Skip to main content

Carbohydrate Utilization and Metabolism

  • Chapter
Tissue Culture in Forestry

Part of the book series: Forestry Sciences ((FOSC,volume 5))

Abstract

Although great progress is being made in the production of photoautotrophic tissues in vitro (e.g., see 10, 131), cultured plant cells, tissues and organs, even those that turn green in light, generally require a carbon source for successful in vitro culture (50, 51, 145). As a matter of fact a carbon/energy source is considered one of the five classes of essential substances needed to bring about growth and organized development in vitro (36, 50).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AITKEN, J; KJ. HORGAN; TA. THORPE 1981 Influence of explant selection on the shoot-forming capacity of juvenile tissue of Pinus radiata. Can J For Res 11: 112–117

    Google Scholar 

  2. ALBERSHEIM P 1976 The primary cell wall. In J Bonner, JE Varner, eds, Plant Biochemistry, 3rd edition. Academic Press, New York, pp 226–277

    Google Scholar 

  3. ALSOP, WR; RD. LOCY; WR. OKLE 1981 Selection and partial characterization of tomato (Lycopersicon escuZentum Mill.) cell lines for ability to grow on ribose. Plant Physiol Suppl 67: 117

    Google Scholar 

  4. AMMIRATO, PV; FC. STEWARD 1971 Some effects of environment on the development of embryos from cultured free cells. Bot Gaz 132: 149–158

    Google Scholar 

  5. ASPINALL, GO 1980 Chemistry of cell wall polysaccharides. In J Preiss, ed, The Biochemistry of Plants, Vol 3 Carbohydrates: Structure and Function. Academic Press, New York, pp 473–500

    Google Scholar 

  6. BALL, E 1953 Hydrolysis of sucrose by autoclaving media, a neglected aspect in the technique of culture of plant tissues. Bull Torrey Botan Club 80: 409–411

    CAS  Google Scholar 

  7. BALL E, 1955 Studies of the nutrition of the callus culture of Sequoia sempervirens. Année biol 31: 80–105

    Google Scholar 

  8. BARG, R; N. UMIEL 1977 Effects of sugar concentrations on growth, greening and shoot formation in callus cultures from four genetic lines of tobacco. Z Pflanzenphysiol 81: 161–166

    CAS  Google Scholar 

  9. BEAUDOIN-EAGAN, L; TA. THORPE 1981 Shikimic acid pathway activity in shoot-forming tobacco callus. Plant Physiol Suppl 67: 154

    Google Scholar 

  10. BERLYN, MB; I. ZELITCH; PD. BEAUDETTE 1978 Photosynthetic characteristics of photoautotrophically grown tobacco callus cells. Plant Physiol 61: 606–610

    PubMed  CAS  Google Scholar 

  11. BESLOW, DT; JP. RIER 1969 Sucrose concentration and xylem regeneration in Coleus internodes in vitro. Plant Cell Physiol 10: 69–77

    CAS  Google Scholar 

  12. BIONDI, S 1980 Some aspects of plant organogenesis in cultured explants. MSc thesis, Univ. Calgary, Calgary

    Google Scholar 

  13. BROSSARD, D 1977 Root organogenesis from foliar disks of Crepis capillaris L. Wallr. cultured in vitro — cytochemical and microspectrophotometric analysis. New Phytol 79: 423

    CAS  Google Scholar 

  14. BROSSARD-CHRIQUI, D; S. ISKANDER 1980 Particularités ultrastructurales de l’amylogenèse provoquée in vitro dans les explants foliaires du Datura innoxia Mill. J Ultrastruct Res 72: 264–271

    PubMed  Google Scholar 

  15. BROWN, DCW 1980 Role of carbohydrates during shoot formation in tobacco callus. PhD thesis, Univ. Calgary, Calgary

    Google Scholar 

  16. BROWN, DCW; DWM. LEUNG; TA. THORPE 1979 Osmotic requirement for shoot formation in tobacco callus. Physiol Plant 46: 36–41

    CAS  Google Scholar 

  17. BROWN, DCW; TA. THORPE 1980 Adenosine phosphate and nicotinamide adenine dinucleotide pool size during shoot initiation in tobacco callus. Plant Physiol 65: 587–590

    PubMed  CAS  Google Scholar 

  18. BROWN, DCW, TA. THORPE 1980 Changes in water potential and its components during shoot formation in tobacco callus. Physiol Plant 49: 83–87

    Google Scholar 

  19. BROWN, DCW; TA. THORPE 1981 Mitochondria activity during shoot formation and growth in tobacco callus. Physiol Plant. In press

    Google Scholar 

  20. CHALEFF, RS; MF. PARSONS 1978 Isolation of a glycerol-utilizing mutant of Nicotiana tabacum. Genetics 89: 723–728

    PubMed  CAS  Google Scholar 

  21. CHENG, TY; TH VOQUI 1977 Regeneration of Douglas-fir plantlets through tissue culture. Science 198: 306–307

    PubMed  CAS  Google Scholar 

  22. CHONG C; CD. TAPER 1972 Malus tissue culture. I. Sorbitol (D-glucitol) as carbon source for callus initiation and growth. Can J Bot 50: 1399–1404

    CAS  Google Scholar 

  23. CHONG, C; CD. TAPER 1974 Malus tissue culture. II. Sorbitol metabolism and carbon nutrition. Can J Bot 52: 2361–2364

    CAS  Google Scholar 

  24. CLELAND, R 1977 The control of cell enlargement. In DH Jennings, ed, Integration of Activity in the Higher Plant, S.E.B. Symp. XXXI, University Press, Cambridge, pp 101–115

    Google Scholar 

  25. COFFIN, R; CD. TAPER; C. CHONG 1976 Sorbitol and sucrose as carbon sources for callus culture of some species of the Rosaceae. Can J Bot 54: 547–551

    Google Scholar 

  26. COLEMAN, WK; RI. GREYSON 1977 Analysis of root formation in leaf discs of Lycopersicon esculentum Mill. cultured in vitro. Ann Bot (London) 41: 307–320

    Google Scholar 

  27. COLUIN, JR 1980 The biosynthesis of cellulose. In J Preiss, ed, The Biochemistry of Plants, Vol 3 Carbohydrates: Structure and Function, Academic Press, New York, pp 544–570

    Google Scholar 

  28. CONSTABEL, F 1960 Zur Amylasesekretion pflanzlicher gewebekulturen. Naturewissenschaften 47: 17–18

    CAS  Google Scholar 

  29. CONSTABEL, F 1961 Das wachstum der Juniperus communis gewebekulturen in gegenwart verschiedener kohlenhydrate insbesondere von stärke. Planta 57: 331–338

    CAS  Google Scholar 

  30. COOK, CMW; RW. STODDART 1973 Surface Carbohydrates of the Eucaryotic Cell. Academic Press, New York

    Google Scholar 

  31. COPPING, LG; HE. STREET 1972 Properties of the invertases of cultured sycamore cells and changes in their activity during culture growth. Physiol Plant 26: 346–354

    CAS  Google Scholar 

  32. DELMER, DP 1977 The biosynthesis of cellulose and other plant cell wall polysaccharides, In FA Loewus, VC Runeckles, eds, Recent Advances in Phytochemistry, Vol 11, Plenum Press, New York, pp 45–77

    Google Scholar 

  33. DMITRIEVA, NN; AA. MOHAMED 1977 Some physiological changes in suspension cultures of carrot (Daucus carota L.) during somatic embryogenesis. Abstr Intern Conf Regulation of Development in Plants, Halle, G.D.R. p 108

    Google Scholar 

  34. DOLEY, D; L. EYTON L 1970 Effects of growth regulating substances and water potential on the development of wound callus in Fraxinus. New Phytol 69: 87–102

    CAS  Google Scholar 

  35. DOLL, S; F. RODIER; J. WILLENBRINK 1979 Accumulation of sucrose in vacuoles isolated from red beet tissue. Planta 144: 407–411

    CAS  Google Scholar 

  36. EARLE, ED; JG. TORREY 1965 Morphogenesis in cell colonies grown from ConvoZvu Zus cell suspensions plated on synthetic media. Am J Bot 52: 891–899

    PubMed  CAS  Google Scholar 

  37. EDELMAN, J; AD. HANSON 1971 Sucrose suppression of chlorophyll synthesis in carrot tissue cultures: the role of invertase. Planta 101: 122–132

    CAS  Google Scholar 

  38. ERICSON, MC; AD. ELBEIN 1980 Biosynthesis of cell wall polysaccharides and glycoproteins. In J Preiss, ed, The Biochemistry of Plants, Vol 3 Carbohydrates: Structure and Function, Academic Press, New York, pp 589–616

    Google Scholar 

  39. FEINGOLD, DS; G. AVIGAD 1980 Sugar nucleotide transformations in plants. In J Preiss, ed, The Biochemistry of Plants, Vol 3 Carbohydrates: Structure and Function. Academic Press, New York, pp 102–170

    Google Scholar 

  40. FOWKE, LC 1978 Ultrastructures of isolated and cultured protoplasts. In TA Thorpe, ed, Frontiers of Plant Tissue Culture 1978 IAPTC, Calgary, pp 223–234

    Google Scholar 

  41. FOWLER, MW 1971 Studies on the growth in culture of plant cells. XIV. Carbohydrate oxidation during the growth of Acer pseudopZatanus L. cells in suspension culture. J Exp Bot 22: 715–724

    CAS  Google Scholar 

  42. FOWLER, MW 1977 Growth of cell cultures under chemostat conditions. In W Barz, E Reinhard, MH Zenk, eds, Plant Tissue Culture and its Bio-technological Application. Springer-Verlag, Berlin, pp 253–265

    Google Scholar 

  43. FOWLER, MW 1978 Regulation of carbohydrate metabolism in cell suspension cultures. In TA Thorpe, ed, Frontiers of Plant Tissue Culture 1978 IAPTC, Calgary, pp 443–452

    Google Scholar 

  44. FOWLER, MW; A. CLIFTON 1974 Activities of enzymes of carbohydrate metabolism in cells of Acer pseudoplatanus L. maintained in continuous (chemostat) culture. Eur J Biochem 45: 445–450

    PubMed  CAS  Google Scholar 

  45. FOWLER, MW; A. CLIFTON 1975 Rhythmic oscillations in carbohydrate metabolism during growth of Sycamore (Acer pseudoplatanus L.) cells in continuous (chemostat) culture. Biochem Soc Trans 3: 395–398

    PubMed  CAS  Google Scholar 

  46. FUJIMURA, T; A. KOMAMINE 1979 Involvement of endogenous auxin in somatic embryogenesis in a carrot cell suspension culture. Z. Pflanzenphysiol 95: 13–19

    CAS  Google Scholar 

  47. FUKUDA, H; A. KOMAMINE 1980 Establishment of an experimental system for the study of tracheary element differentiation from single cells isolated from the mesophyll of Zinnia e Zegans. Plant Physiol 65: 57–60

    PubMed  CAS  Google Scholar 

  48. FUKUDA, H; A. KOMAMINE 1980 Direct evidence for cytodifferentiation to tracheary elements without intervening mitosis in a culture of single cells isolated from the mesophyll of Zinnia e Zegans. Plant Physiol 65: 61–64

    PubMed  CAS  Google Scholar 

  49. GALUN, E 1981 Plant protoplasts as physiological tools. Ann Rev Plant Physiol 32: 237–266

    CAS  Google Scholar 

  50. GAMBORG, OL; T. MURASHIGE; TA. THORPE; IK. VASIL 1976 Plant tissue culture media. In Vitro 12: 473–478

    Google Scholar 

  51. GAMBORG, OL; SHYLUK JP 1931 Nutrition, media and characteristics of plant cell and tissue culture. In TA Thorpe, ed, Plant Tissue Culture — Methods and Application in Agriculture. Academic Press, New York, pp 21–44

    Google Scholar 

  52. GATHERCOLE, RWE; KJ. MANSFIELD; HE. STREET 1976 Carbon dioxide as an essential requirement for cultured sycamore cells. Physiol Plant 37: 213–217

    CAS  Google Scholar 

  53. GAUTHERET, RJ 1941 Action du saccharose sur la croissance des tissus de Carotte. Compt rend soc biol 135: 875–877

    CAS  Google Scholar 

  54. GAUTHERET, RJ 1945 Une voie nouvelle en biologie végétale: La culture des tissus. Gaillimard, Paris

    Google Scholar 

  55. GORIS, A 1954 Transformations glucidiques intratissulaires. Anné biol 30: 297–318

    Google Scholar 

  56. GORIS, A 1971 Valeur nutritive des polyols acycliques naturels pour les tissus de Carotte cultivés in vitro. Rev gen Bot 78: 103–112

    CAS  Google Scholar 

  57. GORIS, A; R. MONIEZ 1962 Essai sur le compartement métabolique de quelques sucres dans les tissus de racine de Carotte cultivés in vitro. Ann sci nat Botan biol végétale 3: 415–423

    CAS  Google Scholar 

  58. GRANATEK, CH; AW. COCKERLINE 1978 Callus formation versus differentiation of cultured barley embryos: hormonal osmotic interactions. In Vitro 14: 212–217

    Google Scholar 

  59. GREENWOOD, MS; GP. BERLYN 1973 Sucrose-indole-3-acetic acid interactions on root regeneration by Pinus Zambertiana embryo cuttings. Am J Bot 60: 42–47

    CAS  Google Scholar 

  60. GROSS, GG 1979 Recent advances in the chemistry and biochemistry of lignin. In T Swain, JB Harborne, CF Van Sumere, eds, Biochemistry of Plant Phenolics, pp. 177–221

    Google Scholar 

  61. GROSS, KC; DM. PHARR; RD. LOCY 1981 Growth of callus initiated from cucumber hypocotyls on galactose and galactose-containing oligosaccharides. Plant Sci Lett 20: 333–341

    CAS  Google Scholar 

  62. GUY, M; L. REINHOLD; GG. LATIES 1978 Membrane transport of sugars and amino acids in isolated protoplasts. Plant Physiol 61: 593–596

    PubMed  CAS  Google Scholar 

  63. GUY, M; L. REINHOLD; D. MICHAELI 1979 Direct evidence for a sugar transport mechanism in isolated vacuoles. Plant Physiol 64: 61–64

    PubMed  CAS  Google Scholar 

  64. GUY, II; L. REINHOLD; M. RAHAT 1980 Energization of the sugar transport mechanism in the plasmalemma of isolated mesophyll protoplasts. Plant Physiol 65: 550–553

    PubMed  CAS  Google Scholar 

  65. HADDON, L; DH. NORTHCOTE 1976 Correlation of the induction of various enzymes concerned with phenylpropanoid and lignin synthesis during differentiation of bean callus (Phaseolus vulgaris L.). Planta 128: 255–262

    CAS  Google Scholar 

  66. HAISSIG, BE 1974 Metabolism during adventitious root primordium initiation and development. N Z J For Sci 4: 324–327

    CAS  Google Scholar 

  67. HAHLBROCK, K 1977 Regulatory aspects of phenylpropanoid biosynthesis in cell cultures. In W Barz, E Reinhard, MH Zenk, eds, Plant Tissue Culture and its Bio-technological Application, Springer, Berlin-Heidelberg-New York, pp 95–111

    Google Scholar 

  68. HALMER, P; TA. THORPE 1976 Kinetin-induced changes in cell wall composition of tobacco callus. Phytochem 15: 1585–1588

    CAS  Google Scholar 

  69. HARKIN, JM; JR. OBST 1973 Lignification in trees: indication of exclusive peroxidase participation. Science 180: 296–298

    PubMed  CAS  Google Scholar 

  70. HARRAN, S; DB DICKINSON 1978 Metabolism of myo-inositol and growth in various sugars of suspension-cultured tobacco cells. Planta 141: 77–82

    CAS  Google Scholar 

  71. HESS, D; G. LEIPOLDT; RD. ILLG 1979 Investigations on the lactose induction of ß-galactosidase activity in callus tissue cultures of Nemesia strumosa and Petunia hybrida. Z Pflanzenphysiol 94: 45–53

    CAS  Google Scholar 

  72. HILDEBRANDT, AC; AT. RIKER 1949 The influence of various carbon compounds on the growth of marigold, paris-daisy, periwinkle, sunflower and tobacco tissue in vitro. Am J Bot 36: 74–85

    PubMed  CAS  Google Scholar 

  73. HISAJIMA, S 1975 The conversion of external sugars to internal sucrose in morning-glory callus. Radioisotopes 24: 403–409

    CAS  Google Scholar 

  74. HISAJIMA, S; J. ARAI; T. ITO 1978 Changes in sugar contents and some enzyme activities during the growth of morning-glory callus. J Jap Soc Starch Sci 25: 223–228

    CAS  Google Scholar 

  75. HOPP, HE; PA. ROMERO; GR. DALEO; R. PONT LEZICA 1978 Synthesis of cellulose precursors: the involvement of lipid-linked sugars. Eur J Biochem 84: 561–571

    PubMed  CAS  Google Scholar 

  76. HORI, H; T. FUJII 1978 Intracellular hydroxyproline-rich glycoprotein of suspension-cultured tobacco cells. Plant Cell Physiol 19: 1271–1280

    CAS  Google Scholar 

  77. HUNT, L; JS. FLETCHER 1976 Estimated drainage of carbon from the tricarboxylic acid cycle for the protein synthesis in suspension cultures of Paul’s Scarlet rose cells. Plant Physiol 57: 304–307

    PubMed  CAS  Google Scholar 

  78. JEFFS, RA; NORTHCOTE, DH 1967 The influence of indol-3y1 acetic acid and sugar on the pattern of induced differentiation in plant tissue culture. J Cell Sci 2: 77–88

    PubMed  CAS  Google Scholar 

  79. JESSUP, W; MW. FOWLER 1975 Effect of the nitrogen source on the activities of key enzymes of carbohydrate metabolism in cultured plant cells in vitro. Biochem Soc Trans 3: 1001–1003

    CAS  Google Scholar 

  80. JONES, A; IA. VELIKY 1980 Growth of plant cell suspension cultures on glycerol as a sole source of carbon and energy. Can J Bot 58: 643–657

    Google Scholar 

  81. JOSELEAU, JP; G. CHAMBAT 1980 Variation des activités de type cellulase et polygalacturonase dans les cellules de Rosa glauca cultivées en milieu liquide. Physiol Vég 18: 443–451

    CAS  Google Scholar 

  82. KANAMORI, I; H. ASHIHARA; A. KOMAMINE 1979 Changes in the activities of the pentose phosphate pathway and pyrimidine nucleotide biosynthesis during the growth of Vinca rosea cells in suspension culture. Z Pflanzenphysiol 93: 437–448

    CAS  Google Scholar 

  83. KARR, AL 1976 Cell wall biogenesis. In J Bonner, JE Varner, eds, Plant Biochemistry, 3rd edition. Academic Press, New York, pp 405–427

    Google Scholar 

  84. KATO, A; S. NAGAI 1979 Energetics of tobacco cells, Nicotiana tabacum L. growing on sucrose medium. European J Appl Microbiol Biotechnol 7: 219–225

    CAS  Google Scholar 

  85. KATO, A; Y. SHIMIZU; S. NAGAI 1975 Effect of initial kL on the growth of tobacco cells in batch culture. J Ferment Technol 53: 744–751

    CAS  Google Scholar 

  86. KESSELL, RHJ; C. GOODWIN; J. PHILP; MH. FOWLER 1977 The relationship between dissolved oxygen concentration, ATP, and embryogenesis in carrot (Daucus carota) tissue cultures. Plant Sci Lett 10: 265–274

    CAS  Google Scholar 

  87. KIMBALL, SL; WD. BEVERSDORF; ET. BINGHAM 1975 Influence of osmotic potential on the growth and development of soybean tissue cultures. Crop Sci 15: 750–752

    CAS  Google Scholar 

  88. KING, PJ 1977 Studies on the growth in culture of plant cells XXII. Growth limitation by nitrate and glucose in chemostat cultures of Acer pseudo Zatanus L. J Exp Bot 28: 142–155

    CAS  Google Scholar 

  89. KING, PJ; BJ. COX; MW. FOWLER; HE. STREET 1974 Metabolic events in synchronised cell cultures of Acer pseudo Zatanus L. Planta 117: 109–121

    CAS  Google Scholar 

  90. KING, PJ; HE. STREET 1977 Growth patterns in cell cultures. In H Street, ed, Plant Tissue and Cell Culture, 2nd edition, Blackwell Scientific Publications, pp 307–389

    Google Scholar 

  91. KLENOVSKA, S 1971 Wasserhaushalt der Nicotiana tabacum L. Kallusgewebekultur bei herabgesetztem bodenwasserpotential. Z Pflanzenphysiol 64: 257–259

    CAS  Google Scholar 

  92. KLENOVSKA, S 1973 Water relations and the dynamics of the sugar content in tobacco callus tissue cultures when using polyethyleneglycol as osmotic agent. Acta Fac Rerum Nat Univ Comenianae Physiol Plant 7: 19–29

    CAS  Google Scholar 

  93. KLENOVSKA, S 1976 Dependence of growth, water relations and the dynamics of free glycids in tobacco calluses upon the humidity of the surroundings. Acta Fac Rerum Nat Univ Comenianae Physiol Plant 11: 41–48

    Google Scholar 

  94. KLIS, FM 1971 α-Glucosidase activity located at the cell surface in ConvolvuZus arvensis callus. Physiol Plant 25: 253–257

    Google Scholar 

  95. KLIS, FM; C. DE GROOT; R. VERWER 1974 Effects of carbon source, gibberellins and ethylene on wall-bound invertase activity in callus of ConvoZvuZus arvensis. Physiol Plant 30: 334–336

    CAS  Google Scholar 

  96. KOMAMINE, A; T. MORIGAKI; T. FUJIMURA 1978 Metabolism in synchronous growth and differentiation in plant tissue and cell cultures. In TA Thorpe, ed, Frontiers of Plant Tissue Culture 1978, IAPTC, Calgary, pp 159–177

    Google Scholar 

  97. KUBOI, T; Y. YAMADA 1978 Regulation of the enzyme activities related to lignin synthesis in cell aggregates of tobacco cell culture. Biochim Biophys Acta 542: 181–190

    PubMed  CAS  Google Scholar 

  98. LAI YZ, KV; S. ARKANEN 1971 Isolation and structural studies. In KV Sarkanen, CH Ludwig, eds, Lignins, Wiley-Interscience, New York, pp 299–344

    Google Scholar 

  99. LAMPORT, DTA 1978 Cell wall carbohydrates in relation to structure and function. In TA Thorpe, ed, Frontiers of Plant Tissue Culture 1978, IAPTC, Calgary, pp 235–244

    Google Scholar 

  100. LAWLOR, DW 1970 Absorption of polyethylene glycols by plants and their effects on plant growth. New Phytol 69: 501–513

    CAS  Google Scholar 

  101. LIMBERG, M; D. CRESS; KG. LARK 1979 Variants of soybean cells which can grow in suspension with maltose as a carbon-energy source. Plant Physiol 63: 718–721

    PubMed  CAS  Google Scholar 

  102. LOEWUS, FA; MA. LOEWUS 1980 Myo-Inositol biosynthesis and metabolism. In J Preiss, ed, The Biochemistry of Plants, Vol 3 Carbohydrates: Structure and Function. Academic Press, New York, pp 43–76

    Google Scholar 

  103. MAEDA, E; H. SAKA 1973 Light microscopy of cell organelles in the shooting rice callus tissues (in Japanese). Proc Crop Sci Soc Japan 42: 442–453

    Google Scholar 

  104. MARETZKI, A; A. DELA CRUZ; LG. NICKELL 1971 Extracellular hydrolysis of starch in sugarcane cell suspensions. Plant Physiol 48: 521–525

    PubMed  CAS  Google Scholar 

  105. MARETZKI, A; P. HIRAKI 1930 Sucrose promotion of root formation in plantlets regenerated from callus of Saccharum spp. Phyton 38: 85–88

    Google Scholar 

  106. MARETZKI, A; M. THOM 1972 Existence of 2 membrane transport systems for glucose in suspensions of sugarcane cells. Bioc Biop R 47: 44–50

    CAS  Google Scholar 

  107. MARETZKI, A; M. THOM 1972 Membrane transport of sugar in cell suspensions of sugarcane. I. Evidence for sites and specificity. Plant Physiol 49: 177–182

    PubMed  CAS  Google Scholar 

  108. MARETZKI, A; M. THOM 1978 Characteristics of a galactose-adapted sugarcane cell line grown in suspension culture. Plant Physiol 61: 544–548

    PubMed  CAS  Google Scholar 

  109. MARETZKI, A; M. THOM; LG. NICKELL 1972 Influence of osmotic potentials on the growth and chemical composition of sugar cane cell cultures. Hawaii Plant Rec 48: 183–199

    Google Scholar 

  110. MARETZKI, A; M. THOM; LG. NICKELL 1974 Utilization and metabolism of carbohydrates in cell and tissue culture. In HE Street, ed, Tissue Culture and Plant Science. Academic Press, New York, pp 329–361

    Google Scholar 

  111. MARVIN, JW; M. MORSELLI 1971 Rapid low temperature hydrolysis of starch to sugars in tissue-cultures of sugar maple (Acer saccharum Marsch.). In Vitro 6: 390

    Google Scholar 

  112. MATHES MC; M. MORSELLI; JW. MARVIN 1971 The in vitro growth and metabolism of Acer saccharum tissue. Can J Bot 49: 495–500

    CAS  Google Scholar 

  113. MATHES, MC; M. MORSELLI; JW. MARVIN 1973 Use of various carbon sources by isolated maple callus cultures. Plant Cell Physiol 14: 797–801

    CAS  Google Scholar 

  114. MINOCHA, SC; W. HALPERIN 1974 Hormones and metabolites which control tracheid differentiation, with or without concomitant effects on growth, in cultured tuber tissue of Helianthus tuberosus L. Planta 116: 319–331

    CAS  Google Scholar 

  115. MITCHELL, ED; BB. JOHNSON; T. WHITTLE 1980 ß-Galactosidase activity in cultured cotton cells (Gossypium hirsutum L.): A comparison between cells growing on sucrose and lactose. In Vitro 16: 907–912

    Google Scholar 

  116. MURASHIGE, T; F. SKOOG 1962 A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473–497

    CAS  Google Scholar 

  117. NEGM, FB; WH. LOESCHER 1979 Detection and characterization of sorbitol dehydrogenase from apple callus tissue. Plant Physiol 64: 69–73

    PubMed  CAS  Google Scholar 

  118. NESIUS, K; JS. FLETCHER 1975 Contribution of nonautotrophic carbon dioxide fixation to protein synthesis in suspension cultures of Paul’s Scarlet rose. Plant Physiol 55: 643–645

    PubMed  CAS  Google Scholar 

  119. NICKELL, LG; A. MARETZKI 1970 The utilization of sugars and starch as carbon sources by sugarcane cell suspension cultures. Plant Cell Physiol 11: 183–185

    CAS  Google Scholar 

  120. NORSTOG, KJ 1961 The growth and differentiation of cultured barley embryos. Am J Bot 48: 876–884

    Google Scholar 

  121. NORTHCOTE, DH 1974 Sites of synthesis of the polysaccharides of the cell wall. In JB Pridham, ed, Plant Carbohydrate Biochemistry. Academic Press, New York, pp 165–181

    Google Scholar 

  122. OPEKAROVA, M; A. KOTYK 1973 Uptake of sugars by tobacco callus tissue. Biol Plant 15: 312–317

    CAS  Google Scholar 

  123. PALMER, CE 1976 ADP-glucose pyrophosphorylase and UDPglucose pyrophosphorylase activity in callus tissue during shoot initiation and callus growth. Z Pflanzenphysiol 77: 345–349

    Google Scholar 

  124. PARR, DR; J. EDELMAN 1975 Release of hydrolytic enzymes from the cell walls of intact and disrupted carrot callus tissue. Planta 127: 111–119

    CAS  Google Scholar 

  125. PARR, D; J. EDELMAN 1976 Passage of sugars across plasmalemma of carrot callus cells. Phytochem 15: 619–623

    CAS  Google Scholar 

  126. PARR, DR; J. EDELMAN; JS. IIAWKER 1976 Growth and sucrose metabolism of carrot callus strains with normal and low acid invertase activity. Physiol Plant 37: 223–228

    CAS  Google Scholar 

  127. PHILLIPS, R 1980 Cytodifferentiation. In IK Vasil, ed, Perspectives in Plant Cell and Tissue Culture. Int Rev Cytol Suppl 11A: 55–70

    Google Scholar 

  128. PIERROT, H; JE. VAN WIELINK 1977 Localization of glycosidases in the wall of living cells from cultured Convolvulus arvensis tissue. Planta 137: 235–242

    CAS  Google Scholar 

  129. PLUMB-DHINDSA, PL; RS. DHINDSA, TA. THORPE 1979 Nonautotrophic CO2 fixation during shoot formation in tobacco callus. J Exp Bot 30: 759–767

    CAS  Google Scholar 

  130. POPE, DG 1977 Relationships between hydroxyprolinecontaining proteins secreted into the cell wall and medium by suspension-cultured Acer pseudoplatanus cells. Plant Physiol 59: 894–900

    PubMed  CAS  Google Scholar 

  131. PRYKE, JA; T. APREES 1976 Activity of the pentose phosphate pathway during lignification. Planta 132: 279–284

    CAS  Google Scholar 

  132. RIER, JP; DT. BESLOW 1967 Sucrose concentration and the differentiation of xylem in callus. Bot Gaz 128: 73–77

    CAS  Google Scholar 

  133. ROBERTS, K; DH. NORTHCOTE 1972 Hydroxyproline: Observations on its chemical and autoradiographical localization in plant cell wall protein. Planta 107: 43–51

    CAS  Google Scholar 

  134. ROSS, MK; TA. THORPE 1973 Physiological gradients and shoot initiation in tobacco callus. Plant Cell Physiol 14: 473–480

    CAS  Google Scholar 

  135. SATO, F; K. NISHIDA; Y. YAMADA 1980 Activities of carboxylation enzymes and products of 14CO2 fixation in photoautotrophically cultured cells. Plant Sci Lett 20: 91–97

    CAS  Google Scholar 

  136. SCALA, J, FE. SEMERSKY 1971 An induced fructose-1,6diphosphatase from cultured cells of Acer pseudoplatanus. Phytochem 10: 567–570

    CAS  Google Scholar 

  137. SHIMIZU, T; A. CLIFTON; A. KOMAMINE; MW. FOWLER 1977 Changes in metabolite levels during growth of Acer pseudoplatanus (sycamore) cells in batch suspension culture. Physiol Plant 40: 125–129

    CAS  Google Scholar 

  138. SMITH, MM; BA. STONE 1973 Studies on Lo Zium multiflorum endosperm in tissue culture. I. Nutrition. Aust J Biol Sci 26: 123–133

    CAS  Google Scholar 

  139. SMOLOV, AP; VS. POLEVAYA 1980 Physiological aspects of sucrose utilization by heterotrophic and photoheterotrophic cultures of isolated tissues. Sov Plant Physiol 27: 1

    Google Scholar 

  140. STAVAREK, SJ; TP. CROUGHAN; DW. RAINS 1980 Regeneration of plants from long-term cultures of alfalfa cells. Plant Sci Lett 19: 253–261

    CAS  Google Scholar 

  141. STEEVES, TA; IM. SUSSEX 1972 Patterns in Plant Development, Englewood Cliffs, New Jersey, Prentice-Hall

    Google Scholar 

  142. STEUTER, A; A. MOZAFAR; JR. GOODIN 1981 Water potential of aqueous polyethylene glycol. Plant Physiol 67: 64–67

    PubMed  CAS  Google Scholar 

  143. STRAUS, J 1962 Invertase in cell walls of plant tissue cultures. Plant Physiol 37: 342–348

    PubMed  CAS  Google Scholar 

  144. STRAUS, J; WA. CAMPBELL 1963 Release of enzymes by plant tissue cultures. Life Sci 1: 50–62

    PubMed  CAS  Google Scholar 

  145. STODDART, RW; DH. NORTHCOTE 1967 Metabolic relationships of the isolated fractions of the pectic substances of actively growing sycamore cells. Biochem J 105: 45–59

    PubMed  CAS  Google Scholar 

  146. STREET, HE 1969 Knowledge gained by culture of organs and tissue expiants. In FC Steward, ed, Plant Physiology: A Treatise. Academic Press, New York, Vol VB, pp 3–224

    Google Scholar 

  147. STREET, HE; LA. WITHERS 1974 The anatomy of embryogenesis in culture. In HE Street, ed, Tissue Culture and Plant Science, Academic Press, London, New York, San Francisco, pp 71–100

    Google Scholar 

  148. TAKEUCHI, Y; A. KOMAMINE 1978 Changes in the composition of cell wall polysaccharides of suspension-cultured Vinca rosea cells during culture. Physiol Plant 42: 21–28

    CAS  Google Scholar 

  149. TAKEUCHI, Y; A. KOMAMINE 1980 Turnover of cell wall polysaccharides of a Vince rosea suspension culture. I. Synthesis and degradation of cell wall components. Physiol Plant 48: 271–277

    CAS  Google Scholar 

  150. TAKEUCHI, Y; A. KOMAMINE; T. SAITO; K. WATANABE; N. MORIKAWA 1980 Turnover of cell wall polysaccharides of a Vinca rosea suspension culture. II. Radio gas chromatographical analyses. Physiol Plant 48: 536–541

    CAS  Google Scholar 

  151. TAKEUCHI, Y; A. KOMAMINE 1980 Turnover of cell wall polysaccharides of a Vinca rosea suspension culture. III. Turnover of arabinogalactan. Physiol Plant 50: 113–118

    CAS  Google Scholar 

  152. THORPE, TA 1974 Carbohydrate availability and shoot formation in tobacco callus cultures. Physiol Plant 30: 77–81

    CAS  Google Scholar 

  153. THORPE, TA 1977 Plantlet formation of conifers in vitro. In Vegetative Propagation of Forest Trees — Physiology and Practice, Gotab, Stockholm, Sweden, pp 27–33

    Google Scholar 

  154. THORPE, TA 1980 Organogenesis in vitro: Structural, physiological and biochemical aspects. In IK Vasil, ed, Perspectives in Plant Cell and Tissue Culture. Int Rev Cytol, Suppl 11A: 71–111

    Google Scholar 

  155. THORPE, TA 1981 Callus organization and de novo formation of shoots, roots and embryos in vitro. In D Tomes et al, eds, Techniques and Applications of Plant Cell and Tissue Culture. University of Guelph Press, Ontario, in press

    Google Scholar 

  156. THORPE, TA; S BIONDI 1981 Regulation of plant organo-genesis. Adv Cell Culture 1: 213–239

    CAS  Google Scholar 

  157. THORPE, TA; EJ. LAISHLEY 1973 Glucose oxidation during shoot initiation in tobacco callus cultures. J Exp Bot 24: 1082–1089

    CAS  Google Scholar 

  158. THORPE, TA; EJ. LAISHLEY 1974 Carbohydrate oxidation during Nicotiana tabacum callus growth. Phytochem 13: 1323–1328

    CAS  Google Scholar 

  159. THORPE, TA; DD. MEIER 1972 Starch metabolism, respiration, and shoot formation in tobacco callus cultures. Physiol Plant 27: 365–369

    CAS  Google Scholar 

  160. THORPE, TA; DD. MEIER 1973 Sucrose metabolism during tobacco callus growth. Phytochem 12: 493–497

    CAS  Google Scholar 

  161. THORPE, TA; DD. MEIER 1974 Starch metabolism in shoot-forming tobacco callus. J Exp Bot 25: 288–294

    CAS  Google Scholar 

  162. THORPE, TA; DD. MEIER 1974 Enzymes of starch metabolism in Nicotiana tabacum callus. Phytochem 13: 1329–1334

    CAS  Google Scholar 

  163. THORPE, TA; DD. MEIER 1975 Effect of gibberellic acid on starch metabolism in tobacco callus cultured under shoot-forming conditions. Phytomorphology 25: 238–245

    CAS  Google Scholar 

  164. THORPE, TA; T. MURASHIGE 1968 Starch accumulation in shoot-forming tobacco callus cultures. Science 160: 421–422

    PubMed  CAS  Google Scholar 

  165. THORPE, TA; T. MURASHIGE 1970 Some histochemical changes underlying shoot initiation in tobacco callus cultures. Can J Bot 48: 277–285

    CAS  Google Scholar 

  166. TRIP, P; G. KROTKOV; CD. NELSON 1964 Metabolism of mannitol in higher plants. Am J Bot 51: 828–835

    CAS  Google Scholar 

  167. UEDA, Y; H. ISHIYAMA; M. FUKUI; A. NISHI 1974 Invertase in cultured Daucus carota cells. Phytochem 13: 383–387

    CAS  Google Scholar 

  168. UPPER, CD; JP. HELGESON; GT. HABERLACH 1970 Limitation of tobacco callus tissue growth by carbohydrate availability. Plant Physiol 46: 118–122

    PubMed  CAS  Google Scholar 

  169. URMANTSEVA, VV; VP. KHOLODOVA; VN. PAUKOV 1979 Lactose-galactose effect in a sugar beet tissue culture. Sov Plant Physiol 26: 373–380

    Google Scholar 

  170. VANDERHOVEN, C; JP. ZRYD 1978 Changes in malate content and in enzymes involved in dark CO2 fixation during growth of Acer pseudo Zatanus cells in suspension culture. Physiol Plant 43: 99–103

    CAS  Google Scholar 

  171. VERMA, DC; DK. DOUGALL 1977 Influence of carbohydrates on quantitative aspects of growth and embryo formation in wild carrot suspension cultures. Plant Physiol 59: 81–85

    PubMed  CAS  Google Scholar 

  172. VERMA, DC; DK. DOUGALL 1979 Biosynthesis of myo-inositol and its role as a precursor of cell-wall polysaccharides in suspension cultures of wild-carrot cells. Planta 146: 55–62

    CAS  Google Scholar 

  173. WARREN, GC; MW. FOWLER 1977 A physical method for the separation of various stages in the embryogenesis of carrot cell cultures. Plant Sci Lett 9: 71–76

    Google Scholar 

  174. WARREN, GS; MW. FOWLER 1978 Cell number and cell doubling times during the development of carrot embryoids in suspension culture. Experientia 34: 356

    Google Scholar 

  175. WETMORE, RH; JP. RIER 1963 Experimental induction of vascular tissues in callus of angiosperms. Am J Bot 50: 418–430.

    CAS  Google Scholar 

  176. WHITE PR 1934 Potentially unlimited growth of excised tomato root tips in a liquid medium. Plant Physiol 9: 585–600

    PubMed  CAS  Google Scholar 

  177. WHITMORE FW 1976 Binding of ferulic acid to cell walls by peroxidases of Pinus elliottii. Phytochem 15: 375–378

    CAS  Google Scholar 

  178. WILSON SB 1971 Studies on the growth in culture of plant cells. XIII. Properties of mitochondria isolated from batch cultures of Acer pseudoplatanus L. cells. J Exp Bot 22: 725–734

    CAS  Google Scholar 

  179. WOLTER, KE; F. SKOOG 1966 Nutritional requirements of Fraxinus callus cultures. Am J Bot 53: 263–269

    Google Scholar 

  180. WRIGHT, K; DH. NORTHCOTE 1972 Induced root differentiation in sycamore callus. J Cell Sci 11: 319–337

    PubMed  CAS  Google Scholar 

  181. WYNJONES, RG; R. STOREY; RA. LEIGH; N. AHMAD; A. POLLARD 1977 A hypothesis on cytoplasmic osmoregulation. In E Marre, O Ciferri, eds, Regulation of Cell Membrane Activity in Plants, Elsevier/North Holland, Amsterdam, pp 121–136

    Google Scholar 

  182. YAMADA, Y; F. SATO; M. HAGIMORI 1978 Phytoautotrophism in green cultured cells. In TA Thorpe, ed, Frontiers in Plant Tissue Culture 1978 IAPTC, Calgary, pp 453–462

    Google Scholar 

  183. YEUNG, EC; TA. THORPE; CJ. JENSEN 1981 In vitro fertilization and embryo culture. In TA Thorpe, ed, Plant Tissue Culture Methods and Applications in Agriculture, Academic Press, New York, pp 253–271

    Google Scholar 

  184. ZENK, MH; H. EL-SHAGI; U. SCHULTE 1975 Anthraquinone production by cell suspension cultures of Morinda citrifolia. Planta Medica supplement 79–101

    Google Scholar 

  185. ZIMMERMAN U 1978 Physics of turgor and osmoregulation. Ann Rev Plant Physiol 29: 121–148

    Google Scholar 

  186. ZRYD JP 1978 Induction of glycosidase activity in sycamore cells. Abstracts IAPTC Congress. Calgary, p 174

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Thorpe, T.A. (1982). Carbohydrate Utilization and Metabolism. In: Bonga, J.M., Durzan, D.J. (eds) Tissue Culture in Forestry. Forestry Sciences, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3538-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-3538-4_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-8272-5

  • Online ISBN: 978-94-017-3538-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics