbean climate change over the past 10,500 years. Nature 352:790–793

    Article  Google Scholar 

  • Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomex E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Eakin CM, Iglesias-Prieto R, Muthiga N, Bredbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742

    Article  CAS  PubMed  Google Scholar 

  • Hubbard DK (1986) Sedimentation as a control of reef development. Coral Reefs 5:117–125

    Article  Google Scholar 

  • Hubbard DK (1987) A general review of sedimentation as it relates to environmental stress in the Virgin Islands Biosphere Reserve and the eastern Caribbean in general. Biosphere Reserve Research Report 20, Virgin Islands National Park, St. John USVI, 42p

    Google Scholar 

  • Hubbard DK (1992) Hurricane-induced sediment transport in open-shelf tropical systems – an example from St. Croix, U.S. Virgin Islands. J Sediment Petrol 62:946–960

    Google Scholar 

  • Hubbard DK (2009) Depth-related and species-related patterns of Holocene reef accretion in the Caribbean and western Atlantic: a critical assessment of existing models. In: Swart PK, Eberli G, McKenzie J (eds) Perspectives in carbonate geology. Wiley-Blackwell, Oxford, pp 1–18

    Google Scholar 

  • Hubbard DK (2011) Reefs through the looking glass. In: Stanley DG (ed) Corals and reefs: crisis, collapse and change, vol 17, Paleontological Society papers. Paleontological Society, Boulder, pp 95–110

    Google Scholar 

  • Hubbard DK (2014) Holocene accretion rates and styles for Caribbean coral reefs: lessons for the past and future. In: Verwer K, Playton TE, Harris PM (eds) Deposits, architecture and controls of carbonate margin, slope and basinal settings. SEPM Spec. Publ, vol 105, pp 264–281, Tulsa OK

    Google Scholar 

  • Hubbard DK, Garcia M (2003) The corals and coral reefs of Easter Island – a preliminary look. In: Loret J, Tanacredi JT (eds) Easter Island. Kluwer Academic/Plenum Publishers, New York, pp 53–77

    Chapter  Google Scholar 

  • Hubbard JAEB, Pocock Y (1974) Sediment rejection by recent scleractinian corals: a key to paleoenvironmental reconstruction. Geol Rundsch 61:598–626

    Article  Google Scholar 

  • Hubbard DK, Scaturo D (1985) Growth rates of seven scleractinean corals from Cane Bay and Salt River, St. Croix, U.S. Virgin Islands. Bull Mar Sci 36:325–338

    Google Scholar 

  • Hubbard DK, Burke RB, Gill IP (1986) Styles of reef accretion along a steep, shelf-edge reef, St. Croix, U.S. Virgin Islands. J Sediment Petrol 56:848–861

    Google Scholar 

  • Hubbard DK, Miller AI, Scaturo D (1990) Production and cycling of calcium carbonate in a shelf-edge reef system (St. Croix, U.S. Virgin Islands): applications to the nature of reef systems in the fossil record. J Sediment Petrol 60:335–360

    Google Scholar 

  • Hubbard DK, Bythell JC, Gladfelter EH (1994) Comparison of biological and geological perspectives of coral-reef community structure at Buck Island, U.S. Virgin Islands. In: Proceedings of colloquium on global aspects of coral reefs; health, hazards and history. Miami, pp 201–207

    Google Scholar 

  • Hubbard DK, Gill IP, Burke RB, Morelock J (1997) Holocene reef backstepping – southwestern Puerto Rico Shelf. Proc 8th Int Coral Reef Symp 2:1779–1784

    Google Scholar 

  • Hubbard DK, Burke RB, Gill IP (1998) Where’s the reef: the role of framework in the Holocene. Carbonates Evaporites 13:3–9

    Article  Google Scholar 

  • Hubbard DK, Gill IP, Burke RB (2000) Caribbean-wide loss of A. palmata 7,000 yr ago: sea-level change, stress, or business as usual? Abstracts of 9th international coral reef symposium, p 57

    Google Scholar 

  • Hubbard DK, Zankl H, Van Heerden I, Gill IP (2005) Holocene reef development along the Northeastern St. Croix Shelf, Buck Island, U.S. Virgin Islands. J Sediment Res 75:97–113

    Article  Google Scholar 

  • Hubbard DK, Gill IP, Burke RB (2013) Holocene reef building on Eastern St. Croix, US Virgin Islands: Lang Bank revisited. Coral Reefs. doi:10.1007/s00338-013-1041-1

    Google Scholar 

  • Hubbard D, Gischler E, Davies P, Montaggioni L, Camoin G, Dullo W-C, Storlazzi C, Field M, Fletcher C, Grossman E, Sheppard C, Lescinsky H, Fenner D, McManus J, Scheffers S (2014) Island outlook: warm and swampy. Science 345:1461–1462

    Article  CAS  PubMed  Google Scholar 

  • Hughes Y (1994) Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef. Science 265:1547–1531

    Article  CAS  PubMed  Google Scholar 

  • Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR, Folke C, Grosberg R, Hoegh-Guldberg O, Jackso JBC, Kleypas J, Lough JM, Marshall P, Nystrom M, Palumbi SR, Pandolfi JM, Rosen B, Roughgarden J (2003) Climate change, human impacts and the resilience of coral reefs. Science 301:929–933

    Article  CAS  PubMed  Google Scholar 

  • Isdale PJ (1984) Geographical patterns in coral growth rates on the Great Barrier Reeg. In: Baker JT, Carter RM, Sammarco PW, Stark KP (eds) Proceedings of the Great Barrier Reef Conference, Townsvill, Australia, pp 327–330

    Google Scholar 

  • Jackson JBC (1991) Adaptation and diversity of reef corals. Bioscience 41:745–482

    Google Scholar 

  • Jackson JBC (1992) Pleistocene perspectives on coral reef community structure. Am Zool 32:719–731

    Article  Google Scholar 

  • Jackson JBC (1997) Reefs since Columbus. Proc 8th Int Coral Reef Symp 1:97–106

    Google Scholar 

  • Johannes RE (1975) Pollution and degradation of coral reef communities. In: Ferguson Wood EJ, Johanes RE (eds) Tropical marine pollution, vol 12, Elsevier oceanography series. Elsevier, Amsterdam, pp 13–51

    Chapter  Google Scholar 

  • Jackson J, Donovan M, Cramer K, Lam V (2014) Status and trends of Caribbean coral reefs: 1970–2012. Global Coral Reef Monitoring Network, IUCN, Gland Switzerland, 304 p

    Google Scholar 

  • Kaye C (1959) Shoreline features and quaternary shoreline changes, Puerto Rico, USGS Prof. Paper 317-B, 140 p

    Google Scholar 

  • Kinsey DW, Davies PJ (1979) Effects of elevated nitrogen and phosphorous on coral reef growth. Limnol Oceanogr 24:935–940

    Article  CAS  Google Scholar 

  • Kleypas JA, Buddemeier RW, Archer D, Gattuso J-P, Langdon C, Opdyke BN (1999) Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science 284:118–143

    Article  CAS  PubMed  Google Scholar 

  • Knowlton N (1993) Sibling species in the sea. Ann Rev Ecol Syst 24:189–216

    Article  Google Scholar 

  • Ladd HS, Schlanger SO (1960) Drilling operations on Enewetak atoll. USGS Prof. Paper 260-Y, US Government Printing Office, Washington DC

    Google Scholar 

  • Land LS (1979) The fate of reef-derived sediment on the north Jamaican island slope. Mar Geol 29:55–71

    Article  Google Scholar 

  • Lessios HA, Robertson DR, Cubit JD (1984) Spread of Diadema mass mortality through the Caribbean. Science 226:335–337

    Article  CAS  PubMed  Google Scholar 

  • Lowenstam HA (1950) Niagaran reefs of the Great Lakes area. J Geol 58:430–487

    Article  Google Scholar 

  • Lyell C (1832) Principles of geology, vol II. John Murray, London, 330p

    Google Scholar 

  • Macintyre IG, Glynn PW (1976) Evolution of modern Caribbean fringing reef, Galeta Point. AAPG Bull 60:1054–1072

    Google Scholar 

  • Maragos J (1972) A study of the ecology of Hawaiian coral reefs. PhD dissertation, University of Hawaii, Honolulu, 280 p

    Google Scholar 

  • McClanahan T, Shafir S (1990) Causes and consequences of sea urchin abundance and diversity in Kenyan coral reef lagoons. Oeceologia 83:362–370

    Article  Google Scholar 

  • McCulloch M, Fallon S, Wyndham T, Hendy E, Lough J, Barnes D (2003) Coral record of increased sediment flux to the inner Great Barrier Reef since European settlement. Nature 421:727–730

    Article  CAS  PubMed  Google Scholar 

  • Milankovitch M (1930) Mathematische Klimalehre und Astronomische Theorie der Klimaschwankungen, Handbuch der Klimalogie Band 1 Teil A Borntrager Berlin

    Google Scholar 

  • Miller J, Muller E, Rogers CS, Waara R, Atkinson A, Whelan KRT, Patterson M, Witcher B (2009) Coral disease following massive bleaching in 2005 causes 60 % decline in coral cover on reefs in the US Virgin Islands. Coral Reefs 28:925–937

    Article  Google Scholar 

  • Mojsisovics EMV (1879) Die dolomit-riffe von sudTirol und Venetien. A Holden Co., Wien, 551p

    Google Scholar 

  • Montaggioni L (2005) History of Indo-Pacific coral reef systems since the last glaciation: development patterns and controlling factors. Earth Sci Rev 71:1–75

    Article  Google Scholar 

  • Moore CH, Shedd WW (1977) Effective rates of sponge bioerosion as a function of carbonate production. Proc 3rd Int Coral Reef Symp 2:499–506

    Google Scholar 

  • Moran PJ (1986) The Acanthaster phenomenon. Oceanogr Mar Biol Ann Rev 24:379–480

    Google Scholar 

  • Morelock J, Boulon R, Galler G (1979) Sediment stress and coral reefs. In: Lopez JM (ed) Proceedings of the symposium on energy and industry in the marine environment in Guayanilla Bay, University of Puerto Rico, pp 46–58

    Google Scholar 

  • Murdock TQ, Fanning AF, Weaver AJ (1997) Paleoclimatic response of the closing of the Isthmus of Panama in a coupled ocean-atmosphere model. Geophys Res Lett 24:253–256

    Article  Google Scholar 

  • Neumann AC, Macintyre IG (1985) Reef response to sea level rise: keep up catch up or give up. Proc 5th Int Coral Reef Symp 3:105–110

    Google Scholar 

  • Neumann CJ, Cry GW, Caso EI, Jarvinen BR (1981) Tropical cyclones of the North Atlantic Ocean, 1871–1980. National Climatic Center Publ, 174p NOAA Environmental Centers for Environmental Information, Ashville

    Google Scholar 

  • Newell ND (1955) Depositional fabric in Permian reef limestones. J Geol 63:301–309

    Article  Google Scholar 

  • Ogston AS, Field ME (2010) Predictions of turbidity due to enhanced sediment resuspension resulting from sea-level rise on a fringing coral reef: evidence from Molokai, Hawaii. J Coast Res 26:1027–1037

    Article  Google Scholar 

  • Oliver TA, Palumbi SR (2011) Do fluctuating temperature environments elevate thermal tolerance? Coral Reefs 30:429–440

    Article  Google Scholar 

  • Pandolfi JM (2002) Coral community dynamics at multiple scales. Coral Reefs 21:13–23

    Article  Google Scholar 

  • Pandolfi JM, Jackson JBC (1997) The maintenance of diversity on coral reefs: examples from the fossil record. Proc 8th Int Coral Reef Symp 1:397–404

    Google Scholar 

  • Pandolfi JM, Jackson JBC (2001) Community structure of Pleistocene coral reefs of Curacao, Netherlands Antilles. Ecol Monogr 71:49–67

    Google Scholar 

  • Perry CT, Spencer T, Kench PS (2008) Carbonate budgets and reef production states: a geomorphic perspective on the ecological phase-shift concept. Coral Reefs 27:853–866

    Article  Google Scholar 

  • Perry CT, Edinger EN, Kench PS, Mumby PJ, Murphy G, Steneck RS, Smithers SG (2012) Estimating rates of biologically driven coral reef framework production and erosion: a new census-based carbonate budget methodology and applications to the reefs of Bonaire. Coral Reefs 31:853–868

    Article  Google Scholar 

  • Playford P (1980) Devonian “great barrier reef” of Canning Basin, Western Australia. Am Assoc Petr Geol Bull 64:814–840

    Google Scholar 

  • Purdy E (1974) Reef configurations: cause and effect. In: LaPorte LF (ed) Reefs in time and space. SEPM Spec. Publ., vol 18, pp 90–76, Tulsa OK

    Google Scholar 

  • Quoy JR, Gaimard JP (1825) Memoire sur l’accroissment des polyps lithophytes consider e geologiquement. Ann Sci Nat 6:373–390

    Google Scholar 

  • Roberts HH, Murray SF, Suhayda JN (1977) Physical processes in a fore-reef shelf environment. Proc 3rd Int Coral Reef Symp 2:507–515

    Google Scholar 

  • Rogers CS (1983) Sublethal and lethal effects of sediment applied to common Caribbean corals in the field. Mar Pollut Bull 14:378–382

    Article  Google Scholar 

  • Roy K, Smith SV (1971) Sedimentation and coral development in turbid water: fanning Lagoon. Pac Sci 25:234–248

    Google Scholar 

  • Ruddiman WF (2005) How did humans first alter global climate? Sci Am 295:46–53

    Article  Google Scholar 

  • Schlager W (1981) The paradox of drowned reefs and carbonate platforms. GSA Bull 92:197–211

    Article  Google Scholar 

  • Schroeder JH, Purser BH (1986) Reef diagenesis. Springer, Berlin, 455p

    Book  Google Scholar 

  • Schroeder JH, Zankl H (1974) Dynamic reef formation: a sedimentological concept based on studies of Recent Bermuda and Bahamian reefs. Proc 2nd Int Coral Reef Symp 2:413–428

    Google Scholar 

  • Scoffin TP, Stearn CW, Boucher D, Frydl P, Hawkins CM, Hunter IG, MacGeachy JK (1980) Calcium carbonate budget of a fringing reef on the west coast of Barbados: part II, erosion, sediments and internal structure. Bull Mar Sci 30:47–508

    Google Scholar 

  • Simskiss K (1964) Phosphates as crystal poisons of calcification. Biol Rev 39:487–505

    Article  Google Scholar 

  • Stanley GD, Fagerstrom (1988) Ancient reef ecosystems. Palaios 3:1–142

    Article  Google Scholar 

  • Stearn CW, Scoffin TP, Martindale W (1977) Calcium carbonate budget of a fringing reef on the west coast of Barbados – zonation and productivity. Bull Mar Sci 27:479–510

    CAS  Google Scholar 

  • Steneck RS (1988) Herbivory on coral reefs: a synthesis. Proc 6th Int Coral Reef Symp 1:37–49

    Google Scholar 

  • Taylor JD, Saloman R (1978) Some effects of hydraulic dredging and coastal development in Boca Clega Bay, FL. Fish Bull 67:213–241

    Google Scholar 

  • Teichert C (1958) Cold- and deep-water coral banks. Am Assoc Petr Geol Bull 42:1064–1082

    Google Scholar 

  • Thompson LG, Mosley-Thompson E, Davis ME, Lin PN, Henderson KA, Dole-Dai J, Bolzan JF, Jiu KB (1995) Late glacial stage and Holocene tropical ice core records from Huascaran, Peru. Science 269:46–50

    Article  CAS  PubMed  Google Scholar 

  • Toomey M, Ashton AD, Perron JT (2013) Profiles of ocean island coral reefs controlled by sea-level history and carbonate accumulation rates. Geology 41:731–734

    Article  Google Scholar 

  • US Naval Weather Service Command (1979) Summary of synoptic meteorological observations (SSMO) – Caribbean and nearby island coastal marine areas. National Climatic Center, Washington DC

    Google Scholar 

  • Vail PR, Mitchum RM, Thompson S III, Todd RG, Sangree JB, Widmier JM, Bubb NM, Natelid WG (1977) Seismic stratigraphy and global sea level changes. Am Assoc Petr Geol Bull Mem 26:49–212

    Google Scholar 

  • van Eepol R, Grigg D (1970) Effects of dredging at Great Bay, St. John. Water. Pollution report 5. Caribbean Research Institute, University of the Virgin Islands, St. Thomas USVI

    Google Scholar 

  • Vermeij GJ (1978) Biogeography and adaptation. Harvard University Press, Cambridge

    Google Scholar 

  • Vermeij GJ (1993) Biological history of a seaway. Science 260:1603–1604

    Article  CAS  PubMed  Google Scholar 

  • Viau C (1988) The Devonian Swan Hills formation at Swan Hills field and adjacent areas, central Alberta, Canada: In: Harris P (ed) SEPM core workshop no. 12, pp 803–853, Tulsa OK

    Google Scholar 

  • Walker ND, Roberts HH, Rouse LJ, Huh OJ (1982) Thermal history of reef-associated environments during cold-air outbreak event. Coral Reefs 1:83–88

    Article  Google Scholar 

  • Weber JN, White EW (1974) Activation energy for skeletal aragonite deposited in the hermatypic coral Platygyra app. Mar Biol 26:353–359

    Article  Google Scholar 

  • Webster PJ, Holland GJ, Curry JA, Chang H-R (2005) Changes in tropical cyclone number, duration and intensity in a warming environment. Science 309:1844–1846

    Article  CAS  PubMed  Google Scholar 

  • Weinstein DK, Smith TB, Klaus JS (2014) Mesophotic Bioerosion: variability and structural impact on U.S. Virgin Island deep reefs. Geomorphology. doi:10.1016/ j.geomorph.2014.03.005

    Google Scholar 

  • Wellington GM, Glynn PW, Strong AE, Navarrete SA, Wieters E, Hubbard DK (2000) Crisis on coral reefs linked to climate change. Eos 82:1–5

    Article  Google Scholar 

  • Whitcher E (2011) Macrobioerosion rates of in-situ coral colonies: St. John, U.S. Virgin Islands. In: Proc 24th Keck Geology Symp 24:219–225

    Google Scholar 

  • Whitcher E, Hubbard DK, Parsons-Hubbard K, Miller J (2012) Bioerosion of in situ coral colonies. Book of Abstracts:13th international coral reef symposium p 200 Cairns, Australia

    Google Scholar 

  • Wilkinson CR (1987) Interocean differences in size and nutrition of coral sponge populations. Science 236:1654–1657

    Article  CAS  PubMed  Google Scholar 

  • Zeebe EE, Wolf-Gladrow DA (2001) CO2 in seawater: equilibrium, kinetics and isotopes. Elsevier Oceanography Ser No 65, 346 p Amsterdam

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis K. Hubbard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hubbard, D.K. (2015). Reef Biology and Geology – Not Just a Matter of Scale. In: Birkeland, C. (eds) Coral Reefs in the Anthropocene. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7249-5_3

Download citation

Publish with us

Policies and ethics