Skip to main content

Modeling the Uptake and Disposition of Hydrophobic Organic Chemicals in Fish Using a Physiologically Based Approach

  • Conference paper
The Practical Applicability of Toxicokinetic Models in the Risk Assessment of Chemicals

Abstract

The development of physiologically based toxicokinetic (PBTK) models for hydrophobic chemicals in fish requires: 1) an understanding of chemical efflux at fish gills; 2) knowledge of the factors that limit chemical exchange between blood and tissues; and, 3) a mechanistic description of chemical uptake from the diet. Recently obtained data suggest that existing models of chemical flux at, fish gills can be used to predict branchial elimination of hydrophobic compounds. Empirical relationships derived from these data are sufficient to estimate equilibrium blood:water partitioning from chemical log KOW. Empirical relationships that predict tissue:water partitioning, and by extension tissue:blood partitioning, are not as well established. Factors that limit dietary uptake of hydrophobic compounds by fish are evaluated in PBTK models for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and 2,2′,5,5′tetrachlorobiphenyl (TCB). A diffusion and/or desorption limitation appears to operate along the entire length of the fish gastrointestinal tract. This observation is consistent with earlier work which suggested that dietary assimilation efficiency declines at very high log KOW values, although more research is needed using realistic diets. The utility of this information for interpreting chemical residues in field-collected animals is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbas R, and Hayton WL. 1997. A physiologically based pharmacokinetic and pharmacodynamic model for paraoxon in rainbow trout. Toxicol. Appl. Pharmacol. 145: 192–201.

    Article  PubMed  CAS  Google Scholar 

  • Andersen ME, Mills JJ, Gargas ML, Kedderis L, Birnbaum LS, Neubert D, and Greenlee WF. 1993. Modeling receptor-mediated processes with dioxin: implications for pharmacokinetics and risk assessment. Risk Anal. 13: 25–36.

    Article  PubMed  CAS  Google Scholar 

  • Barber MC, Suarez LS, and Lassiter RR. 1991. Modelling bioaccumulation of organic pollutants in fish with an application to PCBs in Lake Ontario Salmonids. Can. J. Fish. Aquat. Sci. 48: 318–337.

    Article  CAS  Google Scholar 

  • Bergman A, Brandt I, Darnerud PO, and Wachtmeister CA. 1982. Metabolism of 2,2’,5,5’tetrachlorobiphenyl: formation of mono-and bis-methyl sulphone metabolites with a selective affinity for the lung and kidney tissues in mice. Xenobiotica 12: 1–7.

    Article  PubMed  CAS  Google Scholar 

  • Bergman A, Klasson-Wehler E, and Kuroki H. 1994. Selective retention of hydroxylated PCB metabolites in blood. Environ. Health Perspec. 102: 464–469.

    Article  CAS  Google Scholar 

  • Bertelsen SL, Hoffman AD, Gallinat CA, Elonen CM, and Nichols JW. 1998. Evaluation of log Kow and tissue lipid content as predictors of chemical partitioning to fish tissues. Environ. Toxicol. Chem. 17: 1447–1455.

    CAS  Google Scholar 

  • Bruggeman WA, Opperhuizen A, Wijbenga A, and Hutzinger O. 1984. Bioaccumulation of super-lipophilic chemicals in fish. Toxicol. Environ. Chem. 7: 173–189.

    Article  CAS  Google Scholar 

  • Bungay PM, Dedrick RL, Guarino AM. 1976. Pharmacokinetic modeling of the dogfish shark ( Squalus acanthias ): Distribution and urinary and biliary excretion of phenol red and its glucuronide. J. Pharmacokin. Biopharm. 4: 377–388.

    Google Scholar 

  • Bungay PM, Dedrick RL, Matthews HB. 1980. Enteric transport of chlordecone (Kepone®) in the rat. J. Pharmacokinet. Biopharm. 9: 309–341.

    Google Scholar 

  • Burreau S, Axelman J, Broman D, and Jakobsson E. 1997. Dietary uptake in pike (Esox lucius) of some polychlorinated biphenyls, polychlorinated naphthalenes and polybrominated diphenyl ethers administered in natural diet. Environ. Toxicol. Chem. 16: 2508–2513.

    CAS  Google Scholar 

  • Connolly JP, and Pedersen CJ. 1988. A thermodynamic-based evaluation of organic chemical accumulation in aquatic organisms. Environ. Sci. Technol. 22: 99–103.

    Article  PubMed  CAS  Google Scholar 

  • DeJongh J, Verhaar HJM, and Hermens JLM. 1997. A quantitative property-property relationship (QPPR) approach to estimate in vitro tissue-blood partition coefficients of organic chemicals in rats and humans. Arch. Toxicol. 72: 17–25.

    Article  PubMed  CAS  Google Scholar 

  • Erickson RJ, and McKim JM. 1990a. A simple flow-limited model for exchange of organic chemicals at fish gills. Environ. Toxicol. Chem. 9: 159–165.

    Article  CAS  Google Scholar 

  • Erickson RI, and McKim JM. 1990b. A model for exchange of organic chemicals at fish gills: flow and diffusion limitations. Aquat. Toxicol. 18: 175–198.

    Article  CAS  Google Scholar 

  • Fitzsimmons PN, Fernandez JD, Hoffman AD, Butterworth BC, and Nichols JW. 2001. Branchial elimination of hydrophobic organic compounds by rainbow trout (Oncorhynchus mykiss). Aquat. Toxicol. (in press).

    Google Scholar 

  • Gargas ML, Burgess RJ, Voisard DE, Cason GH, and Andersen ME. 1989. Partition coefficients of low molecular weight volatile chemicals in various liquids and tissues. Toxicol. Appl. Pharmacol. 98: 87–99.

    Article  PubMed  CAS  Google Scholar 

  • Gobas FAPC, Muir DCG, Mackay D. 1988. Dynamics of dietary bioaccumulation and faecal elimination of hydrophobic organic chemicals in fish. Chemosphere 17: 943–962.

    Article  CAS  Google Scholar 

  • Gobas FAPC, Zhang X, Wells R. 1993. Gastrointestinal magnification: The mechanism of biomagnitication and food chain accumulation of organic chemicals. Environ. Sci. Technol. 27: 2855–2863.

    Article  CAS  Google Scholar 

  • Gobas FAPC, Wilcockson JB, Russell RW, and Haffner GD. 1999. Mechanism of biomagnification in fish under laboratory and field conditions. Environ. Sci. Technol. 33: 133–141.

    Article  CAS  Google Scholar 

  • Hoffman AD, Bertelsen SL, and Gargas ML. 1992. An in vitro gas equilibration method for determination of chemical partition coefficients in fish. Comp. Biochem. Physiol. 101: 47–51.

    Article  CAS  Google Scholar 

  • Jepson GW, Hoover DK, Black RK, McCafferty JD, Mahle DA, and Gearhart JM. 1994. A partition coefficient determination method for nonvolatile chemicals in biological tissues. Fund. Appl. Toxicol. 22: 519–524.

    Article  CAS  Google Scholar 

  • Johnson RD, Tietge JE, Jensen KM, Fernandez JD, Lothenbach DL, Holcombe GW, Cook PM, Drummond R, Christ S, Lattier D, Gordon D. 1998. Toxicity of 2,3,7,8-TCDD to Fl generation brook trout (Salvelinus fontinalis) exposed via parental generation. Environ. Toxicol. Chem. 17: 2408–2421.

    CAS  Google Scholar 

  • Kedderis LB, Mills JJ, Andersen ME, and Birnbaum LS. 1993. A physiologically based pharmacokinetic model for 2,3,7,8-tetrabromodibenzo-p-dioxin (TBDD) in the rat: tissue distribution and CYP1A induction. Toxicol Appl. Pharmacol. 121: 87–98.

    Article  PubMed  CAS  Google Scholar 

  • Law FCP, Abenini S, and Kennedy CJ. 1991. A biologically based toxicokinetic model for pyrene in rainbow trout. Toxicol. Appl. Pharmacol. 110: 390–402.

    Article  PubMed  CAS  Google Scholar 

  • Mackay D. 1982. Correlation of bioconcentration factors. Environ. Sci. Technol. 16:274–278. McCarthy JF, and Jimenez BD. 1985. Interactions between polycyclic aromatic hydrocarbons and dissolved humic material: binding and dissociation. Environ. Sci. Technol. 19: 1072–1076.

    Google Scholar 

  • McKim JM, and Nichols JW. 1994. The use of physiologically-based models in a mechanistic approach to aquatic toxicology. In Malins DC, Ostrander GK, eds, Aquatic Toxicology: Molecular, Biochemical, and Cellular Perspectives. Lewis, Boca Raton, FL, USA, pp 469–519.

    Google Scholar 

  • Miller MA. 1993. Maternal transfer of organochlorine compounds in salmonines to their eggs. Can. J. Fish. Aquat. Sci. 50: 1405–1413.

    Article  CAS  Google Scholar 

  • Murphy JE, Janszen DB, and Gargas ML. 1995. An in vitro method for determination of tissue partition coefficients of non-volatile chemicals such as 2,3,7,8- tetrachlorodibenzo-pdioxin and estradiol. J. Appl. Toxicol. 15: 147–152.

    Article  PubMed  CAS  Google Scholar 

  • Nichols JW. 1999. Recent advances in the development and use of physiologically based toxicokinetic models for fish. In: Xenobiotics in Fish. D.J. Smith, W. Gingerich, and M.Beconi-Baker, Eds., Plenum, New York, pp. 87–104.

    Chapter  Google Scholar 

  • Nichols JW, McKim JM, Andersen ME, Gargas ML, Clewell HJ III, Erickson RJ. 1990. A physiologically based toxicokinetic model for the uptake and disposition of waterborne organic chemicals in fish. Toxicol Appl Pharm 106: 433–447.

    Article  CAS  Google Scholar 

  • Nichols JW, McKim JM, Lien GJ, Hoffman AD, and Bertelsen SH. 1991. Physiologically based toxicokinetic modeling of three chlorinated ethanes in rainbow trout (Oncorhynchus mykiss). Toxicol. Appl. Pharm. 110: 374–389.

    Article  CAS  Google Scholar 

  • Nichols JW, McKim JM, Lien GJ, Hoffman AD, Bertelsen SL, and Elonen CM. 1996. A physiologically-based toxicokinetic model for dermal absorption of organic chemicals by fish. Fund. Appl. Toxicol. 31: 229–242.

    Article  CAS  Google Scholar 

  • Nichols JW, Jensen KM, Tietge JE, and Johnson RD. 1998. A physiologically based toxicokinetic model for maternal transfer of 2,3,7,8-tetrachlorodibenzo-p-dioxin in brook trout (Salvelinus fontinalis). Environ. Toxicol. Chem. 17: 2422–2434.

    CAS  Google Scholar 

  • Nichols JW, Fitzsimmons PN, Whiteman FW, Kuehl DW, Butterworth BC, and Jenson CT. 2001. Dietary uptake kinetics of 2,2’,5,5’-tetrachlorobiphenyl in rainbow trout. Drug Me-tab. Disposit. (in press).

    Google Scholar 

  • Poland A, Teitelbaum P, and Glover E. 1989. [125]2-Iodo-3,7,8-trichlorodibenzo-p-dioxin-binding species in mouse liver induced by agonists for the Ah receptor: Characterization and identification. Mol. Pharmacol. 36: 113–120.

    PubMed  CAS  Google Scholar 

  • Poulin P, Krishnan K. 1995. An algorithm for predicting tissue:blood partition coefficients of organic chemicals from n-octanol:water partition coefficient data. J. Toxicol. Environ. Health 46: 117–129.

    CAS  Google Scholar 

  • Poulin P, Krishnan K. 1996. A tissue composition-based algorithm for predicting tissue:air partition coefficients of organic chemicals. Toxicol. Appl. Pharmacol. 136: 126–130.

    Article  PubMed  CAS  Google Scholar 

  • Russell RW, Gobas FAPC, and Haffner GD. 1999. Role of chemical and ecological factors in trophic transfer of organic chemicals in aquatic food webs. Environ. Toxicol. Chem. 18: 1250–1257.

    Google Scholar 

  • Tietge JE, Johnson RD, Jensen KM, Cook PM, Elonen GE, Fernandez JD, Holcombe GW, Lothenbach DL, Nichols JW. 1998. Reproductive toxicity and disposition of 2,3,7,8tetrachlorodibenzo-p-dioxin in adult brook trout (Salvelinus fontinalis) following a dietary exposure. Environ. Toxicol. Chem. 17: 2395–2407.

    CAS  Google Scholar 

  • Zaharko DS, Dedrick RL, and Oliverio VT. 1972. Prediction of the distribution of methotrexate in the sting rays Dasyatidae sabina and sayi by use of a model developed in mice. Comp. Biochem. Physiol., 42: 183–194.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Nichols, J.W. (2002). Modeling the Uptake and Disposition of Hydrophobic Organic Chemicals in Fish Using a Physiologically Based Approach. In: Krüse, J., Verhaar, H.J.M., de Raat, W.K. (eds) The Practical Applicability of Toxicokinetic Models in the Risk Assessment of Chemicals. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3437-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-3437-0_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6147-8

  • Online ISBN: 978-94-017-3437-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics