Skip to main content

Part of the book series: NATO ASI Series ((NSSE,volume 218))

Abstract

A fourth-order topological invariant determined by the geometrical position of flux tubes linked with an even number of linkings is considered in ideal MHD. The topological invariant is determined by the properties of a surface bounded by flux tubes. For the Seifert surface it coincides with the Arf invariant. In particular, this topological invariant distinguishes “the Borromean rings” (three linked rings no two of which link each other) from three unlinked and unknotted rings.

Topological evolution of magnetic (or vortex) flux tubes in the limit of small diffusivity within a time such that helicity is conserved can be formalized as “a bordism”, an orientable surface without self-intersections in 4-dimensional space (3-space plus time) bounded by the set of flux tubes initially and at any subsequent time. The “births” and “deaths” of flux tubes correspond to the maxima and minima of the bordism, the reconnections are the saddle points of the bordism. Two sets of flux tubes belong to the same framed bordism if and only if they have the same helicities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arf, C. 1941 Untersuchungen fiber quadratische Formen in Körpern der Charakteristik 2. (Teil 1). J. Reine Angew. Math, 183, 148–167.

    MathSciNet  Google Scholar 

  • Arnold, V.I. 1974 The asymptotic Hopf invariant and its applications. In Proc. Summer School in Differential Equations,Armenian SSR Acad. Sci.

    Google Scholar 

  • Arnold, V.I., and Khesin, B.A. 1992 Topological methods in hydrodynamics. Ann. Rev. Fluid Mech. 24, 145–166.

    Article  MathSciNet  ADS  Google Scholar 

  • Berger, M.A., and Field, G.B. 1984 The topological properties of magnetic helicity. J. Fluid Mech 147, 133–148.

    Article  MathSciNet  ADS  Google Scholar 

  • Berger, M.A. 1990 Third-order link integrals.J. Phys. A: Math. Gen. 23, 2787–2793. Browder, W. 1972 Surgery on Simply-Connected Manifolds, Springer-Verlag. Crowell, R.H., and Fox, R.H. 1963 Introduction to Knot Theory, Ginn, Boston.

    Google Scholar 

  • Fuller, F.B. 1978 Decomposition of the linking number of a closed ribbon: A problem from

    Google Scholar 

  • molecular biology. Proc. Natl. Acad. Sci. USA 75 3557–3561.

    Google Scholar 

  • Francis, G.K. 1987 A Topological Picturebook, Springer-Verlag.

    Google Scholar 

  • Guillou,L. and Marin, A. 1986 A la recherche de la topologie perdue. Progress in Mathematics, 62, Birkhäuser, Boston-Basel-Stutgart.

    Google Scholar 

  • Hirsch, M. 1976 Differential Topology,Springer-Verlag.

    Google Scholar 

  • Lickorish, W.B.R., and Millett, K.C. The new polynomial invariants of knots and links. Mathematics Magazine 61, 3–23.

    Google Scholar 

  • Libgober, A. 1988 Theta characteristics on singular curves. Spin structures and Rohlin theorem. Ann. Scient. Ec. Norm. Sup, 21, 623.

    MathSciNet  MATH  Google Scholar 

  • Marin, A. 1988 Un nouvel invariant pour les spheres d’homologie de dimension trois. Seminare Bourbaki, 1987–88, Asterisque N 693, 151.

    MathSciNet  Google Scholar 

  • Milnor,J. 1966 Topology From the Differentiable Viewpoint, University of Virginia Press, Charlottesville.

    Google Scholar 

  • Moffatt, H.K. 1969 The degree of knottedness of tangled vortex lines. J.Fluid Mech 159, 359–378.

    Article  MathSciNet  ADS  Google Scholar 

  • Robertello R. 1965 An invariant of knot cobordism. Comm.Pure Appl. Math.18, 543–555.

    Google Scholar 

  • Parker, E.N. 1979 Cosmic Magnetic Fields Oxford Univ.Press.

    Google Scholar 

  • Taylor, J.B. 1974 Relaxation of toroidal plasma and generation of reverse magnetic fields.Phys. Rev. Lett. 33, 1139.

    Article  ADS  Google Scholar 

  • White, J.H. 1969 Self-linking and the Gauss integral in higher dimensions. Am.J. Math. 91, 693.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Akhmet’ev, P., Ruzmaikin, A. (1992). Borromeanism and Bordism. In: Moffatt, H.K., Zaslavsky, G.M., Comte, P., Tabor, M. (eds) Topological Aspects of the Dynamics of Fluids and Plasmas. NATO ASI Series, vol 218. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3550-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-3550-6_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4187-6

  • Online ISBN: 978-94-017-3550-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics