Skip to main content

Molecular Genetics of Hypophosphatasia and Phenotype-Genotype Correlations

  • Chapter
  • First Online:
Neuronal Tissue-Nonspecific Alkaline Phosphatase (TNAP)

Part of the book series: Subcellular Biochemistry ((SCBI,volume 76))

Abstract

Hypophosphatasia (HPP) is due to deficient activity of the tissue-nonspecific isoenzyme of alkaline phosphatase (TNAP). This enzyme cleaves extracellular substrates inorganic pyrophosphates (PPi) , pyridoxal-5′-phosphate (PLP), phosphoethanolamine (PEA) and nucleotides , and probably other substrates not yet identified. During the last 15 years the role of TNAP in mineralization, and to a less degree in brain, has been investigated, providing hypotheses and explanations for both bone and neuronal HPP phenotypes. ALPL, the gene encoding TNAP, is subject to many mutations, mostly missense mutations . A few number of mutations are recurrently found and may be quite frequent in particular populations. This reflects founder effects. The great variety of mutations results in a great number of compound heterozygous genotypes and in highly variable clinical expressivity. A good correlation was observed between the severity of the disease and in vitro enzymatic activity of the mutant protein measured after site-directed mutagenesis. Many missense mutations found in severe hypophosphatasia produced a mutant protein that failed to reach the cell membrane , was accumulated in the cis-Golgi and was subsequently degraded in the proteasome. Missense mutations located in the catalytic site or in the homodimer interface were often shown by site-directed mutagenesis to have a dominant negative effect. Currently molecular diagnosis of HPP is based on the sequencing of the coding sequence of ALPL that allows detection of approximately 95 % of mutations in severe cases. In addition, other genes, especially genes encoding proteins involved in the regulation of extracellular PPi concentration, could modify the phenotype (modifier genes).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baumgartner-Sigl S, Haberlandt E, Mumm S, Scholl-Burgi S, Sergi C, Ryan L, Ericson KL, Whyte MP, Hogler W (2007) Pyridoxine-responsive seizures as the first symptom of infantile hypophosphatasia caused by two novel missense mutations (c.677T > C, p. M226T; c.1112C > T, p.T371I) of the tissue-nonspecific alkaline phosphatase gene. Bone 40:1655–1661

    CAS  PubMed  Google Scholar 

  • Baxter P (2003) Pyridoxine-dependent seizures: a clinical and biochemical conundrum. Biochim Biophys Acta 1647:36–41

    CAS  PubMed  Google Scholar 

  • Bossi M, Hoylaerts MF, Millan JL (1993) Modifications in a flexible surface loop modulate the isozyme-specific properties of mammalian alkaline phosphatases. J Biol Chem 268:25409–25416

    CAS  PubMed  Google Scholar 

  • Brun-Heath I, Ermonval M, Chabrol E, Xiao J, Palkovits M, Lyck R, Miller F, Couraud PO, Mornet E, Fonta C (2011) Differential expression of the bone and the liver tissue non-specific alkaline phosphatase isoforms in brain tissues. Cell Tissue Res 343:521–536

    CAS  PubMed  Google Scholar 

  • Brun-Heath I, Lia-Baldini AS, Maillard S, Taillandier A, Utsch B, Nunes ME, Serre JL, Mornet E (2007) Delayed transport of tissue-nonspecific alkaline phosphatase with missense mutations causing hypophosphatasia. Eur J Med Genet 50:367–378

    PubMed  Google Scholar 

  • Brun-Heath I, Taillandier A, Serre JL, Mornet E (2005) Characterization of 11 novel mutations in the tissue non-specific alkaline phosphatase gene responsible for hypophosphatasia and genotype-phenotype correlations. Mol Genet Metab 84:273–277

    CAS  PubMed  Google Scholar 

  • Cai G, Michigami T, Yamamoto T, Yasui N, Satomura K, Yamagata M, Shima M, Nakajima S, Mushiake S, Okada S, Ozono K (1998) Analysis of localization of mutated tissue-nonspecific alkaline phosphatase proteins associated with neonatal hypophosphatasia using green fluorescent protein chimeras. J Clin Endocrinol Metab 83:3936–3942

    CAS  PubMed  Google Scholar 

  • Di Mauro S, Manes T, Hessle L, Kozlenkov A, Pizauro JM, Hoylaerts MF, Millan JL (2002) Kinetic characterization of hypophosphatasia mutations with physiological substrates. J Bone Miner Res 17:1383–1391

    PubMed  Google Scholar 

  • Eastman JR, Bixler D (1983) Clinical, laboratory, and genetic investigations of hypophosphatasia: support for autosomal dominant inheritance with homozygous lethality. J Craniofac Genet Dev Biol 3:213–234

    CAS  PubMed  Google Scholar 

  • Eberic FHS, Pralle H, Kabish A (1984) Adult hypophosphatasia without apparent skeletal disease: “ondotohypophosphatasia” in four heterozygote members of a family. Klin Wochenschr 62:371

    Google Scholar 

  • Fallon MD, Whyte MP, Teitelbaum SL (1980) Stereospecific inhibition of alkaline phosphatase by L-tetramisole prevents in vitro cartilage calcification. Lab Invest 43:489–494

    CAS  PubMed  Google Scholar 

  • Fauvert D, Brun-Heath I, Lia-Baldini AS, Bellazi L, Taillandier A, Serre JL, de Mazancourt P, Mornet E (2009) Mild forms of hypophosphatasia mostly result from dominant negative effect of severe alleles or from compound heterozygosity for severe and moderate alleles. BMC Med Genet 10:51

    PubMed Central  PubMed  Google Scholar 

  • Fonta C, Negyessy L, Renaud L, Barone P (2004) Areal and subcellular localization of the ubiquitous alkaline phosphatase in the primate cerebral cortex: evidence for a role in neurotransmission. Cereb Cortex 14:595–609

    PubMed  Google Scholar 

  • Fonta C, Negyessy L, Renaud L, Barone P (2005) Postnatal development of alkaline phosphatase activity correlates with the maturation of neurotransmission in the cerebral cortex. J Comp Neurol 486:179–196

    PubMed  Google Scholar 

  • Fraser D (1957) Hypophosphatasia. Am J Med 22:730–746

    CAS  PubMed  Google Scholar 

  • Fukushi-Irie M, Ito M, Amaya Y, Amizuka N, Ozawa H, Omura S, Ikehara Y, Oda K (2000) Possible interference between tissue-non-specific alkaline phosphatase with an Arg 54– > Cys substitution and a counter part with an Asp 277– > Ala substitution found in a compound heterozygote associated with severe hypophosphatasia. Biochem J 348(Pt 3):633–642

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fukushi M, Amizuka N, Hoshi K, Ozawa H, Kumagai H, Omura S, Misumi Y, Ikehara Y, Oda K (1998) Intracellular retention and degradation of tissue-nonspecific alkaline phosphatase with a Gly 317– > Asp substitution associated with lethal hypophosphatasia. Biochem Biophys Res Commun 246:613–618

    CAS  PubMed  Google Scholar 

  • Greenberg CR, Evans JA, McKendry-Smith S, Redekopp S, Haworth JC, Mulivor R, Chodirker BN (1990) Infantile hypophosphatasia: localization within chromosome region 1 p 36.1–34 and prenatal diagnosis using linked DNA markers. Am J Hum Genet 46:286–292

    CAS  PubMed Central  PubMed  Google Scholar 

  • Greenberg CR, Taylor CL, Haworth JC, Seargeant LE, Philipps S, Triggs-Raine B, Chodirker BN (1993) A homoallelic Gly317– > Asp mutation in ALPL causes the perinatal (lethal) form of hypophosphatasia in Canadian mennonites. Genomics 17:215–217

    CAS  PubMed  Google Scholar 

  • Harmey D, Hessle L, Narisawa S, Johnson KA, Terkeltaub R, Millan JL (2004) Concerted regulation of inorganic pyrophosphate and osteopontin by akp2, enpp1, and ank: an integrated model of the pathogenesis of mineralization disorders. Am J Pathol 164:1199–1209

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hawrylak K, Stinson RA (1987) Tetrameric alkaline phosphatase from human liver is converted to dimers by phosphatidylinositol phospholipase C. FEBS Lett 212:289–291

    CAS  PubMed  Google Scholar 

  • Henthorn PS, Raducha M, Fedde KN, Lafferty MA, Whyte MP (1992) Different missense mutations at the tissue-nonspecific alkaline phosphatase gene locus in autosomal recessively inherited forms of mild and severe hypophosphatasia. Proc Natl Acad Sci U S A 89:9924–9928

    CAS  PubMed Central  PubMed  Google Scholar 

  • Henthorn PS, Whyte MP (1995) Infantile hypophosphatasia: successful prenatal assessment by testing for tissue-non-specific alkaline phosphatase isoenzyme gene mutations. Prenat Diagn 15:1001–1006

    CAS  PubMed  Google Scholar 

  • Herasse M, Spentchian M, Taillandier A, Keppler-Noreuil K, Fliorito AN, Bergoffen J, Wallerstein R, Muti C, Simon-Bouy B, Mornet E (2003) Molecular study of three cases of odontohypophosphatasia resulting from heterozygosity for mutations in the tissue non-specific alkaline phosphatase gene. J Med Genet 40:605–609

    CAS  PubMed Central  PubMed  Google Scholar 

  • Herasse M, Spentchian M, Taillandier A, Mornet E (2002) Evidence of a founder effect for the tissue-nonspecific alkaline phosphatase (TNSALP) gene E174 K mutation in hypophosphatasia patients. Eur J Hum Genet 10:666–668

    CAS  PubMed  Google Scholar 

  • Hessle L, Johnson KA, Anderson HC, Narisawa S, Sali A, Goding JW, Terkeltaub R, Millan JL (2002) Tissue-nonspecific alkaline phosphatase and plasma cell membrane glycoprotein-1 are central antagonistic regulators of bone mineralization. Proc Natl Acad Sci U S A 99:9445–9449

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ho AM, Johnson MD, Kingsley DM (2000) Role of the mouse ank gene in control of tissue calcification and arthritis. Science 289:265–270

    CAS  PubMed  Google Scholar 

  • Horn D, Krawitz P, Mannhardt A, Korenke GC, Meinecke P (2011) Hyperphosphatasia-mental retardation syndrome due to PIGV mutations: expanded clinical spectrum. Am J Med Genet A 155A:1917–1922

    PubMed  Google Scholar 

  • Hoylaerts MF, Ding L, Narisawa S, Van Kerckhoven S, Millan JL (2006) Mammalian alkaline phosphatase catalysis requires active site structure stabilization via the N-terminal amino acid microenvironment. Biochemistry 45:9756–9766

    CAS  PubMed  Google Scholar 

  • Hoylaerts MF, Manes T, Millan JL (1997) Mammalian alkaline phosphatases are allosteric enzymes. J Biol Chem 272:22781–22787

    CAS  PubMed  Google Scholar 

  • Hoylaerts MF, Millan JL (1991) Site-directed mutagenesis and epitope-mapped monoclonal antibodies define a catalytically important conformational difference between human placental and germ cell alkaline phosphatase. Eur J Biochem 202:605–616

    CAS  PubMed  Google Scholar 

  • Hu JC, Plaetke R, Mornet E, Zhang C, Sun X, Thomas HF, Simmer JP (2000) Characterization of a family with dominant hypophosphatasia. Eur J Oral Sci 108:189–194

    CAS  PubMed  Google Scholar 

  • Ishida Y, Komaru K, Ito M, Amaya Y, Kohno S, Oda K (2003) Tissue-nonspecific alkaline phosphatase with an Asp (289)– > Val mutation fails to reach the cell surface and undergoes proteasome-mediated degradation. J Biochem (Tokyo) 134:63–70

    CAS  Google Scholar 

  • Ishida Y, Komaru K, Oda K (2011) Molecular characterization of tissue-nonspecific alkaline phosphatase with an Ala to Thr substitution at position 116 associated with dominantly inherited hypophosphatasia. Biochim Biophys Acta 1812:326–332

    CAS  PubMed  Google Scholar 

  • Ito M, Amizuka N, Ozawa H, Oda K (2002) Retention at the cis-Golgi and delayed degradation of tissue-non-specific alkaline phosphatase with an Asn 153– > Asp substitution, a cause of perinatal hypophosphatasia. Biochem J 361:473–480

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim EE, Wyckoff HW (1991) Reaction mechanism of alkaline phosphatase based on crystal structures two-metal ion catalysis. J Mol Biol 218:449–464

    CAS  PubMed  Google Scholar 

  • Komaru K, Ishida Y, Amaya Y, Goseki-Sone M, Orimo H, Oda K (2005) Novel aggregate formation of a frame-shift mutant protein of tissue-nonspecific alkaline phosphatase is ascribed to three cysteine residues in the C-terminal extension. Retarded secretion and proteasomal degradation. FEBS J 272:1704–1717

    CAS  PubMed  Google Scholar 

  • Kozlenkov A, Le Du MH, Cuniasse P, Ny T, Hoylaerts MF, Millan JL (2004) Residues determining the binding specificity of uncompetitive inhibitors to tissue-nonspecific alkaline phosphatase. J Bone Miner Res 19:1862–1872

    CAS  PubMed  Google Scholar 

  • Krawitz PM, Murakami Y, Hecht J, Kruger U, Holder SE, Mortier GR, Delle Chiaie B, De Baere E, Thompson MD, Roscioli T, Kielbasa S, Kinoshita T, Mundlos S, Robinson PN, Horn D (2012) Mutations in PIGO, a member of the GPI-anchor-synthesis pathway, cause hyperphosphatasia with mental retardation. Am J Hum Genet 91:146–151

    CAS  PubMed Central  PubMed  Google Scholar 

  • Krawitz PM, Murakami Y, Riess A, Hietala M, Kruger U, Zhu N, Kinoshita T, Mundlos S, Hecht J, Robinson PN, Horn D (2013) PGAP2 mutations, affecting the GPI-anchor-synthesis pathway, cause hyperphosphatasia with mental retardation syndrome. Am J Hum Genet 92:584–589

    CAS  PubMed Central  PubMed  Google Scholar 

  • Krawitz PM, Schweiger MR, Rodelsperger C, Marcelis C, Kolsch U, Meisel C, Stephani F et al (2010) Identity-by-descent filtering of exome sequence data identifies PIGV mutations in hyperphosphatasia mental retardation syndrome. Nat Genet 42:827–829

    CAS  PubMed  Google Scholar 

  • Le Du MH, Millan JL (2002) Structural evidence of functional divergence in human alkaline phosphatases. J Biol Chem 277:49808–49814

    PubMed  Google Scholar 

  • Le Du MH, Stigbrand T, Taussig MJ, Menez A, Stura EA (2001) Crystal structure of alkaline phosphatase from human placenta at 1.8 A resolution. Implication for a substrate specificity. J Biol Chem 276:9158–9165

    PubMed  Google Scholar 

  • Lia-Baldini AS, Brun-Heath I, Carrion C, Simon-Bouy B, Serre JL, Nunes ME, Mornet E (2008) A new mechanism of dominance in hypophosphatasia: the mutated protein can disturb the cell localization of the wild-type protein. Hum Genet 123:429–432

    CAS  PubMed  Google Scholar 

  • Lia-Baldini AS, Muller F, Taillandier A, Gibrat JF, Mouchard M, Robin B, Simon-Bouy B, Serre JL, Aylsworth AS, Bieth E, Delanote S, Freisinger P, Hu JC, Krohn HP, Nunes ME, Mornet E (2001) A molecular approach to dominance in hypophosphatasia. Hum Genet 109:99–108

    CAS  PubMed  Google Scholar 

  • Litmanovitz Reish O, Dolfin T, Arnon S, Regev R, Grinshpan G, Yamazaki M, Ozono K (2002) Glu274Lys/Gly309Arg mutation of the tissue-nonspecific alkaline phosphatase gene in neonatal hypophosphatasia associated with convulsions. J Inherit Metab Dis 25:35–40

    CAS  PubMed  Google Scholar 

  • Matsuura S, Kishi F, Kajii T (1990) Characterization of a 5’-flanking region of the human liver/bone/kidney alkaline phosphatase gene: two kinds of mRNA from a single gene. Biochem Biophys Res Commun 168:993–1000

    CAS  PubMed  Google Scholar 

  • Mentrup B, Marschall C, Barvencik F, Amling M, Plendl H, Jakob F, Beck C (2011) Functional characterization of a novel mutation localized in the start codon of the tissue-nonspecific alkaline phosphatase gene. Bone 48:1401–1408

    CAS  PubMed  Google Scholar 

  • Meyer JL (1984) Can biological calcification occur in the presence of pyrophosphate? Arch Biochem Biophys 231:1–8

    CAS  PubMed  Google Scholar 

  • Michigami T, Uchihashi T, Suzuki A, Tachikawa K, Nakajima S, Ozono K (2005) Common mutations F310L and T1559del in the tissue-nonspecific alkaline phosphatase gene are related to distinct phenotypes in Japanese patients with hypophosphatasia. Eur J Pediatr 164:277–282

    CAS  PubMed  Google Scholar 

  • Millan J (2006) Mammalian alkaline phosphatases: from biology to applications in medicine and biotechnology. Wiley-VCH Verlag GmbH, Weinheim

    Google Scholar 

  • Millan JL (1992) Alkaline phosphatase as a reporter of cancerous transformation. Clin Chim Acta 209:123–129

    CAS  PubMed  Google Scholar 

  • Moore CA, Curry CJ, Henthorn PS, Smith JA, Smith JC, O’Lague P, Coburn SP, Weaver DD, Whyte MP (1999) Mild autosomal dominant hypophosphatasia: in utero presentation in two families. Am J Med Genet 86:410–415

    CAS  PubMed  Google Scholar 

  • Mornet E (2008) Hypophosphatasia. Best Pract Res Clin Rheumatol 22:113–127

    CAS  PubMed  Google Scholar 

  • Mornet E, Muller F, Ngo S, Taillandier A, Simon-Bouy B, Maire I, Oury JF (1999) Correlation of alkaline phosphatase (ALP) determination and analysis of the tissue non-specific ALP gene in prenatal diagnosis of severe hypophosphatasia. Prenat Diagn 19:755–757

    CAS  PubMed  Google Scholar 

  • Mornet E, Stura E, Lia-Baldini AS, Stigbrand T, Menez A, Le Du MH (2001) Structural evidence for a functional role of human tissue nonspecific alkaline phosphatase in bone mineralization. J Biol Chem 276:31171–31178

    CAS  PubMed  Google Scholar 

  • Mornet E, Yvard A, Taillandier A, Fauvert D, Simon-Bouy B (2011) A molecular-based estimation of the prevalence of hypophosphatasia in the European population. Ann Hum Genet 75:439–445

    PubMed  Google Scholar 

  • Muller HL, Yamazaki M, Michigami T, Kageyama T, Schonau E, Schneider P, Ozono K (2000) Asp361Val Mutant of alkaline phosphatase found in patients with dominantly inherited hypophosphatasia inhibits the activity of the wild-type enzyme. J Clin Endocrinol Metab 85:743–747

    CAS  PubMed  Google Scholar 

  • Mumm S, Wenkert D, Zhang X, Geimer M, Zerega J, MPW (2007) Hypophosphatasia: the c.1133A > T, D378 V transversion is the most common American TNSALP mutation. In: Paper presented at Fifth International Alkaline Phosphatase Symposium: Understanding alkaline phosphatase function—Pathophysiology and treatment of Hypophosphatasia and other AP-related diseases. Huningue, France

    Google Scholar 

  • Murakami Y, Kanzawa N, Saito K, Krawitz PM, Mundlos S, Robinson PN, Karadimitris A, Maeda Y, Kinoshita T (2012) Mechanism for release of alkaline phosphatase caused by glycosylphosphatidylinositol deficiency in patients with hyperphosphatasia mental retardation syndrome. J Biol Chem 287:6318–6325

    CAS  PubMed Central  PubMed  Google Scholar 

  • Narisawa S, Hasegawa H, Watanabe K, Millan JL (1994) Stage-specific expression of alkaline phosphatase during neural development in the mouse. Dev Dyn 201:227–235

    CAS  PubMed  Google Scholar 

  • Nasu M, Ito M, Ishida Y, Numa N, Komaru K, Nomura S, Oda K (2006) Aberrant interchain disulfide bridge of tissue-nonspecific alkaline phosphatase with an Arg 433– > Cys substitution associated with severe hypophosphatasia. FEBS J 273:5612–5624

    CAS  PubMed  Google Scholar 

  • Numa N, Ishida Y, Nasu M, Sohda M, Misumi Y, Noda T, Oda K (2008) Molecular basis of perinatal hypophosphatasia with tissue-nonspecific alkaline phosphatase bearing a conservative replacement of valine by alanine at position 406. Structural importance of the crown domain. FEBS J 275:2727–2737

    CAS  PubMed  Google Scholar 

  • Nunes ML, Mugnol F, Bica I, Fiori RM (2002) Pyridoxine-dependent seizures associated with hypophosphatasia in a newborn. J Child Neurol 17:222–224

    PubMed  Google Scholar 

  • Orimo H (2010) The mechanism of mineralization and the role of alkaline phosphatase in health and disease. J Nihon Med Sch 77:4–12

    CAS  Google Scholar 

  • Orimo H, Nakajima E, Hayashi Z, Kijima K, Watanabe A, Tenjin H, Araki T, Shimada T (1996) First-trimester prenatal molecular diagnosis of infantile hypophosphatasia in a Japanese family. Prenat Diagn 16:559–563

    CAS  PubMed  Google Scholar 

  • Pauli RM, Modaff P, Sipes SL, Whyte MP (1999) Mild hypophosphatasia mimicking severe osteogenesis imperfecta in utero: bent but not broken. Am J Med Genet 86:434–438

    CAS  PubMed  Google Scholar 

  • Petkovic Ramadza D, Stipoljev F, Sarnavka V, Begovic D, Potocki K, Fumic K, Mornet E, Baric I (2009) Hypophosphatasia: phenotypic variability and possible Croatian origin of the c.1402 g > A mutation of TNSALP gene. Coll Antropol 33:1255–1258

    PubMed  Google Scholar 

  • Rasmussen K (1968) Phosphorylethanolamine and hypophosphatasia. Dan Med Bull 15(Suppl 2):1–112

    PubMed  Google Scholar 

  • Rezende AA, Pizauro JM, Ciancaglini P, Leone FA (1994) Phosphodiesterase activity is a novel property of alkaline phosphatase from osseous plate. Biochem J 301(Pt 2):517–522

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rodrigues TL, Foster BL, Silverio KG, Martins L, Casati MZ, Sallum EA, Somerman MJ, Nociti FH (2011) Correction of Hypophosphatasia (Hpp) Associated Mineralization Deficiencies In vitro by Phosphate/Pyrophosphate Modulation in Periodontal Ligament Cells. J Periodontol

    Google Scholar 

  • Satou Y, Al-Shawafi HA, Sultana S, Makita S, Sohda M, Oda K (2012) Disulfide bonds are critical for tissue-nonspecific alkaline phosphatase function revealed by analysis of mutant proteins bearing a C(201)-Y or C(489)-S substitution associated with severe hypophosphatasia. Biochim Biophys Acta 1822:581–588

    CAS  PubMed  Google Scholar 

  • Say JC, Ciuffi K, Furriel RP, Ciancaglini P, Leone FA (1991) Alkaline phosphatase from rat osseous plates: purification and biochemical characterization of a soluble form. Biochim Biophys Acta 1074:256–262

    CAS  PubMed  Google Scholar 

  • Schwartz JH, Lipmann F (1961) Phosphate incorporation into alkaline phosphatase of E. coli. Proc Natl Acad Sci U S A 47:1996–2005

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shibata H, Fukushi M, Igarashi A, Misumi Y, Ikehara Y, Ohashi Y, Oda K (1998) Defective intracellular transport of tissue-nonspecific alkaline phosphatase with an Ala 162– > Thr mutation associated with lethal hypophosphatasia. J Biochem (Tokyo) 123:968–977

    CAS  Google Scholar 

  • Spentchian M, Brun-Heath I, Taillandier A, Fauvert D, Serre JL, Simon-Bouy B, Carvalho F, Grochova I, Mehta SG, Muller G, Oberstein SL, Ogur G, Sharif S, Mornet E (2006) Characterization of Missense Mutations and Large Deletions in the ALPL Gene by Sequencing and Quantitative Multiplex PCR of Short Fragments. Genet Test 10:252–257

    CAS  PubMed  Google Scholar 

  • Stigbrand T (1984) Present status and future trends of human alkaline phosphatases. Prog Clin Biol Res 166:3–14

    CAS  PubMed  Google Scholar 

  • Street SE, Kramer NJ, Walsh PL, Taylor-Blake B, Yadav MC, King IF, Vihko P, Wightman RM, Millan JL, Zylka MJ (2013) Tissue-Nonspecific Alkaline Phosphatase Acts Redundantly with PAP and NT5E to Generate Adenosine in the Dorsal Spinal Cord. J Neurosci 33:11314–11322

    CAS  PubMed Central  PubMed  Google Scholar 

  • Studer M, Terao M, Gianni M, Garattini E (1991) Characterization of a second promoter for the mouse liver/bone/kidney-type alkaline phosphatase gene: cell and tissue specific expression. Biochem Biophys Res Commun 179:1352–1360

    CAS  PubMed  Google Scholar 

  • Sultana S, Al-Shawafi HA, Makita S, Sohda M, Amizuka N, Takagi R, Oda K (2013) An asparagine at position 417 of tissue-nonspecific alkaline phosphatase is essential for its structure and function as revealed by analysis of the N417S mutation associated with severe hypophosphatasia. Mol Genet Metab 109:282–288

    CAS  PubMed  Google Scholar 

  • Taillandier A, Sallinen SL, Brun-Heath I, De Mazancourt P, Serre JL, Mornet E (2005) Childhood hypophosphatasia due to a de novo missense mutation in the tissue-nonspecific alkaline phosphatase gene. J Clin Endocrinol Metab 90:2436–2439

    CAS  PubMed  Google Scholar 

  • Takinami H, Goseki-Sone M, Watanabe H, Orimo H, Hamatani R, Fukushi-Irie M, Ishikawa I (2004) The mutant (F310L and V365I) tissue-nonspecific alkaline phosphatase gene from hypophosphatasia. J Med Dent Sci 51:67–74

    PubMed  Google Scholar 

  • Terao M, Studer M, Gianni M, Garattini E (1990) Isolation and characterization of the mouse liver/bone/kidney-type alkaline phosphatase gene. Biochem J 268:641–648

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thompson MD, Killoran A, Percy ME, Nezarati M, Cole DE, Hwang PA (2006) Hyperphosphatasia with neurologic deficit: a pyridoxine-responsive seizure disorder? Pediatr Neurol 34:303–307

    PubMed  Google Scholar 

  • Thompson MD, Roscioli T, Marcelis C, Nezarati MM, Stolte-Dijkstra I, Sharom FJ, Lu P, Phillips JA, Sweeney E, Robinson PN, Krawitz P, Yntema HG, Andrade DM, Brunner HG, Cole DE (2012) Phenotypic variability in hyperphosphatasia with seizures and neurologic deficit (Mabry syndrome). Am J Med Genet A 158A:553–558

    PubMed  Google Scholar 

  • Toh Y, Yamamoto M, Endo H, Misumi Y, Ikehara Y (1989) Isolation and characterization of a rat liver alkaline phosphatase gene. A single gene with two promoters. Eur J Biochem 182:231–237

    CAS  PubMed  Google Scholar 

  • Vergnes H, Grozdea J, Denier C, Bourrouillou G, Calvas P, De La Farge F, Valdiguie P, Calot M (2000) Lower alkaline phosphatase activity and occurrence of an abnormal hybrid intestinal/tissue non-specific isoform in Down’s syndrome amniotic fluids. Early Hum Dev 58:17–24

    CAS  PubMed  Google Scholar 

  • Vittur F, Stagni N, Moro L, de Bernard B (1984) Alkaline phosphatase binds to collagen; a hypothesis on the mechanism of extravesicular mineralization in epiphyseal cartilage. Experientia 40:836–837

    CAS  PubMed  Google Scholar 

  • Watanabe A, Satoh, S, Fujita, A, Naing, B.T, Orimo, H, Shimada, T (2012) Perinatal (lethal) type of hypophosphatasia resulting from paternal isodisomy of chromosome 1. In: Paper presented at 6th Alkaline Phosphatase and Hypophosphatasia Symposium, May pp 16–19. Huningue, France

    Google Scholar 

  • Watanabe A, Yamamasu S, Shinagawa T, Suzuki Y, Miyake H, Takeshita T, Orimo H, Shimada T (2007) Prenatal genetic diagnosis of severe perinatal (lethal) hypophosphatasia. J Nippon Med Sch 74:65–69

    PubMed  Google Scholar 

  • Watanabe H, Takinami H, Goseki-Sone M, Orimo H, Hamatani R, Ishikawa I (2005) Characterization of the mutant (A115 V) tissue-nonspecific alkaline phosphatase gene from adult-type hypophosphatasia. Biochem Biophys Res Commun 327:124–129

    CAS  PubMed  Google Scholar 

  • Waymire KG, Mahuren JD, Jaje JM, Guilarte TR, Coburn SP, MacGregor GR (1995) Mice lacking tissue non-specific alkaline phosphatase die from seizures due to defective metabolism of vitamin B-6. Nat Genet 11:45–51

    CAS  PubMed  Google Scholar 

  • Weiss MJ, Cole DE, Ray K, Whyte MP, Lafferty MA, Mulivor RA, Harris H (1988a) A missense mutation in the human liver/bone/kidney alkaline phosphatase gene causing a lethal form of hypophosphatasia. Proc Natl Acad Sci U S A 85:7666–7669

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weiss MJ, Ray K, Henthorn PS, Lamb B, Kadesch T, Harris H (1988b) Structure of the human liver/bone/kidney alkaline phosphatase gene. J Biol Chem 263:12002–12010

    CAS  PubMed  Google Scholar 

  • Wende A, Johansson P, Vollrath R, Dyall-Smith M, Oesterhelt D, Grininger M (2010) Structural and biochemical characterization of a halophilic archaeal alkaline phosphatase. J Mol Biol 400:52–62

    CAS  PubMed  Google Scholar 

  • Wenkert D, McAlister WH, Coburn SP, Zerega JA, Ryan LM, Ericson KL, Hersh JH, Mumm S, Whyte MP (2011) Hypophosphatasia: nonlethal disease despite skeletal presentation in utero (17 new cases and literature review). J Bone Miner Res 26:2389–2398

    CAS  PubMed  Google Scholar 

  • Whyte M (2001) Hypophosphatasia, vol IV. McGraw-Hill, New-York

    Google Scholar 

  • Whyte MP (1994) Hypophosphatasia and the role of alkaline phosphatase in skeletal mineralization. Endocr Rev 15:439–461

    CAS  PubMed  Google Scholar 

  • Whyte MP, Essmyer K, Geimer M, Mumm S (2006) Homozygosity for TNSALP mutation 1348c > T (Arg433Cys) causes infantile hypophosphatasia manifesting transient disease correction and variably lethal outcome in a kindred of black ancestry. J Pediatr 148:753–758

    CAS  PubMed  Google Scholar 

  • Whyte MP, Teitelbaum SL, Murphy WA, Bergfeld MA, Avioli LV (1979) Adult hypophosphatasia. Clinical, laboratory, and genetic investigation of a large kindred with review of the literature. Medicine (Baltimore) 58:329–347

    CAS  Google Scholar 

  • Whyte MP, Vrabel LA, Schwartz TD (1982) Adult hypophosphatasia: generalized deficiency of alkaline phosphatase activity demonstrated with cultured skin fibroblasts. Trans Assoc Am Physicians 95:253–263

    CAS  PubMed  Google Scholar 

  • Wu LN, Genge BR, Lloyd GC, Wuthier RE (1991) Collagen-binding proteins in collagenase-released matrix vesicles from cartilage. Interaction between matrix vesicle proteins and different types of collagen. J Biol Chem 266:1195–1203

    CAS  PubMed  Google Scholar 

  • Yadav MC, Simao AM, Narisawa S, Huesa C, McKee MD, Farquharson C, Millan JL (2011) Loss of skeletal mineralization by the simultaneous ablation of PHOSPHO1 and alkaline phosphatase function: a unified model of the mechanisms of initiation of skeletal calcification. J Bone Miner Res 26:286–297

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang H, Ke YH, Wang C, Yue H, Hu WW, Gu JM, Zhang ZL (2012) Identification of the mutations in the tissue-nonspecific alkaline phosphatase Gene in two Chinese families with hypophosphatasia. Arch Med Res 43:21–30

    PubMed  Google Scholar 

  • Zurutuza L, Muller F, Gibrat JF, Taillandier A, Simon-Bouy B, Serre JL, Mornet E (1999) Correlations of genotype and phenotype in hypophosphatasia. Hum Mol Genet 8:1039–1046

    CAS  PubMed  Google Scholar 

Download references

Conflict of Interest

The author states the absence of conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Etienne Mornet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mornet, E. (2015). Molecular Genetics of Hypophosphatasia and Phenotype-Genotype Correlations. In: Fonta, C., Négyessy, L. (eds) Neuronal Tissue-Nonspecific Alkaline Phosphatase (TNAP). Subcellular Biochemistry, vol 76. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7197-9_2

Download citation

Publish with us

Policies and ethics