Skip to main content

Recombinant Enzyme Replacement Therapy in Hypophosphatasia

  • Chapter
  • First Online:
Neuronal Tissue-Nonspecific Alkaline Phosphatase (TNAP)

Abstract

Hypophosphatasia (HPP) is a rare monogenetic and multisystemic disease with involvement of different organs, including bone, muscle, kidney, lung, gastrointestinal tract and the nervous system. The exact metabolic mechanisms of the effects of TNAP deficiency in different tissues are not understood in detail. There is no approved specific treatment for HPP; therefore symptomatic treatment in order to improve the clinical features is of major interest. Enzyme replacement therapy (ERT) is a relatively new type of treatment based on the principle of administering a medical treatment replacing a defective or absent enzyme. Recently ERT with a bone targeted recombinant human TNAP molecule has been reported to be efficient in ten severely affected patients and improved survival of life threatening forms. These results are very promising especially with regard to the skeletal phenotype but it is unclear whether ERT also has beneficial effects for craniosynostosis and in other affected tissues in HPP such as brain and kidney. Long-term data are not yet available and further systematic clinical trials are needed. It is also necessary to establish therapeutic approaches to help patients who are affected by less severe forms of HPP but also suffer from a significant reduction in quality of life. Further basic research on TNAP function and role in different tissues and on its physiological substrates is critical to gain a better insight in the pathogenesis in HPP. This and further experiences in new therapeutic strategies may improve the prognosis and quality of life of patients with all forms of HPP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anh DJ, Dimai HP, Hall SL et al (1998) Skeletal alkaline phosphatase activity is primarily released from human osteoblasts in an insoluble form, and the net release is inhibited by calcium and skeletal growth factors. Calcif Tissue Int 62:332–340

    Article  CAS  PubMed  Google Scholar 

  • Anh DJ, Eden A, Farley JR (2001) Quantitation of soluble and skeletal alkaline phosphatase, and insoluble alkaline phosphatase anchor-hydrolase activities in human serum. Clin Chim Acta 311:137–148

    Article  CAS  PubMed  Google Scholar 

  • Baumgartner-Sigl S, Haberlandt E, Mumm S et al (2007) Pyridoxine-responsive seizures as the first symptom of infantile hypophosphatasia caused by two novel missense mutations. Bone 40(6):1655–1661

    Google Scholar 

  • Cahill RA, Wenkert D, Perlman SA et al (2007) Infantile hypophosphatasia: transplantation therapy trial using bone fragments and cultured osteoblasts. J Clin Endocrinol Metab 92:2923–2930

    Article  CAS  PubMed  Google Scholar 

  • Camacho PM, Painter S, Kadanoff R (2008) Treatment of adult hypophosphatasia with teriparatide. Endocr Pract 14:204–208

    Article  PubMed  Google Scholar 

  • Collmann H, Mornet E, Gattenlohner S et al (2009) Neurosurgical aspects of childhood hypophosphatasia. Childs Nerv Syst 25:217–223

    Article  CAS  PubMed  Google Scholar 

  • Collmann H, Sorensen N, Krauss J (2005) Hydrocephalus in craniosynostosis: a review. Childs Nerv Syst 21:902–912

    Article  CAS  PubMed  Google Scholar 

  • Clarke LA, Wraith JE, Beck M et al (2009) Long-term efficacy and safety of laronidase in the treatment of mucopolysaccharidosis I. Pediatrics 123:229–240

    Article  PubMed  Google Scholar 

  • Deduve C (1964) From Cytases to Lysosomes. Fed Proc 23:1045–1049

    CAS  PubMed  Google Scholar 

  • Desnick RJ, Schuchman EH (2012) Enzyme replacement therapy for lysosomal diseases: lessons from 20 years of experience and remaining challenges. Annu Rev Genomics Hum Genet 13:307–335

    Article  CAS  PubMed  Google Scholar 

  • Doshi KB, Hamrahian AH, Licata AA (2009) Teriparatide treatment in adult hypophosphatasia in a patient exposed to bisphosphonate: a case report. Clin Cases Miner Bone Metab 6:266–269

    PubMed  Google Scholar 

  • Fedde KN, Blair L, Silverstein J et al (1999) Alkaline phosphatase knock-out mice recapitulate the metabolic and skeletal defects of infantile hypophosphatasia. J Bone Miner Res 14:2015–2026

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fedde KN, Lane CC, Whyte MP (1988) Alkaline phosphatase is an that acts on micromolar concentrations of natural substrates at physiologic pH in human osteosarcoma (SAOS-2) cells. Arch Biochem Biophys 264:400–409

    Article  CAS  PubMed  Google Scholar 

  • Grabowski GA, Barton NW, Pastores G et al (1995) Enzyme therapy in type 1 Gaucher disease: comparative efficacy of mannose-terminated glucocerebrosidase from natural and recombinant sources. Ann Intern Med 122:33–39

    Article  CAS  PubMed  Google Scholar 

  • Harmatz P, Giugliani R, Schwartz I et al (2006) Enzyme replacement therapy for mucopolysaccharidosis VI: a phase 3, randomized, double-blind, placebo- controlled, multinational study of recombinant human N-acetylgalactosamine 4-sulfatase (recombinant human arylsulfatase B or rhASB) and follow-on, open-label extension study. J Pediatr 148:533–539

    Article  CAS  PubMed  Google Scholar 

  • Hessle L, Johnson KA, Anderson HC et al (2002) Tissue-nonspecific alkaline phosphatase and plasma cell membrane glycoprotein-1 are central antagonistic regulators of bone mineralization. Proc Natl Acad Sci USA 99:9445–9449

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hofmann C, Girschick H, Mentrup B et al (2013) Clinical aspects of hypophosphatasia: an update. Clin Rev Bone Miner Metab 11:60–70

    Article  CAS  Google Scholar 

  • Hooper NM (1997) Glycosyl-phosphatidylinositol anchored membrane enzymes. Clin Chim Acta 266:3–12

    Article  CAS  PubMed  Google Scholar 

  • Ioannou YA, Zeidner KM, Gordon RE et al (2001) Fabry disease: preclinical studies demonstrate the effectiveness of alpha-galactosidase a replacement in enzyme-deficient mice. Am J Hum Genet 68:14–25

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ishida Y, Komaru K, Ito M et al (2003) Tissue-nonspecific alkaline phosphatase with an Asp(289)–>Val mutation fails to reach the cell surface and undergoes proteasome-mediated degradation. J Biochem 134:63–70

    Article  CAS  PubMed  Google Scholar 

  • Kimonis V, Gold JA, Hoffman TL et al (2007) Genetics of craniosynostosis. Semin Pediatr Neurol 14:150–161

    Article  PubMed  Google Scholar 

  • Kiffer-Moreira T, Yadav MC, Zhu D et al (2013) Pharmacological inhibition of PHOSPHO1 suppresses vascular smooth muscle cell calcification. J Bone Miner Res 28:81–91

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Leung EC, Mhanni AA, Reed M et al (2013) Outcome of perinatal hypophosphatasia in manitoba mennonites: a retrospective cohort analysis. JIMD Rep 11:73–78

    Article  PubMed Central  PubMed  Google Scholar 

  • Lomashvili KA, Garg P, Narisawa S et al (2008) Upregulation of alkaline phosphatase and pyrophosphate hydrolysis: potential mechanism for uremic vascular calcification. Kidney Int 73:1024–1030

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McKee MD, Nakano Y, Masica DL et al (2011) Enzyme replacement therapy prevents dental defects in a model of hypophosphatasia. J Dent Res 90:470–476

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mentrup B, Marschall C, Barvencik F et al (2011) Functional characterization of a novel mutation localized in the start codon of the tissue-nonspecific alkaline phosphatase gene. Bone 48:1401–1408

    Article  CAS  PubMed  Google Scholar 

  • Millan JL (2013) The role of phosphatases in the initiation of skeletal mineralization. Calcif Tissue Int 93(4):299–306

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Millan JL, Narisawa S, Lemire I et al (2008) Enzyme replacement therapy for murine hypophosphatasia. J Bone Miner Res 23:777–787

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miranda SR, He X, Simonaro CM et al (2000) Infusion of recombinant human acid sphingomyelinase into niemann-pick disease mice leads to visceral, but not neurological, correction of the pathophysiology. FASEB J 14:1988–1995

    Article  CAS  PubMed  Google Scholar 

  • Mornet E, Hofmann C, Bloch-Zupan A et al (2013) Clinical utility gene card for: hypophosphatasia – update. Eur J Hum Genet. doi:10.1038/ejhg.2013.177

    PubMed Central  PubMed  Google Scholar 

  • Muenzer J, Gucsavas-Calikoglu M, McCandless SE et al (2007) A phase I/II clinical trial of enzyme replacement therapy in mucopolysaccharidosis II (Hunter syndrome). Mol Genet Metab 90:329–337

    Article  CAS  PubMed  Google Scholar 

  • Mulliken JB, Gripp KW, Stolle CA et al (2004) Molecular analysis of patients with synostotic frontal plagiocephaly (unilateral coronal synostosis). Plast Reconstr Surg 113:1899–1909

    Article  PubMed  Google Scholar 

  • Narisawa S, Frohlander N, Millan JL (1997) Inactivation of two mouse alkaline phosphatase genes and establishment of a model of infantile hypophosphatasia. Dev Dyn 208:432–446

    Article  CAS  PubMed  Google Scholar 

  • Narisawa S, Wennberg C, Millan JL (2001) Abnormal vitamin B6 metabolism in alkaline phosphatase knock-out mice causes multiple abnormalities, but not the impaired bone mineralization. J Pathol 193:125–133

    Article  CAS  PubMed  Google Scholar 

  • Nishioka T, Tomatsu S, Gutierrez MA et al (2006) Enhancement of drug delivery to bone: characterization of human tissue-nonspecific alkaline phosphatase tagged with an acidic oligopeptide. Mol Genet Metab 88:244–255

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Narisawa S, Harmey D, Yadav MC et al (2007) Novel inhibitors of alkaline phosphatase suppress vascular smooth muscle cell calcification. J Bone Miner Res 22:1700–1710

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez E, Bober MB, Davey L et al (2012) Respiratory mechanics in an infant with perinatal lethal hypophosphatasia treated with human recombinant enzyme replacement therapy. Pediatr Pulmonol 47:917–922

    Article  PubMed  Google Scholar 

  • Sands MS, Vogler CA, Ohlemiller KK et al (2001) Biodistribution, kinetics, and efficacy of highly phosphorylated and non-phosphorylated beta-glucuronidase in the murine model of mucopolysaccharidosis VII. J Biol Chem 276:43160–43165

    Article  CAS  PubMed  Google Scholar 

  • Seshia SS, Derbyshire G, Haworth JC et al (1990) Myopathy with hypophosphatasia. Arch Dis Child 65:130–131

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Slater BJ, Lenton KA, Kwan MD et al (2008) Cranial sutures: a brief review. Plast Reconstr Surg 121:170e–178e

    Article  CAS  PubMed  Google Scholar 

  • Sutton RA, Mumm S, Coburn SP et al (2012) “Atypical femoral fractures” during bisphosphonate exposure in adult hypophosphatasia. J Bone Miner Res 27:987–994

    Article  CAS  PubMed  Google Scholar 

  • Tadokoro M, Kanai R, Taketani T et al (2009) New bone formation by allogeneic mesenchymal stem cell transplantation in a patient with perinatal hypophosphatasia. J Pediatr 154:924–930

    Article  CAS  PubMed  Google Scholar 

  • Thacher TD, Fischer PR, Pettifor JM et al (2000) Radiographic scoring method for the assessment of the severity of nutritional rickets. J Trop Pediatr 46:132–139

    Article  CAS  PubMed  Google Scholar 

  • Towler DA, Demer LL (2011) Thematic series on the pathobiology of vascular calcification: an introduction. Circ Res 108:1378–1380

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Villa-Bellosta R, Wang X, Millan JL et al (2011) Extracellular pyrophosphate metabolism and calcification in vascular smooth muscle. Am J Physiol Heart Circ Physiol 301:H61–H68

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Waymire KG, Mahuren JD, Jaje JM et al (1995) Mice lacking tissue non-specific alkaline phosphatase die from seizures due to defective metabolism of vitamin B-6. Nat Genet 11:45–51

    Article  CAS  PubMed  Google Scholar 

  • Weninger M, Stinson RA, Plenk H et al (1989) Biochemical and morphological effects of human hepatic alkaline phosphatase in a neonate with hypophosphatasia. Acta Paediatr Scand Suppl 360:154–160

    Article  CAS  PubMed  Google Scholar 

  • Whyte MP (2010) Physiological role of alkaline phosphatase explored in hypophosphatasia. Ann N Y Acad Sci 1192:190–200

    Article  CAS  PubMed  Google Scholar 

  • Whyte MP, Greenberg CR, Salman NJ et al (2012) Enzyme-replacement therapy in life-threatening hypophosphatasia. N Engl J Med 366:904–913

    Article  CAS  PubMed  Google Scholar 

  • Whyte MP, Kurtzberg J, McAlister WH et al (2003) Marrow cell transplantation for infantile hypophosphatasia. J Bone Miner Res 18:624–636

    Article  PubMed  Google Scholar 

  • Whyte MP, McAlister WH, Patton LS et al (1984) Enzyme replacement therapy for infantile hypophosphatasia attempted by intravenous infusions of alkaline phosphatase-rich Paget plasma: results in three additional patients. J Pediatr 105:926–933

    Article  CAS  PubMed  Google Scholar 

  • Whyte MP, Mumm S, Deal C (2007) Adult hypophosphatasia treated with teriparatide. J Clin Endocrinol Metab 92:1203–1208

    Article  CAS  PubMed  Google Scholar 

  • Whyte MP, Valdes R Jr, Ryan LM et al (1982) Infantile hypophosphatasia: enzyme replacement therapy by intravenous infusion of alkaline phosphatase-rich plasma from patients with Paget bone disease. J Pediatr 101:379–386

    Article  CAS  PubMed  Google Scholar 

  • Zhu D, Mackenzie NC, Millan JL et al (2011) The appearance and modulation of osteocyte marker expression during calcification of vascular smooth muscle cells. PLoS One 6:e19595

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Conflict of Interest

JL and CH received a study grant from Enobia and Alexion Pharma (Cheshire, Connecticut, U.S.) for a phase two study on Asfotase alpha treatment for severe forms of HPP. F. Jakob has received honoraria and travel support for lectures and advice from Eli Lilly, Amgen, Novartis, MSD, Nycomed, Servier, Roche, Enobia and Alexion Pharma, he has received unrestricted research grants from Novartis and is involved in clinical studies related to osteoporosis drugs initiated by Eli Lilly, Amgen, Servier and Novartis. HG served on an advisory board of Enobia/Alexion. HP was a full-time employee of Alexion 2012–1013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Hofmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hofmann, C. et al. (2015). Recombinant Enzyme Replacement Therapy in Hypophosphatasia. In: Fonta, C., Négyessy, L. (eds) Neuronal Tissue-Nonspecific Alkaline Phosphatase (TNAP). Subcellular Biochemistry, vol 76. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7197-9_15

Download citation

Publish with us

Policies and ethics