Skip to main content

Nitrogen Metabolism and Vegetative Propagation of Forest Trees

  • Chapter
Tissue Culture in Forestry

Part of the book series: Forestry Sciences ((FOSC,volume 5))

Abstract

In this chapter, the nitrogen metabolism of cells and tissues of economically important forest trees is interpreted in the light of our limited knowledge of the specific genetic gains to be captured by cell and tissue culture technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ABO EL-NIL MM. 1980. Embryogenesis of gymnosperm forest trees. US Pat. 4,217,730, August 19, 11 claims, 6 pp.

    Google Scholar 

  2. ATKINSON DE. 1977. Cellular energy metabolism and its regulation. New York, Academic Press.

    Google Scholar 

  3. BALL EA. 1978. Cloning in vitro of Sequoia sempervirens. Abstract 1726 In: Frontiers of Plant Tissue Culture, TA Thorpe, ed., University of Calgary, Calgary, Canada.

    Google Scholar 

  4. BANDURSKI RS, SCHULZE A. 1977. Concentration of indole3-acetic acid and its derivatives in plants. Plant Physiol. 60: 211–213.

    PubMed  CAS  Google Scholar 

  5. BANERJEE SN, RADFORTH NW. 1969. In vitro studies on the developing embryos of Pinus resinosa. Bot. Mag. Tokyo 82: 329–340.

    Google Scholar 

  6. BARONDES SH. 1981. Lectins: their multiple endogenous cellular functions. Annu. Rev. Biochem. 50: 207–231.

    PubMed  CAS  Google Scholar 

  7. BARTELS H. 1971. Genetic control of multiple esterases from needles and macrogametophytes of Picea abies. Planta (Berl.) 99: 283–289.

    CAS  Google Scholar 

  8. BAULE H, FRICKER C. 1970. The fertilizer treatment of forest trees. Munchen, Germany, BLV Verlagsgesellschaft.

    Google Scholar 

  9. BENGSTON GW. 1973. Fertilizer use in forestry. Proc. IUFRO-FAO Int. Symp. on Forest Fertilization Ministere de l’Agriculture, Dec. 3 to 7, Paris, pp. 97–168.

    Google Scholar 

  10. BAUER WD. 1981. Infection of legumes by Rhizobia. Annu. Rev. Plant Physiol. 32: 4707–449.

    Google Scholar 

  11. BERLYN CP, BECK RC. 1980. Tissue culture as a technique for studying meristematic activity. Proc. IUFRO Symp. Control of shoot growth in trees. CHA Little, ed., Maritines Forest Research Centre, Environment, Canada, pp. 305–324.

    Google Scholar 

  12. BERLYN GP, MIKSCHE JP. 1965. Growth of excised pine embryos and the role of cotyledons during germination in vitro. Ann. J. Bot. 52: 730–736.

    Google Scholar 

  13. BORCHERT R. 1968. Spontane diploidisierung in Gewebkulturen des Megagametophyten von Pinus lambertiana. Z. Pflanzenphysiol. 59: 389–392.

    Google Scholar 

  14. BRAUN AC. 1980. Genetic and biochemical studies on the suppression of and recovery from the tumorous state in higher plants. In vitro (Rockville) 16: 38–48.

    Google Scholar 

  15. BRIGHT SW, NORTHCOTE DH. 1974. Protoplast regeneration from normal and bromodeoxyuridine-resistant sycamore cells. J. Cell Sci. 16: 445–463.

    CAS  Google Scholar 

  16. BRILL WR. 1979. Nitrogen fixation: basic to applied. Am. Sci. 67: 458–466.

    CAS  Google Scholar 

  17. BRILL WR. 1981. Agricultural microbiology. Am. Sci. 245: 199–215.

    Google Scholar 

  18. BRINK RA. 1962. Phase change in higher plants and somatic cell heredity. Q. Rev. Biol. 37: 1–22.

    Google Scholar 

  19. BROWN CL, GIFFORD ME, Jr. 1958. The relation of cotyledons to root development of pine embryos grown in vitro. Plant Physiol. 33: 57–64.

    PubMed  CAS  Google Scholar 

  20. BROWN EG, SHORT KC. 1969. The changing nucleotide pattern of sycamore cells during culture during suspension. Phytochemistry 8: 1365–1372.

    CAS  Google Scholar 

  21. BROWN R, DYER AF. 1972. Cell division in higher plants. In: Plant physiology: an advanced treatise. FC Steward, ed., New York, Academic Press, VIC:49–90.

    Google Scholar 

  22. BRUNNER G. 1932. Beitrage zur Entwicklungsphysiologie der Kiefernkeimlinge. Jahrb. Wiss. Bot. 76: 407–439.

    Google Scholar 

  23. CAMPBELL RA, DURZAN DJ. 1975. Induction of multiple buds and needles in tissue cultures of Picea glauca (Moench) Voss. Can. J. Bot. 53: 1652–1657.

    Google Scholar 

  24. CAMPBELL RA, DURZAN DJ. 1976. The potential for cloning white spruce via tissue culture. Proc. 12th Lake States Forest Tree Improvement Conf., USDA Forest Service Gen. Tech. Rept., NC 26: 158–166.

    Google Scholar 

  25. CARLISLE A, TEICH AH. 1971. The costs and benefits of tree improvement programs. Can. For. Serv. Publ. No. 1302.

    Google Scholar 

  26. CARRE M, MARTIN-TANGUY J, MUSSILON P, MARTIN C. 1979. La culture de méristémes et la multiplication végétative “in vitro” au service de la pepiniére. INRA INVUFLEC ( France) Bull. Petit Fruits No. 14.

    Google Scholar 

  27. CHAFE SC, DURZAN DJ. 1973. Tannin inclusions in cell suspension cultures of white spruce. Planta (Berl.) 113: 251–262.

    CAS  Google Scholar 

  28. CHALUPA V, DURZAN DJ. 1973. Growth and development of resting buds of conifers in vitro. Can. J. For. Res. 3: 196–208.

    Google Scholar 

  29. CHALUPA V, DURZAN DJ. 1973. Growth of Norway spruce (Picea abies (L) (Karst)) tissue and cell cultures. Commun. Inst. For. Cech. 8: 111–125.

    Google Scholar 

  30. CHALUPA V, DURZAN DJ, VITHAYASAI C. 1976. Growth and metabolism of cells and tissues of jack pine (Pinus banksiana). 2. The quantitative analysis of the growth of callus from hypocotyls and radicles. Can. J. Bot. 5: 445–446.

    Google Scholar 

  31. CHEN CM, KRISTOPEIT SM. 1981. Metabolism of cytokinin. Plant Physiol. 67: 494–498.

    PubMed  CAS  Google Scholar 

  32. CHENG T-Y. 1975. Adventitious bud formation in culture of Douglas-fir. Plant Sci. Lett. 5: 97–102.

    CAS  Google Scholar 

  33. CHENG T-Y. 1979. Recent advances in development on in vitro techniques for Douglas-fir. In: Plant cell and tissue culture, WR Sharp, PO Larsen, EF Paddock, V Raghaven, eds., Columbus, Ohio State Univ. Press, pp. 493–508.

    Google Scholar 

  34. CLARKSON DT, HANSON JB. 1980. The mineral nutrition of higher plants. Annu. Rev. Plant Physiol. 31: 239–298.

    Google Scholar 

  35. COHEN JO, BANDURSKI RS. 1978. The bound auxins: protection of indole-3-acetic acid from peroxidase-catalyzed oxidation. Planta (Berl.) 139: 203–208.

    CAS  Google Scholar 

  36. COME D. 1971. Dégazage des enveloppes séminales lors de leur imbibition. II Cas des graines de pommier. Physiol. Vég. 9: 447–452.

    Google Scholar 

  37. COX BJ, TURNOCK G, STREET HE. 1973. Studies on the growth in culture of plant cells. XV. Uptake and utilization of uridine during growth of Acer pseudoplatanus cells in culture. J. Exp. Bot. 24: 159–174.

    Google Scholar 

  38. CRAVEN GH, MOTT RL, STEWARD FC. 1972. Solute accumulation in plant cells. IV. Effects of ammonium ions on growth and solute content. Ann. Bot. 36: 897–914.

    Google Scholar 

  39. DASHEK WV. 1970. Synthesis and transport of hydroxyproline-rich components in suspension cultures of sycamore maple cells. Plant Physiol. 46: 831–838.

    PubMed  CAS  Google Scholar 

  40. DOGRA PD. 1978. Morphology, development and nomenclature of conifer embryo. Phytomorphology 28: 307–322.

    Google Scholar 

  41. DOREE M. 1973. Absorption of adenine and N-substituted adenine compounds by Acer pseudoplatanus cells: general character of absorption. Physiol. Vég. 11: 267–290.

    CAS  Google Scholar 

  42. DOREE M. 1973. Metabolism of exogenous adenine by Acer cells. Phytochemistry 12: 2101–2108.

    CAS  Google Scholar 

  43. DOREE M, LEGUAY J, TERRINE C. 1970. Absorption of adenine of cellular suspension of Acer pseudoplatanus. CR Acad. Sci. ( Paris ) 270: 2292–2295.

    Google Scholar 

  44. DOREE M, LEGUAY J, TERRINE C. 1972. CO2 flux and changes in cell permeability in cells of Acer pseudoplatanus. Physiol. Vég. 10: 115–131.

    Google Scholar 

  45. DURZAN DJ. 1966. Disc electrophoresis of soluble protein in the female gametophyte and embryo of conifer seed. Can. J. Bot. 44: 359–361.

    CAS  Google Scholar 

  46. DURZAN DJ. 1968. Nitrogen metabolism of Picea glauca. I. Seasonal changes of free amino acids in buds, shoot apices anf4 leaves, and the metabolism of uniformly labelled C-L-arginine by buds during the onset of dormancy. Can. J. Bot. 46: 909–919.

    CAS  Google Scholar 

  47. DURZAN DJ. 1973. The incorporation of tritiated water into amino acids in the presence of urea by white spruce seedlings in light and darkness. Can. J. Bot. 51: 351–358.

    CAS  Google Scholar 

  48. DURZAN DJ. 1973. The metabolism of 14C-urea by white spruce seedlings in light and darkness. Can. J. Bot. 51: 1197–1211.

    CAS  Google Scholar 

  49. DURZAN DJ. 1975. Nutrition and water relations of forest trees: a biochemical approach. Third N. Am. Conf. Tree Biology, CPP Reid and CH Fechner, eds., Fort Collins, Colorado State Univ., pp. 15–63.

    Google Scholar 

  50. DURZAN DJ. 1980. Progress and promise in forest genetics. Proc. 50th Anniv. Conf. Paper Science and Technology-The cutting edge. Inst. Paper Chemistry, May 8–10, 1980, Appleton, WI, pp. 31–59.

    Google Scholar 

  51. DURZAN DJ. 1982 (in press). Explant choice:juvenility vs. adult phase. In: Applications of plant tissue culture methods for crop improvement. DA Evans, WR Sharp, PV Ammirato, Y Yamada, eds., New Jersey, McMillan.

    Google Scholar 

  52. DURZAN DJ, CHALUPA V. 1976. Growth and metabolism of cells and tissue of jack pine (Pinus banksiana). 3. Growth of cells in liquid suspension cultures in light and darkness. Can. J. Bot. 54: 446–467.

    Google Scholar 

  53. DURZAN DJ, CHALUPA V. 1976. Growth and metabolism of cells and tissue of jack pine (Pinus banksiana). 4. Changes in amino acids of callus and in seedlings of similar genetic origin. Can. J. Bot. 54: 468–482.

    Google Scholar 

  54. DURZAN DJ, CHALUPA V. 1976. Growth and metabolism of cells and tissue of jack pine (Pinus banksiana). 5. Changes in free arginine and Sakaguchi-reactive compounds during callus growth and in germinating seedlings of similar genetic origin. Can. J. Bot. 54: 483–495.

    Google Scholar 

  55. DURZAN DJ, CHALUPA V. 1976. Growth and metabolism of cells and tissue of jack pine (Pinus banksiana). 6. Free nitrogenous compounds in cell suspension cultures of jack pine as affected by light and darkness. Can. J. Bot. 54: 496–506.

    Google Scholar 

  56. DURZAN DJ, BOURGON G. 1976. Growth and metabolism of cells and tissues of jack pine (Pinus banksiana). 7. Observations on cytoplasmic streaming and effects of L-glutamine and its analogues on subcellular activities. Can. J. Bot. 54: 507–517.

    Google Scholar 

  57. DURZAN DJ, LOPUSHANSKI SM. 1975. American elm from cell suspension culture. Can. J. For. Res. 5: 273–277.

    Google Scholar 

  58. DURZAN DJ, STEWARD FC. 1968. Cell and tissue culture of white spruce and jack pine. Can. For. Serv. Bi-Mon. Res. Notes 24: 30–31.

    Google Scholar 

  59. DURZAN DJ, STEWARD FC. 1982, in press. Metabolism of organic nitrogenous compounds. In: Plant physiology, an advanced treatise. FC Steward et al., eds., New York, Academic Press.

    Google Scholar 

  60. DURZAN DJ, CHAFE SC, LOPUSHANSKI SM. 1973. Effects of environmental changes on sugars, tannins and organized growth in cell suspension cultures of white spruce. Planta (Berl.) 113: 241–249.

    CAS  Google Scholar 

  61. DURZAN DJ, CHALUPA V, MIA AJ. 1976. Growth and metabolism of cells and tissues of jack pine (Pinus banksiana). 1. The establishment and some characteristics of a proliferated callus from jack pine seedlings. Can. J. Bot. 54: 437–445.

    Google Scholar 

  62. DURZAN DJ, MIA AJ, RAMAIAH PK. 1971. Nitrogen metabolism and subcellular organization of jack pine (Pinus banksiana Lamb.) during germination. Can. J. Bot. 49: 927–938.

    Google Scholar 

  63. ELLIOTT DC. 1980. Calmodulin inhibitor prevents plant hormone response. Biochem. Int. 1: 290–294.

    CAS  Google Scholar 

  64. ENGELKE AL, HAMZL HQ, SKOOG F. 1973. Cytokinin-gibberellin regulation of shoot development and leaf form in tobacco plantlets. Am. J. Bot. 60: 491–495.

    Google Scholar 

  65. ENGVILD KC. 1964. Growth and chlorophyll formation of dark-grown pine embryos on different media. Physiol. Plant. 17: 866–874.

    CAS  Google Scholar 

  66. EVANS G, MOTT RL. 1979. Plant Physiol Suppl. 63:Abstr. 656.

    Google Scholar 

  67. FLICKINGER RA. 1962. Sequential gene action, protein synthesis and cellular differentiation. Int. Rev. Cytol. 13: 75–98.

    PubMed  CAS  Google Scholar 

  68. FRANCLET A. 1977. Phases du développement et propagation végétative des coniféres. Proc. Conf. Formation Continue A Versailles, May 11, AFOCEL (Nangis) France.

    Google Scholar 

  69. GATHERCOLE RW, STREET HE. 1976. Isolation, stability and biochemistry of a p-fluorophenylalanine-resistant cell line of Acer pseudoplatanus. New Phytol. 77: 29–41.

    CAS  Google Scholar 

  70. GIVAN CU, COLLIN HA. 1967. Studies on the growth in culture of plant cells. II. Changes in the respiration rate and nitrogen content associated with the growth of Acer cells in suspension culture. J. Exp. Bot. 18: 321–331.

    Google Scholar 

  71. GREEN PB. 1980. Organogenesis-a biophysical view. Ann. Rev. Plant Physiol. 31: 51–82.

    Google Scholar 

  72. GREENWOOD MS, HODGSON DH. 1974. The role of auxin metabolism in root meristem regeneration by Pinus lambertiana embryo cuttings. Physiol. Plant. 32: 198–202.

    Google Scholar 

  73. GREGORY FG, VEALE JA. 1957. A reassessment of the problem of apical dominance. Symp. Soc. Exp. Biol. 11: 1–20.

    Google Scholar 

  74. GUNNING BES, HARDHAM AR. 1979. Microtubules and morpho-genesis in plants. Endeavor 3: 112–117.

    Google Scholar 

  75. GUNSALUS IC, SUGAR SG. 1978. Oxygen reduction by the P450 monooxygenase systems. Adv. Enzymol. 47: 1–44.

    Google Scholar 

  76. GUSTAFSSON A. 1948. Polyploidy, life-form, and vegetative reproduction. Hereditas 34: 1–22.

    Google Scholar 

  77. HALPERIN W. 1967. Population density effects on embryo-genesis in carrot-cell cultures. Exp. Cell Res. 48: 170–173.

    PubMed  CAS  Google Scholar 

  78. HANGARTER RP, PETERSON MD, GOOD NE. 1980. Biological activities of indoleacetylamino acids and their use as auxins in tissue culture. Plant Physiol. 65: 761–767.

    PubMed  CAS  Google Scholar 

  79. HASEGAWA PM, YASUDA T, CHENG T-Y. 1979. Effect of auxin and cytokinin on newly synthesized proteins of cultured Douglas-fir cotyledons. Physiol. Plant. 46: 211–217.

    Google Scholar 

  80. HOLLEMAN J. 1967. Direct incorporation of hydroxyproline into protein of sycamore cells incubated at growth inhibitory levels of hydroxyproline. Proc. Natl. Acad. Sci. USA 57: 50–54.

    PubMed  CAS  Google Scholar 

  81. HUHTINEN O. 1976. In vitro culture of haploid tissue of trees. In: Proc. 16th IUFRO World Congress, Norway, Div. 2, pp. 28–30.

    Google Scholar 

  82. IBERS JA, HOLM RH. 1980. Modeling coordination sites in metallobiomolecules. Science 209: 223–235.

    PubMed  CAS  Google Scholar 

  83. JESSUP W, FOWLER MW. 1976. Interrelationships between carbohydrate metabolism and nitrogen metabolism in cultured plant cells. Planta (Berl.) 132: 119–129.

    CAS  Google Scholar 

  84. JESSUP W, FOWLER MW. 1977. Interrelationships between carbohydrate metabolism and nitrogen assimilation in cultured plant cells. Planta (Berl.) 137: 71–76.

    CAS  Google Scholar 

  85. KESTER DE. 1976. The relationship of juvenility to plant propagation. Proc. Int. Plant Prop. Soc. 26: 71–84.

    Google Scholar 

  86. KING PJ. 1976. Growth characteristics of Acer pseudoplatanus cells grown in chemostat cultures in the presence of urea alone as a source of nitrogen. Plant Sci. Lett. 6: 409–418.

    CAS  Google Scholar 

  87. KING PJ. 1976. Studies on the growth in culture of plant cells. Part 20. Utilization of 2,4-D by steady-state cell cultures of Acer pseudoplatanus. J. Exp. Bot. 27: 1053–1072.

    CAS  Google Scholar 

  88. KING PJ. 1977. Studies on the growth in culture of plant cells: growth limitation by nitrate and glucose in chemostat cultures of Acer pseudoplatanus. J. Exp. Bot. 28: 142–155.

    CAS  Google Scholar 

  89. KING PJ, COX BJ, FOWLER MW, STREET HE. 1974. Metabolic events in synchronized cell cultures of Acer pseudoplatanus. Planta (Berl.) 117: 109–122.

    CAS  Google Scholar 

  90. KING PJ, MANSFIELD KJ, STREET HE. 1973. Control of growth and cell division in plant cell suspension cultures. Can. J. Bot. 51: 1807–1823.

    Google Scholar 

  91. KLEE CB, CROUCH TH, RICHMAN PG. 1980. Calmodulin. Ann. Rev. Biochem. 4,9: 489–515.

    Google Scholar 

  92. KOCOUREK J, HOREJI V. 1981. Defining a lectin. Nature 290: 188.

    Google Scholar 

  93. KOLATTUKUDY PE. 1980. Biopolyester membranes of plants: cutin and suberin. Science 208: 990–1000.

    PubMed  CAS  Google Scholar 

  94. LAMPORT DTA. 1963. Oxygen fixation into hydroxyproline of plant cell wall protein. J. Biol. Chem. 238: 1438–1440.

    PubMed  CAS  Google Scholar 

  95. LAMPORT DTA. 1970. Cell wall metabolism. Annu. Rev. Plant Physiol. 21: 235–270.

    CAS  Google Scholar 

  96. LARK KG, CRESS DE. 1978. Cell division and DNA synthesis in plant cells, In: Frontiers of plant tissue culture, TA Thorpe, ed., University of Calgary, Calgary, Canada.

    Google Scholar 

  97. LOEWENBERG JR, SKOOG F. 1952. Pine tissue cultures. Physiol. Plant. 5: 33–36.

    Google Scholar 

  98. LUDTKE M, LERCH B. 1968. Uber die Aminosäuren der Hautsubstanz pflanzlicher Faserzellen. Holzforschung 22: 1–8.

    Google Scholar 

  99. MATSUBARA S. 1980. Structure-activity relationships of cytokinins. Phytochemistry 19: 2238–2253.

    Google Scholar 

  100. MONTAGUE MJ, ENNS RK, SIEGEL NR, JAWORSKI EG. 1981. Inhibition of 2,4-dichlorophenoxyacetic acid conjugation to amino acids by treatment of cultured soybean cells with cytokinins. Plant Physiol. 67: 701–704.

    PubMed  CAS  Google Scholar 

  101. MOTHES K. 1929. Physiologische Untersuchungen uber das Asparagin und das Arginin in Coniferen. Ein Beiträge zur Theorie der Ammoniakentgiftung im Pflanzlichen Organismus. Planta (Berl.) 7: 585–649.

    Google Scholar 

  102. MOTHES K. 1972. Some remarks about cytokinins. Fiziol. Rast. (Mosc.) 19: 1011–1022.

    CAS  Google Scholar 

  103. MURASHIGE T. 1978. The impact of plant tissue culture on agriculture. Proc. 4th Int. Congr. Plant Cell and Tissue Culture, August 20–25, 1978, University of Calgary, Canada, pp. 15–26.

    Google Scholar 

  104. MURASHIGE T, SKOOG F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15: 473–497.

    Google Scholar 

  105. MURPHY GJP. 1980. A reassessment of the binding of naphthaleneacetic acid by membrane preparations from maize. Planta (Berl.) 149: 417–426.

    CAS  Google Scholar 

  106. NAYLOR AW. 1959. Interrelations of ornithine, citrul-line and arginine in plants. Soc. Exp. Biol. Symp. 13: 193–209.

    Google Scholar 

  107. NYGAARD P. 1972. Deoxyribonucleotide pools in plant tissue culture. Physiol. Plant. 26: 29–33.

    CAS  Google Scholar 

  108. OGAWA T, OKAZAKI T. 1980. Discontinuous DNA replication. Ann. Rev. Biochem. 49: 421–457.

    Google Scholar 

  109. PALADE G. 1975. Intracellular aspects of the process of protein synthesis. Science 189: 347–358.

    PubMed  CAS  Google Scholar 

  110. PARHAM RA, KAUSTINEN HM. 1976. Organization and surface features of Douglas-fir cells in culture. Proc. Workshop Plant Science, Applications of the scanning electron microscope ITT Research Institute, Chicago, III., pp. 470–496.

    Google Scholar 

  111. PARTANEN CR. 1963. Plant tissue culture in relation to developmental cytology. Int. Rev. Cytol. 15: 215–243.

    PubMed  CAS  Google Scholar 

  112. PATEL KR, BERLYN GP. 1982, in press. Genetic instability of multiple buds of Pinus coulteri regenerated from tissue culture. Can. J. For. Res.

    Google Scholar 

  113. PITEL JA, DURZAN DJ. 1975. Nuclear proteins of dry and germinating conifer seeds. Proc. Conf. Appl. Genet. Forest Management, Petawawa Forest Experiment Station, August 18–22.

    Google Scholar 

  114. PITEL JA, DURZAN DJ. 1978a. Chromosomal proteins of conifers. I. Comparison of histones and non-histone chromosomal proteins from dry seeds of conifers. Can. J. Bot. 56: 1915–1927.

    Google Scholar 

  115. PITEL JA, DURZAN DJ. 1978. Chromosomal proteins of conifers. II. Tissue specificity of the chromosomal proteins of jack pine (Pinus banksiana Lamb.). Can. J. Bot. 56: 1928–1931.

    Google Scholar 

  116. PITEL JA, DURZAN DJ. 1980. Chromosomal proteins of conifers. 3. Metabolism of histones and nonhistone chromosomal proteins in jack pine (Pinus banksiana Lamb.) during germination. Physiol. Plant. 50: 137–194.

    Google Scholar 

  117. PRICE HJ, SPARROW AH, NAUMAN AF. 1973. Evolutionary and developmental considerations of the variability of nuclear parameters in higher plants. I. Genome volume, interphase chromosome volume, and estimated DNA content of 236 gymnosperms. In: Basic mechanisms in plant morphogenesis. Brookhaven Nat. Lab. Symp. No. 25, June 4–6, pp. 39–421.

    Google Scholar 

  118. RALPH P, McCOMBS A, TENER G, WOJCIK SJ. 1972. Evidence for modification of protein phosphorylation by cytokinins. Biochem. J. 130: 901–911.

    Google Scholar 

  119. RAMAIAH PK, DURZAN DJ, MIA AJ. 1971. Amino acids, soluble proteins, and isoenzyme patterns of peroxidase during the germination of jack pine. Can. J. Bot. 49: 2131–2161.

    Google Scholar 

  120. RAMUS J. 1973. Cell surface polysaccharides of the red alga Porphyridium. In: Biogenesis of plant cell wall polysaccharides. F. Loewus, ed., New York, Academic Press, pp. 333–359.

    Google Scholar 

  121. RICHARDS FJ. 1969. The quantitative analysis of growth. In: Plant physiology: an advanced treatise. FC Steward, ed., New York, Academic Press, VA:3–76.

    Google Scholar 

  122. RIOV J, COOPER C, GOTTLIEB HE. 1979. Metabolism of auxin in pine tissues: naphthaleneacetic acid conjugation. Physiol. Plant. 46: 133–138.

    Google Scholar 

  123. ROGNES SE. 1980. Anion regulation of lupin asparagine synthetase: Chloride activation of the glutamine utilizing reactions. Phytochemistry 19: 2287–2293.

    CAS  Google Scholar 

  124. ROMBERGER JA. 1969. Apical meristems of trees. Why we study them. Agric. Sci. Rev. 7: 1–10.

    Google Scholar 

  125. ROMBERGER JA, GREGORY RA. 1974. Analytical morphogenesis and the physiology of flowering in trees. CPP Reid and GH Fechner, eds., Proc. Third N. Am. For. Biol. Workshop, Colorado State Univ, Ft. Collins, p. 132–147.

    Google Scholar 

  126. SAND NH, BERNSTEN C. 1981. Events and expectations in forestry 1970–1984. J. For. 136–139.

    Google Scholar 

  127. SCHNEIDER EA, WIGHTMAN F. 1974. Metabolism of auxin in higher plants. Ann. Rev. Plant Physiol. 25: 487–513.

    Google Scholar 

  128. SHARP WR, SONDAHL MR, CALDAS LS, MARAFFA SB. 1980. The physiology of in vitro asexual embryogenesis. Hort. Revs. 2: 268–310.

    Google Scholar 

  129. SHORT KC, BROWN EG, STREET HE. 1969. Growth in culture of plant cells: Nucleic acid metabolism of Acer pseudoplatanus cell suspensions. J. Exp. Bot. 20: 579–590.

    Google Scholar 

  130. SILEN RR. 1978. Genetics of Douglas-fir. USDA For. Serv. Res. Rep. WO 35: 34.

    Google Scholar 

  131. SINGH M, KRIKORIAN AD. 1980. Chelated iron in culture media. Ann. Bot. 46: 807–809.

    Google Scholar 

  132. SINGH M, KRIKORIAN AD. 1981. White’s standard nutrient solution. Ann. Bot. 47: 133–139.

    Google Scholar 

  133. SINNOTT EW. 1960. Plant morphogenesis. New York, McGraw Hill, 550 pp.

    Google Scholar 

  134. SKOOG F, MILLER CO. 1957. Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Soc. Exp. Biol. Symp. 11: 113–131.

    Google Scholar 

  135. SMITH DR, THORPE TR. 1977. Root initiation in cuttings of Pinus radiata seedlings. Effects of aromatic amino acids and simple phenylpropanoids. Bot. Gaz. 138: 434–437.

    Google Scholar 

  136. SOMMER HE, BROWN CL. 1980. Embryogenesis in tissue cultures of sweetgum. For. Sci. 26: 257–260.

    Google Scholar 

  137. STABA EJ. 1982, in press. Plant production of economically valuable biochemicals. In: Plant biology and biotechnology in the 80’s, Am. Assoc. Adv. Sci. USA, Symp. Jan. 3–8, Washington, DC., Westview Press Inc.

    Google Scholar 

  138. STANLEY RG. 1970. Biochemical approaches to forest genetics. Int. Rev. For. Res. 3: 253–309.

    CAS  Google Scholar 

  139. STENLID G. 1976. Effects of substituents in the A-ring on the physiological activity of flavones. Phytochemistry 15: 911–912.

    CAS  Google Scholar 

  140. STENLID G. 1976. Effects of flavonoids on the polar transport of auxins. Physiol. Plant. 38: 262–266.

    CAS  Google Scholar 

  141. STEWARD FC, CAPLIN SM. 1954. Investigations on growth and metabolism of plant cells. III. Evidence for the role of the coconut milk factor in development. Ann. Bot. ( Lond. ) 16: 491–504.

    Google Scholar 

  142. STEWARD FC, CAPLIN SM. 1954. The growth of carrot tissue explants and its relation to growth factor present in coconut milk. 1. The development of quantitative method and the factors affecting the growth of carrot tissue explants. Ann. Biol. 30: 385–394.

    Google Scholar 

  143. STEWARD FC, KRIKORIAN AD. 1979. Problems and potentialities of cultured plant cells in retrospect and prospect. In: Plant cell and tissue culture principles and applications. WR Sharp, PO Larsen, EF Paddock, V Raghavan, eds., Columbus, Ohio State University Press, pp. 221–262.

    Google Scholar 

  144. STEWARD FC, SHANTZ EM. 1956. The chemical induction of growth in plant tissue cultures. In: The chemistry and mode of action of plant growth substances. RL Wain, F Wightman, eds., New York, Academic Press, pp. 165–186.

    Google Scholar 

  145. STEWARD FC, ISRAEL HW, MOTT RL, WILSON HJ, KRIKORIAN AD. 1975. Observations on the growth and morphogenesis in cultured cells of carrot (Daucus carota L.). Proc. Roy. Soc. London B 273: 33–53.

    Google Scholar 

  146. STEWARD FC, ISRAEL HW, SALPETER MM 1974. The labeling of cultured cells of Acer with 14C-proline and its significance. J. Cell Biol. 60: 695–701.

    PubMed  CAS  Google Scholar 

  147. STUART R, STREET HE. 1971. Studies on the growth in culture of plant cells: Part 10. Further studies on the conditioning of culture media by suspension of Acer pseudoplatanus cells. J. Exp. Bot. 22: 96–106.

    Google Scholar 

  148. TAMM CO. 1981, in press. Nitrogen cycling in undisturbed and manipulated boreal forests. Proc. Roy. Soc. (Lond.).

    Google Scholar 

  149. THIMANN KV, KAUFMAN D. 1958. Cytoplasmic streaming in the cambium of white pine. In: The physiology of forest trees. New York, Ronald Press, pp. 479–492.

    Google Scholar 

  150. THOIRON B, THOIRON AA, LeGUIEL J, LUTTE U, THELLIER M. 1979. Solute uptake of Acer pseudoplatanus cell suspensions during recovery from gas shock. Physiol. Plant. 46: 352–356.

    CAS  Google Scholar 

  151. THOMAS MJ. 1970. Premieres recherches sur les besoins nutritifs des embryons isolés du Pinus silvestris L. Embryons différenciés. CR Acad. Sci. Paris 260: 2648–2651.

    Google Scholar 

  152. THOMAS MJ. 1970. Premiéres recherches sur les besoins nutritifs des embryons isolés du Pinus silvestris L. embryons indifférenciés et en voie de différenciation. CR Acad. Sci. Paris 270: 1120–1124.

    Google Scholar 

  153. TOLBERT NE. 1981. Metabolic pathways in peroxisomes and glyoxysomes. Ann. Rev. Biochem. 50: 133–157.

    PubMed  CAS  Google Scholar 

  154. TRAN THANH VAN KM. 1981. Control of morphogenesis in vitro cultures. Ann. Rev. Plant Physiol. 32: 291–311.

    Google Scholar 

  155. TRAN THANH VAN KM, TRINH H. 1978. Morphogenesis in thin cell layers: concept methodology and results. In: Frontiers of plant tissue culture 1978, International Assoc. of Plant Tissue Culture, Calgary, p. 37–48.

    Google Scholar 

  156. TULECKE W. 1959. Arginine-requiring strains of tissue obtained from Ginkgo pollen. Plant Physiol. 34: 19–24.

    Google Scholar 

  157. TULECKE W. 1965. Haploidy versus diploidy in the reproduction of cell type. Symp. Soc. Dev. Biol. 24: 217–241.

    Google Scholar 

  158. TULI V, BELLEY DR, WITTWER SH. 1964. N6-Benzyladenine: inhibitor of respiratory kinases. Science 146: 1477–1479.

    PubMed  CAS  Google Scholar 

  159. URQUHART J. 1981. Drug delivery systems in biotechnology: present status and future prospects. Proc. Int. Conf. RS First Inc., White Plains, New York pp. 41–47.

    Google Scholar 

  160. UY R, WOLD F. 1977. Postranslational covalent modification of proteins. Science 198: 890–896.

    PubMed  CAS  Google Scholar 

  161. VANDIVER VV JR., FITES RC. 1979. Thymidylate synthase activity from Chlamydomonas cells and cultured tissues of Nicotiana, Pinus and Daucus. Plant Physiol. 64: 668–670.

    PubMed  CAS  Google Scholar 

  162. VARNER JE, HO TH. 1976. Hormones. In: Plant biochemistry, J Bonner, JE Varner, eds., New York, Academic Press, pp. 713–770.

    Google Scholar 

  163. WEATHERHEAD MA, HENSHAW GG. 1979. The induction of embryoids in free pollen culture of potatoes. Z. Pflanzenphysiol. 94: 441–447.

    CAS  Google Scholar 

  164. WENT FW. 1974. Reflections and speculations. Ann. Rev. Plant Physiol. 25: 1–26.

    CAS  Google Scholar 

  165. WESTCOTT RJ, HENSHAW GG. 1976. Phenolic synthesis and phenylalanine-ammonia lyase activity in suspension cells of Acer pseudoplatanus. Planta (Berl.) 131: 67–73.

    CAS  Google Scholar 

  166. WETHERELL DF. 1978. In vitro embryoid formation in cells derived from somatic plant tissues. In: Propagation of higher plants through tissue culture. KW Hughes, R Heake, M Constantin, eds., Tech. Info. Centre U.S. Dept. Energy CONF 780–4111, pp. 102–124.

    Google Scholar 

  167. WILSON G. 1976. A simple and inexpensive design of chemostat enabling steady-state growth of Acer pseudoplatanus cells under phosphate-limiting conditions. Ann. Bot. 40: 919–932.

    Google Scholar 

  168. WILSON G. 1980. Continuous culture of plant cells using the chemostat principle. Adv. Biochem. Eng. 16: 1–25.

    Google Scholar 

  169. WINTON L, VERHAGEN S. 1977. Shoots from Douglas-fir cultures. Can. J. Bot. 55: 1246–1250.

    Google Scholar 

  170. WITLER MS, FERET PP. 1979. Inheritance of esterase and acid phosphatase isozymes in Virginia pine and the application of the isozyme technique to a seed orchard population. Silvae Genet. 28: 213–220.

    Google Scholar 

  171. WOCHOK ZS, ABO EL-NIL M. 1979. Comparison of in vitro developmental responses of wild and full-sib families of Douglas-fir. In: Plant cell and tissue culture principles and applications. WR Sharp, PO Larsen, EF Paddock, V Raghavan, eds., Columbus, Ohio State University Press.

    Google Scholar 

  172. WOLD F. 1981. In vivo chemical modification of proteins (post-translational modification). Ann. Rev. Biochem. 50: 783–814.

    PubMed  CAS  Google Scholar 

  173. YAMANAKA H, SHIOMI K, MIYAHARA M, KIKUCHI T. 1979. Formation of aldehydes between amino acids and hydrogen peroxide. Shokuhin Eiseigaku Zasshi 20: 270–275.

    CAS  Google Scholar 

  174. YOUNG M. 1973. Studies on the growth in culture of plant cells: nitrogen assimilation during nitrogen limited growth of Acer pseudoplatanus cells in chemostat culture. J. Exp. Bot. 24: 1172–1185.

    CAS  Google Scholar 

  175. SCHMIDT A. 1924 Pinus, Picea, Biota: effect of N sources on chlorophyll formation in excised embryos. Bot. Arch. 5: 260–282

    Google Scholar 

  176. RADFORTH NW. 1936 Ginkgo proembryos in vitro, calcium nitrate and yeast extract as nitrogen sources to sustain development. Trans. R. Can. Inst. Toronto. 21: 87–94

    Google Scholar 

  177. REINERT J. 1955 Picea glauca, role of copper containing enzymes and tyrosine in browning. Naturwissenschaften 42: 18–19

    CAS  Google Scholar 

  178. REINERT J & WHITE PR. 1956 Picea glauca: normal and tumor tissue tyrosine, phenylalanine, glutamine, glutamate, asparagine, aspartate and Vitamin B promote growth. Physiol. Plant. 9: 117–189

    Google Scholar 

  179. RISSER PG & WHITE PR. 1956 Picea glauca, tumors, glutamine as a suitable N source. Physiol. Plant. 17: 620–635

    Google Scholar 

  180. RESTOOL DF. 1957 Sequoia, cysteine and B- vitamin effects on bud formation and callus growth. Diss. Abstr. 17: 734–735

    Google Scholar 

  181. BARNES RL & NAYLOR AW. 1958 Pinus serotina, Pinus clausa: ornithine cycle in roots and callus. Bot. Gaz. 120: 63–66

    CAS  Google Scholar 

  182. BARNES RL & NAYLOR AW. 1959 Pinus clausa: glutamic acid metabolism. Bot. Gaz. 121: 63–69

    CAS  Google Scholar 

  183. BARNES RL & NAYLOR AW. 1959 Pinus serotina: root culture, glycine and arginine effect on growth, metabolism of glutamic acid and aspartic acid. For. Sci. 5: 158–168

    Google Scholar 

  184. BARNES RL & NAYLOR AW. 1959 Pinus serotina: root culture, nitrate urea and 7 amino acids tested as nitrogen sources. Nitrate, tf-aminobutyric acid and citrulline best. Physiol. Plant. 12: 82–89

    Google Scholar 

  185. REINERT J & SCHRAUDOLF H. 1959 Picea glauca in contrast to crown gall tumorous cells of spruce, can be grown only in presence of IAA. Planta 53: 18–24

    CAS  Google Scholar 

  186. TULECKE W. 1960 Ginko biloba: callus, arginine required for growth. Plant Physiol. 35: 19–24

    PubMed  CAS  Google Scholar 

  187. BARNES RL. 1961 Pinus elliotti,, Pinus palustris, gnus clausa: Adenine -8- C catabolism in embryos and callus cultures. Bot. Gaz. 123: 141–143

    CAS  Google Scholar 

  188. BARNES RL & NAYLOR AW. 1961 Pinus palustris, Pinus elliotti: excised embryos, metabolism of ornithine. For. Sci. 7: 130–135

    CAS  Google Scholar 

  189. DE TOROK D & THIMANN KV. 1961 Picea glauca: asparagine as nitrogen source for normal and tumor tissues in culture. Physiol. Plant. 9: 177–189

    Google Scholar 

  190. STEINHART CE, STANDIFER LC, SKOOG F. 1961 Picea abies: callus, nutrient requirements, arginine supplement. Am. J. Bot. 48: 465–472

    Google Scholar 

  191. BARNES RL. 1962 Pinus clausa, Pinus elliotti, Pinus serotina: Y-guanidinobutyracid production from C- arginine by tissues. Nature (Lond.) 193: 781

    CAS  Google Scholar 

  192. BARNES RL. 1962 Pinus Pinus serotina: C-glutamic acid metabolism in isolated roots. Plant Physiol. 37: 323–326

    PubMed  CAS  Google Scholar 

  193. BARNES RL & NAYLOR AW. 1962 Pinus palustris, Pinus elliotti, Pinus clausa: callus, ß -alanine production, aspartic acid and uracil metabolism. Plant Physiol. 37: 171–175

    PubMed  CAS  Google Scholar 

  194. HIGUCHI T. 1962 Pinus strobus callus Jjgnin synthesis using C-phenylalanine. Can. J. Biochem. Physiol. 40: 31–34

    PubMed  CAS  Google Scholar 

  195. TULECKE W, WEINSTEIN LH, RUTNER A, LAURENCOT HJ. 1962 Ginko biloba: callus, free amino acids of pollen tissue culture, ungerminated pollen, leaves and nucel-lus compared. Contrib. Boyce Thompson Inst. 21: 291–302

    Google Scholar 

  196. KLEIN RM 1963 Ginkgo an arginine and auxin requiring cells of pollen and effects of different wavelengths of light on growth. Physiol. Plant. 16: 73–81

    Google Scholar 

  197. STRAUS J & CAMPBELL WA. 1963 Cupressus callus, enzymes released into the medium under influence of CaCl0. Life Sci. 2: 50–62

    CAS  Google Scholar 

  198. BARNOUD F et al. 1964 C. R. Ggquoia callus, fate of C-phenylalanine. Acad. Sci. Paris 259: 4339–4341

    CAS  Google Scholar 

  199. CONSTABEL F & KIRSTEN G. 1965 Pinus jeffreyi: excised embryo culture, urea and reconstituted megagameto-phyte amino acids as nitrogen sources. Ber. Dtsch. Bot. Ges. 78: 38–43

    CAS  Google Scholar 

  200. ENGVILD KC. 1964 Picea glauca: callus, amino acids as nitrogen sources, adenine, /3-alanine emphasis on ‘tyrosine, glutamine and cystine. Physiol. Plant. 17: 866–874

    CAS  Google Scholar 

  201. RISSER PG & WHITE PR. 1964 Juniperus communis: changes in amino acid composition and pH in culture medium. Physiol. Plant. 17: 620–635

    Google Scholar 

  202. WHITE PR & NORTON S. 1964 Picea glauca: nitrogen sources other than glutamine. Plant Physiol. 39:suppl. 1 XIV

    Google Scholar 

  203. CONSTABEL F, KIRSTEN G & STEINER M. 1965 Juniperus communis: free amino acids of cells in culture, decreased arginine, citrulline and histi-dine in auxin-heterotropic cells. Ber. Dtsch. Bot. Ges. 78: 348–353

    Google Scholar 

  204. LAMPORT DTA. 1965 Ginkgo callus (n and 2n) amino acid composition of cell wall proteins. Adv. Bot. Res. 2: 151–218

    CAS  Google Scholar 

  205. NURSTOG K. 1965 Zamia integrifolia nitrogenous supplements used to induce apogamy in megagame tophy te. Am. J. Bot. 52: 993–999

    Google Scholar 

  206. TULECKE W & RUTNER A. 1965 In: White PR & Grove AR (eds) Proc. Int. Conf. Plant Tissue Culture, McCutchan Publ., pp. 103–116

    Google Scholar 

  207. HIGUCHI T & BARNOUD FJ. 1966 Ginko biloba: suspensions, amino acid composition of cells and medium. Jpn. Wood Res. Soc. 12: 36–43

    CAS  Google Scholar 

  208. WHITE PR & GILBEY SN. 1966 Sequoia and“Ginkgo callus, phenytjanine deaminase and fate C-phenylalanine. Physiol. Plant. 19: 177–186

    CAS  Google Scholar 

  209. DAVID A. 1967 Pinus pinaster: free amino acids in cultured cells in darkness. C.R. Acad. Sci. Paris 264: 919–921

    Google Scholar 

  210. DAVID A. 1967 Pinus pinaster: free amino acid changes during callus initiation. C.R. Acad. Sci. Paris 265: 1602–1605

    CAS  Google Scholar 

  211. TULECKE W. 1967 Ginkgo and Taxus: S-aminolevulinic acid and synthesis. Am. J. Bot. 54: 797

    Google Scholar 

  212. BROWN CL & LAWRENCE RH. 1968 Ginkgo biloba: free amino acid composition of callus and explant source. For. Sci. 14: 62–64

    Google Scholar 

  213. TULECKE W. 1967 Pinus palustris: callus, nitrogen sources of culture medium, asparagine. Phytomor-phology 17: 381–386

    Google Scholar 

  214. ROGOZINSKA JH. 1970 Pinus sylvestris: callus, nutritional requirements (arginine, tryptophan, glutamine and tyrosine). Acta Soc. Bot. Pol. 39: 151–160

    CAS  Google Scholar 

  215. DAVID A. 1971 C.R. Species of conifers: callus, medium composition (Abies, Larix, Picea, Pinus, Pseudotsuga, Thuja, etc.). Acad. C.n. J. Bot. 47: 547–549

    Google Scholar 

  216. HARVEY AE & GRASHAM JL. 1969 Pinus pinaster: medium composition for callus initiation. Sci. Paris 273: 2236–2238

    Google Scholar 

  217. DURZAN D & CHALUPA V. 1972 Pinus banksiana: changes in amino acids during callus and seedling growth. Proc. Can. Soc. Plant Physiol. 12: 22

    Google Scholar 

  218. KONAR RN. 1972 Pinus gerardiana: glutamine and arginine promote growth of cultures, 21 amino acids tested as nitrogen sources. Final Report USDA Project PL480

    Google Scholar 

  219. CHALUPA V & DURZAN DJ. 1973 Picea glauca, Picea mariana, Picea abies, Abies balsamea, Pseudotsuga menziesii: amino acid composition in buds similar to buds under field conditions and controllable by auxins and cytokinins. Can. J. For. Res. 3: 196–208

    CAS  Google Scholar 

  220. DURZAN DJ, CHAFE SC & LOPUSHANSKI SM. 1973 Picea glauca: suspensions, effect of environmental changes on phenylalanine levels and organized growth. Planta 113: 241–249

    CAS  Google Scholar 

  221. GREENWOOD MS, HARLOW AC & HODGSON HD. 1974 Pinus lambertiana: excised embryo segments, formation of NAA-aspartic acid conjugates. Physiol. Plant. 32: 198–202

    Google Scholar 

  222. KONAR RN. 1974 Pinus gerardiana: callus, medium composition, glutamine in medium. Physiol. Plant. 32: 193–197

    CAS  Google Scholar 

  223. MOMOT TS et al. 1974 Picea abies: callus, amino acid biosynthesis from sucrose. Izv. Akad. Nauk. SSSR. Ser. Biol. 5: 666–671

    Google Scholar 

  224. CAMPBELL RA & DURZAN DJ. 1975 Picea glauca: callus, importance and use of auxin/cytokinin ratios to form new meristems. Can. J. Bot. 53: 1652–1657

    CAS  Google Scholar 

  225. MOMOT TS. 1975 Picea abies: root culture, amino acid synthesis and metabolism. Izv. Vuz. Lesn. Zh. USSR. 18: 36–38

    CAS  Google Scholar 

  226. DURZAN DJ & BOURGON G. 1976 Pinus banksiana: callus and suspensions, effect of L-glutamine and its analogs on subcellular activities. Can. J. Bot. 54: 507–517

    CAS  Google Scholar 

  227. DURZAN DJ & CHALUPA V. 1976 Pinus banksiana: callus, changes in the amino acid composition during growth compared with seedlings. Can. J. Bot. 54: 468–483

    CAS  Google Scholar 

  228. DURZAN DJ & CHALUPA V. 1976 Pinus banksiana: callus, changes in arginine and monosubstituted guanidines during growth compared with seedlings. Can. J. Bot. 54: 453–495

    Google Scholar 

  229. DURZAN DJ & CHALUPA V. 1976 Pinus banksiana: suspensions, effect of light and darkness on free amino acid composition. Can. J. Bot. 54: 496–506

    CAS  Google Scholar 

  230. DURZAN DJ, CHALUPA V & MIA AJ. 1976 Pinus banksiana: medium composition, relationship of callus formation and biochemical state of explant source. Can. J. Bot. 54: 437–445

    Google Scholar 

  231. BONGA JM. 1977 Abies balsamea: effect of nitrogen compounds. In Vitro 13: 41–48

    Google Scholar 

  232. CHENG T-Y. 1977 Pseudotsuga menziesii: callus, effect of growth regulators on morphogenesis. Plant Sei. Lett. 9: 179–187

    CAS  Google Scholar 

  233. CHENG T-Y. 1979 Pseudotsuga menziesii: callus, gene products affecting protein synthesis and morphogenesis. In: WR SHARP, PO LARSEN, EF PADDOCK & V RAGHAVAN (eds.) Plant cell and tissue culture, Ohio State Univ. Press, pp. 493–508

    Google Scholar 

  234. HASEGAWA PM, YASUDA T & CHENG T-Y. 1979 Pseudotsuga menziesii: callus and cotyledon culture, proteins associated with cultures capable of adventitious bud formation. Physiol. Plant. 46: 211–217

    Google Scholar 

  235. JOHNSON MA & CARLSON JA. 1979 Pseudotsuga menziesii: callus, indoleacetic acid oxidase. Biochem. Physiol. Pflanz.(BPP)174: 115–127

    Google Scholar 

  236. KIRBY EG & CHENG T-Y. 1979 Pseudotsuga menziesii: protoplasts, effect of glutamine on cell division. Plant Sei. Lett. 14: 145–154

    CAS  Google Scholar 

  237. MUREN RC, CHING TM & CHING KK. 1979 Pseudotsuga menziesii: In vitro pollen germination, metabolic study. Physiol. Plant. 46: 287–292

    Google Scholar 

  238. RAMAWAT KG & ARYA HC. 1979 Ephedra gerardiana, E. foliata: callus, effect of nitrogen sources on growth and protein synthesis. Phytomorphölogy 29: 16–25

    CAS  Google Scholar 

  239. RIOV J, COOPER R & GOTTLIEB HE. 1979 Pinus pinea, Pinus halepensis: formation of aspartic acid conjugates of NAA and IAA by tissue segments. Physiol. Plant. 46: 133–138

    Google Scholar 

  240. VANDIVER W & FITES RC. 1979 Pinus taeda: callus, thymidylate synthase. Plant Physiol. 64: 668–670

    PubMed  CAS  Google Scholar 

  241. DUHOUX E & THI AT. 1980 Juniperus communis: pollen culture, influence of amino acids on growth. Physiol. Plant. 50: 6–10

    CAS  Google Scholar 

  242. KIRBY EG & FRANK PS. 1980 Pseudotsuga menziesii: suspensions glutamic acid, glutamine and allantoin as nitrogen sources. Plant Physiol. 65: supplement 37

    Google Scholar 

  243. LAU YL, SHELD HW & COWLES JR. 1980 Pinus elliottii: callus, phenylalanine ammonia-lyase activity. Physiol. Plant. 49: 299–303

    Google Scholar 

  244. JACQUIOT C. 1951 Ulmus capestris: effect of inositol and adenine on bud formation. C.R. Acad. Sci. Paris 233: 815–817

    PubMed  CAS  Google Scholar 

  245. LAMPORT DTA. 1963 Acer pseudoplatanus: suspensions, hydroxylation of proline in cell wall glycoprotein. J. Biol. Chem. 238: 1438–1440

    PubMed  CAS  Google Scholar 

  246. LAMPORT DTA. 1965 Acer pseudoplatanus: suspensions, review of cell wall proteins with emphasis on biochemistry of hydroxyproline. Adv. Bot. Res. 2: 151–218

    CAS  Google Scholar 

  247. GIVAN CU & COLLIN HA. 1967 Acer pseudoplatanus: suspensions, changes in respiration rate and nitrogen content. J. Exp. Bot. 18: 321–331

    Google Scholar 

  248. HOLLEMAN J. 1967 Acer pseudoplatanus: suspensions, incorporation of proline into cell wall glycoprotein. Proc. Natl. Acad. Sci. 57: 50–54

    PubMed  CAS  Google Scholar 

  249. LAMPORT DTA. 1967 Acer pseudoplatanus: suspensions, nature of hydroxyproline-rich glycoprotein of cell wall. Nature (Lond.) 216: 1322–1324

    CAS  Google Scholar 

  250. BROWN EG & SHORT KC. 1969 Acer pseudoplatanus: nucleotide pattern in suspension cultures. Phytochemistry 8: 1365–1372

    CAS  Google Scholar 

  251. LAMPORT DTA. 1969 Acer pseudoplatanus: suspensions, nature of cross-links between hydroxyproline-rich glycoprotein and polysaccharides in cell wall. Biochemistry 8: 1155–1163

    PubMed  CAS  Google Scholar 

  252. SHORT KC, BROWN EG & STREET HE. 1969 Acer pseudoplatanus: suspension, nucleic acid metabolism. J. Exp. Bot. 20: 579–590

    Google Scholar 

  253. DASHEK WV. 1970 Acer pseudoplatanus: suspensions, hydroxypro-line rich glycoprotein in cell walls. Plant Physiol. 46: 831–838

    PubMed  CAS  Google Scholar 

  254. DOREE M, LEGUAY J & TERRINE C. 1970 Acer pseudoplatanus: suspensions, adenine metabolism. C.R. Acad. Sci. 270: 2292–2295

    Google Scholar 

  255. LAMPORT DTA. 1970 Acer pseudoplatanus: suspensions, role of proline, hydroxyproline in cell wall. Ann. Rev. Plant Physiol. 21: 235–270

    CAS  Google Scholar 

  256. SIMPKINS I, COLLIN HA & STREET HE. 1970 Acer pseudoplatanus: suspensions, growth response to nitrogen. Physiol. Plant. 23: 385–396

    Google Scholar 

  257. SIMPKINS I & STREET HE. 1970 Acer pseudoplatanus: suspensions, effect of kinetin on nitrogen metabolism. J. Exp. Bot. 21: 170–185

    CAS  Google Scholar 

  258. HEATH MF & NORTHCOTE DH. 1971 Acer pseudoplatanus: callus and suspensions, glycoprotein of cell wall. Biochem. J. 125: 953–961

    PubMed  CAS  Google Scholar 

  259. MATSUMOTO T et al. 1971 Populus (6 species): suspensions, nitrate better nitrogen source than ammonium. Agric. Biol. Chem. 35: 543–551

    CAS  Google Scholar 

  260. STUART R & STREET HE. 1971 Acer pseudoplatanus: suspensions composition of conditioned media. J. Exp. Bot. 22: 96–106

    CAS  Google Scholar 

  261. DOREE M, LEGUAY JJ & TERRINE C. 1972 Acer pseudoplatanus: suspensions, uptake of adenine and leucine related to C02 efflux. Physiol. Veg. 10: 115–131

    Google Scholar 

  262. NYGAARD P. 1972 Acer pseudoplatanus: nucleotide pools. Physiol. Plant. 26: 29–33

    CAS  Google Scholar 

  263. COX BJ, TURNOCK G & STREET HE. 1973 Acer pseudoplatanus: suspensions, uridine metabolism. J. Exp. Bot. 24: 159–174

    Google Scholar 

  264. DOREE M. 1973 Acer pseudoplatanus: suspensions, uptake of adenine and substituted adenine compounds. Physiol. Veg. 11: 267–290

    CAS  Google Scholar 

  265. DOREE M. 1973 Acer pseudoplatanus: suspensions, adenine metabolism. Phytochemistry 12: 2101–2108

    CAS  Google Scholar 

  266. KING PJ, MANSFIELD KJ & STREET HE. 1973 Acer pseudoplatanus: suspensions, effect of nitrate on growth rate on synchronous cultures in chemostats. Can. J. Bot. 51: 1807–1823

    Google Scholar 

  267. MATSUMOTO T et al. 1973 Populus: suspensions, factors affecting antho-cyanin production. Agric. Biol. Chem. 37: 561–567

    CAS  Google Scholar 

  268. OZAWA T, HAGA K & TAKINO Y. 1973 Castanea: accumulation of asparagine in galls. Nippon Nogei Kagaku Kaishi 47: 627–631

    CAS  Google Scholar 

  269. RAYMOND P et al. 1973 Acer pseudoplatanus: cAMP in suspension cells. Biochem. Biophys. Res. Commun. 53: 11–15

    Google Scholar 

  270. YOUNG MJ. 1973 Acer pseudoplatanus: suspension, nitrogen assimilation during nitrogen limited growth. Expt. Bot. 24: 1172–1185

    CAS  Google Scholar 

  271. BRIGHT SW & NORTHCOTE DH. 1974 Acer pseudoplatanus: metabolism of proline by cultured cells. J. Cell Sci. 16: 445–463

    CAS  Google Scholar 

  272. KING PJ et al. 1974 Acer pseudoplatanus: protoplast suspensions, bromodeoxyuridine mutants. Planta 117: 109–122

    CAS  Google Scholar 

  273. STEWARD FC, ISRAEL HW & SALPETER MM. 1974 Acer pseudoplatanus: suspensions, thymidine kinase and aspartate transcarbamoylase activity in synchronous cultures, thymidine uptake. J. Cell Biol. 60: 695–791

    PubMed  CAS  Google Scholar 

  274. HAHLBROCK K. 1975 Acer pseudoplatanus: suspensions, nitrate uptake, growth, and conductivity changes in the medium. Planta 124: 311–318

    CAS  Google Scholar 

  275. GATHERCOLE RW & STREET HE. 1976 Acer pseudoplatanus: suspensions, isolation of cells having high phenyl-alanine-ammonia lyase activity. New Phytol. 77: 29–41

    CAS  Google Scholar 

  276. JESSUP W & FOWLER MW. 1976 Acer pseudoplatanus: suspensions, use of nitrate or glutamate as sole medium nitrogen sources, effect on growth rate, cell number protein. Planta 132: 119–123

    CAS  Google Scholar 

  277. JESSUP W & FOWLER MW. Acer pseudoplatanus: suspensions, effect of nitrogen source on respiratory activity and carbohydrate utilization. Planta 132: 125–129

    Google Scholar 

  278. KING PJ. 1976 Acer pseudoplatanus: suspensions, chemostat cultures with nitrate of glucose as limiting nutrient cell composition. J. Exp. Bot. 27: 1053–1972

    CAS  Google Scholar 

  279. KING PJ. 1976 Acer pseudoplatanus: suspensions, urea as sole nitrogen source. Plant Sei. Lett. 6: 409–418

    CAS  Google Scholar 

  280. WESTCOTT RJ & HENSHAW GG. 1976 Acer pseudoplatanus: suspensions, phenyla-lanine-ammonia-lyase activity of cells. Planta 131: 67–73.

    CAS  Google Scholar 

  281. WILSON G. 1976 Acer pseudoplatanus: suspensions, chemostat cultures with glucose or nitrate as limiting nutrient. Ann. Bot. (Lond.) 40: 919–932

    Google Scholar 

  282. GONSALVES AN et al.1977 Eucalyptus grandis: callus, nitrogen sources related to growth. In: Sharp, Larsen, Paddock & Raghaven (eds.) Plant cell and tissue culture principles and applications, Ohio State Univ. Press, Columbus

    Google Scholar 

  283. JESSUP W & FOWLER MW. 1977 Acer pseudoplatanus: suspensions, relationship of nitrogen source to carbohydrate metabolism, nitrate or glutamate as nitrogen sources. Planta 137: 71–76

    CAS  Google Scholar 

  284. KING PJ. 1977 Acer pseudoplatanus: suspensions, effect of nitrate on cell division and protein synthesis in chemostat cultures. J. Exp. Bot. 28: 142–155

    CAS  Google Scholar 

  285. POPE DG. 1977 Acer pseudoplatanus: suspensions, relationship between hydroxyproline-containing proteins of cell wall and medium. Plant Physiol. 59: 894–900

    PubMed  CAS  Google Scholar 

  286. THOIRON B et al. 1979 Acer pseudoplatanus: suspensions, uptake of leucine, methionine and adenine affected by gas shock. Physiol. Plant 46: 352–356

    CAS  Google Scholar 

  287. BARR J & NORDIN P. 1980 Acer pseudoplatanus: biosynthesis of glycoproteins by membranes. Biochem. J. 192: 569–577

    PubMed  CAS  Google Scholar 

  288. CURE WW & MOTT RL. 1980 Acer pseudoplatanus: suspensions, effect of urea and nitrate on growth rate. Plant Physiol. 65: supplement 90

    Google Scholar 

  289. EVERETT NP 1981 Acer pseudoplatanus: sensitivities of 2,4-D independent cell cultures to nitrogenous compounds. J. Exp. Bot. 32: 171–182

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Durzan, D.J. (1982). Nitrogen Metabolism and Vegetative Propagation of Forest Trees. In: Bonga, J.M., Durzan, D.J. (eds) Tissue Culture in Forestry. Forestry Sciences, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3538-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-3538-4_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-8272-5

  • Online ISBN: 978-94-017-3538-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics