Skip to main content

Characterizing the Ancestors: Paedomorphosis and Termite Evolution

  • Chapter
Termites: Evolution, Sociality, Symbioses, Ecology

Abstract

The relationships among the three main lineages in the Dictyoptera are uncertain. Here we suggest that the tempo and mode of their evolution confound efforts to determine the phylogenetic relationships among termites, mantids, and cockroaches. First, fossil and molecular data each suggest that these taxa originated within a relatively short span of time during the Mesozoic. If so, the rapid divergence of lineages during early stages of dictyopteran evolution may have obscured our ability to resolve the pattern of branching events. Second, other evidence suggests that paedomorphosis played a central role in shaping the evolutionary trajectory of termites. Paedomorphic evolution is notorious for obscuring phylogenetic patterns, because (a) reductions and losses result in few morphological characters on which to base cladistic analysis, and (b) parallel loss of characters by developmental truncation obscures polarity, making it difficult to distinguish between paedomorphic and plesiomorphic traits. Moreover, with cockroaches as the reference group, heterochronic changes are evident in termite behavior and physiology, providing insight into the origin of isopteran traits such as a reliance on gut mutualists and elaborate polyphenism. Recognition of the connection between ontogeny and phylogeny in the Dictyoptera is essential to resolving some of the long standing issues regarding the phylogenetic origin and subsequent evolution of the included taxa.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. . Alberch, P. (1982) The generative and regulatory roles of development in evolution. InEnvironmental Adaptation and Evolution ( D. Mossakowski and G. Roth, Eds.), pp. 19–36, Gustav Fischer, Stuttgart.

    Google Scholar 

  2. Alberch, P. (1985) Problems with the interpretation of developmental sequences.Systematic Zoology 34, 4658.

    Google Scholar 

  3. . Alberch, P.et al. (1979) Size and shape in ontogeny and phylogeny.Paleobiology 5, 296 - 317.

    Google Scholar 

  4. . Anderson, J.M. and Bignell, D.E. (1980) Bacteria in the food, gut contents and feces of the litter-feeding millipede,Glomeris marginata. Soil Biology and Biochemistry 12, 251 - 254.

    Google Scholar 

  5. . Bandi, C.et al. (1994) Flavobacteria as intracellular symbionts in cockroaches.Proceedings of the Royal Society of London,Series B 257, 43 - 48.

    CAS  Google Scholar 

  6. . Bandi, C.et al. (1995) The establishment of intracellular symbiosis in an ancestor of cockroaches and termites.Proceedings of the Royal Society of London,Series B 259, 293 - 299.

    CAS  Google Scholar 

  7. . Bignell, D.E. (1977) An experimental study of cellulose and hemicellulose degradation in the alimentary canal of the American cockroach.Canadian Journal of Zoology 55, 579 - 589.

    CAS  Google Scholar 

  8. . Bignell, D.E. (1980) An ultrastructural study and stereological analysis of the colon wall in the cockroach,Periplaneta americana. Tissue &Cell 12, 153 - 164.

    CAS  Google Scholar 

  9. . Bignell, D.E. (1984) The arthropod gut as an environment for microorganisms. InInvertebrate-Microbial Interactions (J.M. Anderson, A.D.M. Rayner, and D.W.H. Walton, Eds.), pp. 205–227, Cambridge University Press, Cambridge.

    Google Scholar 

  10. . Bignell, D.E. (1984) Direct potentiometric determination of redox potentials of the gut contents in the termites,Zootermopsis nevadensis andCubitermes severus, and 3 other arthropods.Journal of Insect Physiology 30, 169 - 174.

    Google Scholar 

  11. 11.Bignell, D.E. (1989) Relative assimilations of 14C-labelled microbial tissues and 14C-labeled plant fibre ingested with leaf litter by the millipedeGlomeris marginata under experimental conditions.Soil Biology and Biochemistry,21, 819–828.

    Google Scholar 

  12. 12.Bodenstein, D. (1953) Studies on the humoral mechanisms in growth and metamorphosis of the cockroachPeriplaneta americana I. Transplantations of integumental structures and experimental parabioses.The Journal of Experimental Biology 123, 189 - 232.

    Google Scholar 

  13. . Bordereau, C. (1985) The role of pheromones in caste differentiation. InCaste Differentiation in Social Insects ( J.A.L. Watson, B.M. Okot-Kotber and C. Noirot, Eds.), pp. 221–226, Pergamon Press, Oxford.

    Google Scholar 

  14. . Boudreaux, H.C. (1979)Arthropod Phylogeny with Special Reference to the Insects. John Wiley & Sons, New York.

    Google Scholar 

  15. 15.Bracke, J.W., Cruden, D.L. and Markovetz, A.J. (1979) Intestinal microbial flora of the American cockroach,Periplaneta americana L. Applied and Environmental Microbiology 38, 945 - 955.

    CAS  Google Scholar 

  16. 16.Bracke, J.W., Cruden, D.L. and Markowetz, A.J. (1978) Effect of metronidazole on the intestinal microflora of the American cockroach,Periplaneta americana L. Antimicrobial Agents and Chemotherapy 13, 115 - 120.

    Google Scholar 

  17. . Bracke, J.W. and Markovetz, A.J. (1980) Transport of bacterial end products from the colon ofPeriplaneta americana. Journal of Insect Physiology 26, 85 - 89.

    CAS  Google Scholar 

  18. . Bret, B.L. and Ross, M.H. (1985) A laboratory study of German cockroach dispersal (Dictyoptera: Blattellidae).Proceedings of the Entomological Society of Washington 87, 448 - 455.

    Google Scholar 

  19. . Bronstein, J.L. (1994) Conditional outcomes in mutualistic interactions.Trends in Ecology and Evolution 9, 214 - 217.

    CAS  PubMed  Google Scholar 

  20. . Brooks, D.R. (1996) Explanations of homoplasy at different levels of biological organization. InHomoplasy. The Recurrence of Similarity in Evolution, ( M.J. Sanderson and L. Hufford, Eds.), pp. 3–36, Academic Press, San Diego.

    Google Scholar 

  21. . Brossut, R. (1975) Pheromonal basis of gregarism and interattraction. InPheromones and Defensive Secretions in Social Insects ( C. Noirot, P.E. Howse and G. LeMasne, Eds.), pp. 67–85, University of Dijon, Dijon.

    Google Scholar 

  22. . Brossut, R. (1976) Etude morphologique de la blatte myrmecophileAttaphila fungicola Wheeler.Insectes Sociaux 23, 167 - 174.

    Google Scholar 

  23. . Carpenter, F.M. (1947) Early insect life.Psyche 54, 65 - 85.

    Google Scholar 

  24. . Cazemier, A.E.et al. (1997) Bacteria in the intestinal tract of different species of arthropods.Microbial Ecology 33, 189 - 197.

    PubMed  Google Scholar 

  25. 25.Cazemier, A.E.et al. (1997) Fibre digestion in arthropods.Comparative Biochemistry and Physiology 118A, 101 - 109.

    CAS  Google Scholar 

  26. . Cleveland, L.R.et al. (1934) The wood feeding roachCryptocercus, its protozoa, and the symbiosis between protozoa and roach.Memoirs of the American Academy ofArts and Sciences 17, 185 - 342.

    Google Scholar 

  27. . Cloarec, A. and Rivault, C. (1991) Age related changes in foraging in the German cockroach (Dictyoptera: Blattellidae).Journal of Insect Behavior 4, 661 - 673.

    Google Scholar 

  28. . Cochran, D.G. (1985) Nitrogen excretion in cockroaches.Annual Review of Entomology 30, 29 - 49.

    CAS  Google Scholar 

  29. . Coppinger, R. and Schneider, R. (1995) Evolution of working dogs. InThe Domestic Dog, ( J. Serpell, Ed.), pp. 22–47, Cambridge University Press, Cambridge.

    Google Scholar 

  30. . Coppinger, R. and Smith, C.K. (1983) The domestication of evolution.Environmental Conservation 10, 283 - 292.

    Google Scholar 

  31. 31.Coppinger, R.P. and Smith, C.K. (1990) A model for understanding the evolution of mammalian behavior.Current Mammology 2, 335 - 374.

    Google Scholar 

  32. . Cornwell, P.B. (1968)The Cockroach. Vol. 1, Hutchinson and Co., Ltd., London.

    Google Scholar 

  33. . Crampton, G.C. (1932) A phylogenetic study of the head capsule in certain orthopteroid, psocoid, hemipteroid and holometabolous insects.Bulletin of the Brooklyn Entomological Society 27, 19 - 50.

    Google Scholar 

  34. 34.Cruden, D.L. and Markovetz, A.J. (1979) Carboxymethyl cellulose decomposition by intestinal bacteria of cockroaches.Applied and Environmental Microbiology 38, 369 - 372.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. 35.Cruden, D.L. and Markovetz, A.J. (1984) Microbial aspects of the cockroach hindgut.Archives of Microbiology 138, 131 - 139.

    CAS  PubMed  Google Scholar 

  36. 36.Cruden, D.L. and Markovetz, A.J. (1987) Microbial ecology of the cockroach gut.Annual Review of Microbiology 41, 617 - 643.

    CAS  PubMed  Google Scholar 

  37. . DeSalle, R.et al. (1992) DNA sequences from a fossil termite in Oligo-Miocene amber and their phylogenetic implications.Science 257, 1933 - 1936.

    CAS  PubMed  Google Scholar 

  38. . Emerson, A.E. (1961) Vestigial characters of termites and processes of regressive evolution.Evolution 15, 115 - 131.

    Google Scholar 

  39. . Emerson, A.E. (1962) Vestigial characters, regressive evolution and recapitulation among termites. InTermites in the Humid Tropics. Proceedings of the New Delhi Symposium, pp. 17–30, UNESCO, Paris.

    Google Scholar 

  40. 40.Emerson, A.E. (1971) Tertiary fossil species of the Rhinotermitidae (Isoptera), phylogeny of the genera, and reciprocal phylogeny of associated Flagellata (Protozoa) and the Staphylinidae (Coleoptera).Bulletin of the American Museum of Natural History 146, 245 - 303.

    Google Scholar 

  41. 41.Felsenstein, J. (1978) The number of evolutionary trees.Systematic Zoology 27, 27 - 33.

    Google Scholar 

  42. . Futuyma, D.J. (1986)Evolutionary Biology. 2nd edn., Sinauer Associates Inc., Sunderland, Massachusetts.

    Google Scholar 

  43. Gäde, G., Grandcolas, P. and Kellner, R. (1997) Structural data on hypertrehalosaemic neuropeptides fromCryptocercus punctulatus andTherea petiveriana: how do they fit into the phylogeny of cockroaches?Proceedings of the Royal Society of London B 264, 763 - 768.

    Google Scholar 

  44. . Geist, V. (1971)Mountain Sheep. A Study in Behavior and Evolution. The University of Chicago Press, Chicago.

    Google Scholar 

  45. . Gier, H.T. (1947) Growth rate in the cockroachPeriplaneta americana (Linn.).Annals of the Entomological Society of America 40, 303 - 317.

    CAS  Google Scholar 

  46. Gijzen, H.J. and Barugahare, M. (1992) Contribution of anaerobic protozoa and methanogens to hindgut metabolic activities of the American cockroach,Periplaneta americana. Applied and Environmental Microbiology 58, 2565 - 2570.

    CAS  Google Scholar 

  47. Gizjen, H.J.et al. (1994) Effect of host diet and hindgut microbial composition on cellulolytic activity in the hindgut of the American cockroach,Periplaneta americana. Applied and Environmental Microbiology 60, 1822 - 1826.

    Google Scholar 

  48. . Gould, S.J. (1977)Ontogeny and Phylogeny. Harvard University Press, Cambridge, Mass.

    Google Scholar 

  49. . Grandcolas, P. (1994) Phylogenetic systematics of the subfamily Polyphaginae, with the assignment ofCryptocercus Scudder, 1862 to this taxon (Blattaria, Blaberoidea, Polyphagidae).Systematic Entomology 19, 145 - 158.

    Google Scholar 

  50. Grassé,P.-P.and Noirot, C. (1960) L’isolement chez le termite a cou jaune (Calotermes flavicollisFab.) et ses consequences.Insectes Sociaux 7, 323–331.

    Google Scholar 

  51. . Grassé, P.P. (1946) Societies animales et effet de groupe.Experientia 15, 365 - 408.

    Google Scholar 

  52. 52.Grassé, P.P. and Noirot, C. (1959) L’évolution de la symbiose chez les Isopteres.Experientia 15, 365 - 408.

    PubMed  Google Scholar 

  53. . Grimaldi, D. (1997) A fossilMantis (Insecta: Mantodea) in the Cretaceous amber of New Jersey, with comments on the early history of the Dictyoptera.American Museum Novitates 3204, 1 - 11.

    Google Scholar 

  54. . Guthrie, D.M. and Tindall, A.R. (1968)The Biology of the Cockroach., Edward Arnold Ltd., London.

    Google Scholar 

  55. 55.Hackstein, J.H.P. and Strumm, C K (1994) Methane production in terrestrial arthropods.Proceedings of the National Academy of Sciences 91, 5441 - 5445.

    CAS  Google Scholar 

  56. 56.Harvell, C.D. (1994) The evolution of polymorphism in colonial invertebrates and social insects.The Quarterly Review of Biology 69, 155 - 185.

    Google Scholar 

  57. . Hennig, W. (1981)Insect Phylogeny. John Wiley & Sons, New York.

    Google Scholar 

  58. . Hillis, D.M. (1987) Molecular vs. morphological approaches to systematics.Annual Review of Ecology and Systematics 18, 23 - 42.

    Google Scholar 

  59. . Holbrook, G.L. and Schal, C. (1998) Social influences on nymphal development in the cockroachDiploptera punctata. Physiological Entomology 23, 121 - 130.

    Google Scholar 

  60. Horridge, G.A. and Giddings, C. (1971) The ommatidium of the termiteMastotermes darwiniensis. Tissue &Cell 3, 463 - 476.

    CAS  Google Scholar 

  61. . Howse, P.E. (1968) On the division of labour in the primitive termiteZootermopsis nevadensis (Hagen).Insectes Sociaux 15, 45 - 50.

    Google Scholar 

  62. . Huber, I. (1974) Taxonomic and ontogenetic studies of cockroaches (Blattaria).University of Kansas Science Bulletin 50, 233 - 332.

    Google Scholar 

  63. . Huber, I. (1976) Evolutionary trends inCryptocercus punctulatus (Blattaria: Cryptocercidae).Journal of the New York Entomological Society 84, 166 - 168.

    Google Scholar 

  64. 64.Hufford, L. (1996) Ontogenetic evolution, clade diversification, and homoplasy. InHomoplasy. The Recurrence of Similarity in Evolution ( M.J. Sanderson and L. Hufford, Eds.), pp. 271–302, Academic Press, San Diego.

    Google Scholar 

  65. Izutsu, M., Veda, S. and Ishii, S. (1970) Aggregation effects on the growth of the German cockroachBlattella germanica (L.) (Blattaria: Blattellidae).Applied Entomology and Zoology 5, 159 - 171.

    Google Scholar 

  66. 66.Kambhampati, S. (1995) A phylogeny of cockroaches and related insects based on DNA sequence of mitochondrial ribosomal RNA genes.Proceedings of the National Academy of Sciences,USA 92, 2017 - 2020.

    CAS  Google Scholar 

  67. Kambhampati, S. (1996) Phylogenetic relationship among cockroach families inferred from mitochondrial 12S rRNA gene sequence.Systematic Entomology 21, 89 - 98.

    Google Scholar 

  68. Kambhampati, S., Kjer, K.M. and Thome, B.L. (1996) Phylogenetic relationship among termite families based on DNA sequence of mitochondrial 16S ribosomal RNA gene.Insect Molecular Biology 5, 229 - 238.

    PubMed  Google Scholar 

  69. Kane, M.D. and Breznak, J.A. (1991) Effect of host diet on production of organic acids and methane by cockroach gut bacteria.Applied and Environmental Microbiology 57, 2628 - 2634.

    CAS  PubMed Central  PubMed  Google Scholar 

  70. . Kidder, G.W. (1937) The intestinal protozoa of the wood-feeding roachPanesthia. Parasitology 29, 163 - 203.

    Google Scholar 

  71. King, M.C. and Wilson, A.C. (1975) Evolution at two levels in humans and chimpanzees.Science 188, 107 - 116.

    CAS  PubMed  Google Scholar 

  72. 72.Klass, K.-D. (1995)Die Phylogeny der Dictyoptera. Doctoral Thesis, Fakultät für Biologie, Ludwig Maximilians Universität, München.

    Google Scholar 

  73. . Klass, K.-D. (1997) The external male genitalia and the phylogeny of Blattaria and Mantodea.Bonner Zoologische Monographien 42, 1 - 341.

    Google Scholar 

  74. . Klass, K.-D. (1998) The ovipositor of Dictyoptera (Insecta): homology and ground plan of the main elements.Zoologischer Anzeiger 236, 69 - 101.

    Google Scholar 

  75. Klass, K.-D. (1998) The proventriculus of Dicondylia, with comments on evolution and phylogeny in Dictyoptera and Odonata.Zoologischer Anzeiger 237, 15 - 42.

    Google Scholar 

  76. 76.Kluge, A.G. (1985) Ontogeny and phylogenetic systematics.Cladistics 1, 13 - 27.

    Google Scholar 

  77. 77.Kopanic, R.J.J. (1998)Coprophagy in the German cockroach,Blattella germanica (Blattaria: Blattellidae): Adaptive Significance and Role in Horizontal Transfer of Insecticide Baits. Master’s Thesis, Department of Entomology, North Carolina State University, Raleigh, U.S.A..

    Google Scholar 

  78. Kopanic, R.J.J. and Schal C. (1997) Relative significance of direct ingestion and adult-mediated translocation of bait to German cockroach (Dictyoptera: Blattellidae) nymphs.Journal of Economic Entomology 90, 1073 - 1079.

    Google Scholar 

  79. 79.Kristensen, N.P. (1991) Phylogeny of extant hexapods. InThe Insects of Australia, pp. 125–140, CSIRO and Melbourne University Press, Carleton, Victoria.

    Google Scholar 

  80. 80.Kristensen, N.P. (1995) Forty years’ insect phylogenetic systematics: Hennig’s “Kritische Bemerkungen…” and subsequent developments.Zoologische Beiträge,Neue Folge 36, 83 - 124.

    Google Scholar 

  81. . Kunkel, J.G. (1966) Development and availability of food in the German cockroachBlattella germanica (L.).Journal of Insect Physiology 12, 227 - 235.

    Google Scholar 

  82. . Kunkel, J.G. (1975) Cockroach molting. I. Temporal organization of events during molting cycle ofBlattella germanica (L.).Biological Bulletin 148, 259 - 273.

    CAS  PubMed  Google Scholar 

  83. . Kunkel, J.G. (1979) A minimal model of metamorphosis: fat body competence to respond to juvenile hormone. InCurrent Topics in Insect Endocrinology and Nutrition ( G. Bhaskaran, S. Friedman, and J.G. Rodriguez, Eds.), pp. 107–129, Plenum Press, New York.

    Google Scholar 

  84. 84.Labandeira, C.C. (1994) A compendium of fossil Insect families.Milwaukee Public Museum Contributions in Biology and Geology 88, 1 - 71.

    Google Scholar 

  85. 85.Labandeira, C.C. and Beall, B.S. (1990) Arthropod Terrestriality. InShort Courses in Paleontology (S.J. Culver, Ed.), Vol. 3., pp. 214–256, The Paleontological Society.

    Google Scholar 

  86. 86.Labandeira, C.C., Phillips, T.L. and Norton, R.A. (1997) Oribatid mites and the decomposition of plant tissues in Paleozoic coal-swamp forests.Palaios 12, 319 - 353.

    Google Scholar 

  87. . Laurentiaux, D. (1966)Stephanotermopsis nov. gen., Protorthoptère nouveau du Stéphanien d’Auvergne et problème de l’origine des Termites.Annales de la Societe Geologique du Nord 86, 231 - 238.

    Google Scholar 

  88. . Leclerc, R.F. and Regier, J.C. (1990) Heterochrony in insect development and evolution.Developmental Biology 1, 271 - 279.

    Google Scholar 

  89. Lefeuvre, J.-C. (1971) Hormone juvénile et polymorphism alaire chez les Blattaria (Insecte, Dictyoptère).Archives de Zoologie Experimentale et Generale 112, 653 - 666.

    Google Scholar 

  90. . Lenz, M. (1976) The dependence of hormone effects in termite caste determination on external factors. InPhase and Caste Determination in Insects. Endocrine aspects ( M. Löscher, Ed.), pp. 73–89, Pergamon Press, Oxford.

    Google Scholar 

  91. . Lodha, B.C. (1974) Decomposition of digested litter. InBiology of Plant Litter Decomposition ( C.H. Dickinson and G.J.P. Pugh, Eds.), pp. 213–241, Academic Press, London.

    Google Scholar 

  92. 92.Lüscher, M. (1961) Social control of polymorphism in termites.Symposium of the Royal Entomological Society of London 1, 57 - 67.

    Google Scholar 

  93. . Maekawa, K. (1997)Molecular phylogeny and ecology of the wood feeding cockroaches. Master’s Thesis, Department of Biological Science, University of Tokyo, Japan.

    Google Scholar 

  94. . Matsuda, R. (1976)Morphology and Evolution of the Insect Abdomen with Special Reference to Developmental Patterns and their Bearings Upon Systematics. Pergamon, Oxford.

    Google Scholar 

  95. . Matsuda, R. (1979) Abnormal metamorphosis in arthropod evolution. InArthropod Phylogeny ( A.P. Gupta, Ed.), pp. 137–256, Van Nostrand Reinhold Co., New York.

    Google Scholar 

  96. . Matsuda, R. (1987)Animal Evolution in Changing Environments with Special Reference to Abnormal Metamorphosis. John Wiley & Sons, New York.

    Google Scholar 

  97. . McBrayer, J. F. (1973) Exploitation of deciduous leaf litter byApheloria montana (Diplopoda: Eurydesmidae).Pedobiologia 13, 90 - 98.

    Google Scholar 

  98. . McFarlane, J.E. and I. Alli (1985) Volatile fatty acids of frass of certain omnivorous insects.Journal of Chemical Ecology 11, 59–63.

    CAS  PubMed  Google Scholar 

  99. . McKinney, M.L. and K.J. McNamara (1991)Heterochrony. The Evolution of Ontogeny, Plenum Press, New York.

    Google Scholar 

  100. McKittrick, F.A. (1964) Evolutionary Studies of Cockroaches.Cornell University Agricultural Experiment Station Memoir 389, 1 - 197.

    Google Scholar 

  101. 101.McKittrick, F.A. (1965) A contribution to the understanding of cockroach-termite affinities.Annals of the Entomological Society of America 58, 18 - 22.

    CAS  PubMed  Google Scholar 

  102. McMahan, E.A. (1969) Feeding relationships and radioisotope techniques. InBiology of Termites ( K. Krishna and F.M. Weesner, Eds.), pp. 387–406, Academic Press, New York.

    Google Scholar 

  103. McNamara, K.J. (1988) The abundance of heterochrony in the fossil record. InHeterochrony in Evolution. A Multidisciplinary Approach ( M.L. McKinney, Ed.), pp. 287–325, Plenum Press, New York.

    Google Scholar 

  104. Moir, R.J. (1994) The ‘carnivorous’ herbivores. InThe Digestive System in Mammals: Food,Form and Function ( D.J. Chivers and P. Langer, Eds.), pp. 87–102, Cambridge University Press, Cambridge.

    Google Scholar 

  105. 105.Nalepa, C.A. (1994) Nourishment and the evolution of termite eusociality. InNourishment and Evolution in Insect Societies ( J.H. Hunt and C.A. Nalepa, Eds.), pp. 57–104, Westview Press, Boulder.

    Google Scholar 

  106. Nalepa, C.A. and Bandi, C. (1999) Phylogenetic status, distribution, and biogeography ofCryptocercus (Dictyoptera: Cryptocercidae).Annals of the Entomological Society of America 92,.292–302.

    Google Scholar 

  107. Nalepa, C.A. and Bell, W.J. (1997) Postovulation parental investment and parental care in cockroaches. InSocial Behavior in Insects and Arachnids (J.C. Choe and B.J. Crespi, Eds.), pp. 26–51, Cambridge University Press, Cambridge.

    Google Scholar 

  108. Noirot, C. (1982) La caste des ouvriers, element majeur du succés evolutif des termites.Rivista di Biologia 75, 157 - 195.

    Google Scholar 

  109. Noirot, C. (1985) Pathways of caste development in the lower termites. InCaste Differentiation in Social Insects ( J.A.L. Watson, B.M. Okot-Kotber, and C. Noirot, Eds.), pp. 41–57, Pergamon Press, New York.

    Google Scholar 

  110. Noirot, C. (1995) The gut of termites (Isoptera). Comparative anatomy, sytematics, phylogeny. I. Lower termites.Annales de la Societe Entomologique de France,nouvelle série 31, 197 - 226.

    Google Scholar 

  111. Noirot, C. and Bordereau, C (1989) Termite polymorphism and morphogenetic. hormones. InMorphogenetic Hormones of Arthropods. Roles in Histogenesis,Organogenesis,and Morphogenesis ( A.P. Gupta, Ed.), pp. 293–324, Rutgers University Press, New Brunswick, New Jersey.

    Google Scholar 

  112. Noirot, C. and Noirot-Timothée, C. (1977) Fine structure of the rectum in termites (Isoptera): a comparative study.Tissue &Cell 9, 693 - 710.

    CAS  Google Scholar 

  113. Noirot, C. and Pasteels, J.M. (1987) Ontogenetic development and evolution of the worker caste in termites.Experientia 43, 851 - 860.

    Google Scholar 

  114. Northcutt, R.G. (1990) Ontogeny and phylogeny: a reevaluation of conceptual relationships and some applications.Brain,Behavior and Evolution 36, 116 - 140.

    CAS  Google Scholar 

  115. Olomon, C.M., Breed, M.D. and Bell, W.J. (1976) Ontogenetic and temporal aspects of agonistic behavior in a cockroachPeriplaneta americana. Behavioral Biology 17, 243 - 248.

    Google Scholar 

  116. Parker, E.D.J. (1984) Reaction norms of development rate among diploid clones of the parthenogenetic cockroachPycnoscelus surinamensis. Evolution 38, 1186 - 1193.

    Google Scholar 

  117. Pettit, L.C. (1940) The effect of isolation on growth in the cockroachBlattella germanica (L.) (Orthoptera: Blattidae).Entomological News 51, 293.

    Google Scholar 

  118. Philippe, H. and Adoutte, A. (1996) What can phylogenetic patterns tell us about the evolutionary processes generating biodiversity? InAspects of the Genesis and Maintenance of Biological Diversity ( M.E. Hochberg, J. Clobert, and R. Barbault, Eds.), pp. 41–59, Oxford University Press, Oxford.

    Google Scholar 

  119. Princis, K. (1960) Zur systematik der Blattarien.Eos 36, 429 - 449.

    Google Scholar 

  120. Quicke, D.L.J. (1993)Principles and Techniques of Contemporary Taxonomy. Chapman and Hall, London.

    Google Scholar 

  121. Raff, R.A. and Kaufman, T.C. (1983)Embryos,Genes,and Evolution. The Developmental-Genetic Basis of Evolutionary Change. Indiana University Press, Bloomington.

    Google Scholar 

  122. Rau, P. (1941) Cockroaches: the forerunners of termites (Orthoptera: Blattidae; Isoptera).Entomological News 52, 256 - 259.

    Google Scholar 

  123. Rehn, J.A.G. (1932) On apterism and subapterism in the Blattinae (Orthoptera: Blattidae).Entomological News 43, 201 - 206.

    Google Scholar 

  124. Reilly, S.M. (1994) The ecological morphology of metamorphosis: heterochrony and the evolution of feeding mechanisms in salamanders. InEcological Morphology. Integrative Organismal Biology ( P.C. Wainright and S.M. Reilly, Eds.), pp. 319–338, The University of Chicago Press, Chicago.

    Google Scholar 

  125. Richard, G. (1969) Nervous system and sense organs. InBiology of Termites, ( K. Krishna and F.M. Weesner, Eds.), pp. 161–192, Academic Press, New York.

    Google Scholar 

  126. Rieppel, 0. (1990) Ontogeny - a way forward for systematics, a way backward for phylogeny.Biological Journal of the Linnean Society 39, 177 - 191.

    Google Scholar 

  127. Rieppel, 0. (1993) The conceptual relationship of ontogeny, phylogeny, and classification. The taxic approach.Evolutionary Biology 27, 1 - 32.

    Google Scholar 

  128. 128.Roff, D.A. (1994) The evolution of flightlessness: is history important?Evolutionary Ecology 8, 639 - 657.

    Google Scholar 

  129. Roisin, Y. (1988) Morphology, development and evolutionary significance of the working stages in the caste system ofProrhinotermes (Insecta, Isoptera).Zoomorphology 107, 339 - 347.

    Google Scholar 

  130. Roisin, Y. (1990) Reversibility of regressive molts in the termiteNeotermes papua. Naturwissenschaften 77, 246–247.

    Google Scholar 

  131. Roisin, Y. (1994) Intragroup conflicts and the evolution of sterile castes in termites.American Naturalist 143, 751 - 765.

    Google Scholar 

  132. Roth, L.M. (1981) Introduction. InThe American Cockroach (W.J. Bell and K.G. Adiyodi, Eds.), pp. 114, Chapman and Hall, London.

    Google Scholar 

  133. Roth, L.M. (1990) A revision of the Australian Parcoblattini (Blattaria: Blattellidae: Blattellinae).Memoirs of the Queensland Museum 28, 531 - 596.

    Google Scholar 

  134. Roth, L.M. and E.R. Willis (1960) The biotic associations of cockroaches.Smithsonian Miscellaneous Collections 141, 1 - 470.

    Google Scholar 

  135. Rugg, D. and H.A. Rose (1990) Nymphal development and adult longevity of the Australian wood-feeding cockroachPanesthia cribrata (Dictyoptera: Blaberidae).Annals of the Entomological Society of America 83, 766 - 775.

    Google Scholar 

  136. Sanchez, C.et al. (1994) Indigenous flora in cockroaches (Dictyoptera: Blattidae and Blattellidae): a bacteriological and ultrastructural analysis.Revista de Biologia Tropical 42 (Suppl. 2), 93 - 96.

    Google Scholar 

  137. Sarich, V.M. and Wilson, A.C. (1967) Immunological time scale for hominid evolution.Science 159, 1002 - 1003.

    Google Scholar 

  138. Schal, C., Gautier, J.-Y. and W.J. Bell (1984) Behavioural ecology of cockroaches.Biological Reviews 59, 209 - 254.

    Google Scholar 

  139. 139.Schopf, T.J.M. (1984) Rates of evolution and the notion of “living fossils”.Annual Review of Earth and Planetary Sciences 12, 245 - 92.

    Google Scholar 

  140. Scriber, J.M. and Slansky, F.J. (1981) The nutritional ecology of immature insects.Annual Review of Entomology 26, 183 - 211.

    Google Scholar 

  141. Scrivener, A.M. and Slaytor, M. (1994) Properties of the endogenous cellulase fromPanesthia cribrata Saussure and purification of major endo-ß-1,4glucanase components. InsectBiochemistry and Molecular Biology 24, 223 - 231.

    CAS  Google Scholar 

  142. Seelinger, G. and Seelinger, U. (1983) On the social organization, alarm and fighting in the primitive cockroachCryptocercus punctulatus. Zeitschrift Tierpsychologie 61, 315 - 333.

    Google Scholar 

  143. Shaffer, H.B. (1993) Phylogenetics of model organisms• the laboratory axolotl,Ambystoma mexicanum. Systematic Biology 42, 508 - 522.

    Google Scholar 

  144. Shaffer, H.B. and Voss, S.R. (1996) Phylogenetic and mechanistic analysis of a developmentally integrated character complex: alternate life history modes in

    Google Scholar 

  145. ambystomatid salamanders. American Zoologist 36, 24–35.

    Google Scholar 

  146. Shear, W.A. and Kukalovâ-Peck, J. (1990) The ecology of Paleozoic terrestrial arthropods: the fossil evidence.Canadian Journal of Zoology 68, 1807 - 1834.

    Google Scholar 

  147. Shimamura, H.et al. (1994) Secondary kill effect of hydramethylnon bait against several species of cockroach.Japanese Journal of Sanitary Zoology 45, 97 - 100.

    CAS  Google Scholar 

  148. Silverman, J., Vitale, G.I. and Shapas T.J. (1991) Hydramethylnon uptake byBlattella germanica (Orthoptera: Blattellidae) by coprophagy.Journal of Economic Entomology 84, 176 - 180.

    PubMed  Google Scholar 

  149. Simpson, G.G. (1944)Tempo and Mode in Evolution. Columbia University Press, New York.

    Google Scholar 

  150. Simpson, G.G. (1953) The Major Features of Evolution. Columbia University Press New York.

    Google Scholar 

  151. Smith, D.C. (1992) The symbiotic condition.Symbiosis 14, 3 - 15.

    CAS  Google Scholar 

  152. Soltani-Mazouni, N. and Bordereau, C. (1987) Changes in the cuticle, ovaries and colleterial glands during the pseudergate and neotenic molt inKalotermes flavicollis (Fabr.) (Isoptera: Kalotermitidae).International Journal of Insect Morphology &Embryology 16, 221 - 235.

    Google Scholar 

  153. Stanley, S.M. (1998)Macroevolution,Pattern and Process. The Johns Hopkins University Press, Baltimore.

    Google Scholar 

  154. Thome, B.L. and Carpenter, J.M. (1992) Phylogeny of the Dictyoptera.Systematic Entomology 17, 253 - 268.

    Google Scholar 

  155. Tillyard, R.J. (1919) Mesozoic insects of Queensland, No. 6, Blattoidea.Proceedings of the Linnean Society ofNew South Wales 44, 358 - 382.

    Google Scholar 

  156. Troyer, K. (1984) Microbes, herbivory and the evolution of social behavior.Journal of Theoretical Biology 106, 157 - 169.

    Google Scholar 

  157. Ullrich, B.et al. (1992) Hemolymph protein patterns and coprophagous behavior inOniscus asellus L. (Crustacea, Isopoda).Invertebrate Reproduction and Development 21, 193 - 200.

    CAS  Google Scholar 

  158. Vandel, A. (1965)Biospeleology. The Biology of Cavernicolous Animals. Pergamon Press, Oxford.

    Google Scholar 

  159. Vawter, L. (1991)Evolution of the blattoid insects and of the small subunit ribosomal RNA gene. Doctoral Thesis, University of Michigan, Ann Arbor, U.S.A..

    Google Scholar 

  160. Vishniakova, V.N. (1968) Mesozoic blattids with external ovipositors and peculiarities of their reproduction. InJurassic Insects of Karatau (B.B. Rohdendorf, Ed.), pp. 55 - 86, Akademiya Nauk SSSR, Ordelenie Obschej Biologii, Moscow.

    Google Scholar 

  161. Vrsansky, P. (1997)Piniblattella gen. nov. - the most ancient genus of the family Blattellidae (Blattodea) from the Lower Cretaceous of Siberia.Entomological Problems 28, 67 - 79.

    Google Scholar 

  162. Wake, D.B. (1980) Paedomorphosis.Journal of Herpetology 14, 80 - 81.

    Google Scholar 

  163. Wake, D.B. (1991) Homoplasy: the result of natural selection, or evidence of design limitations.American Naturalist 138 543 - 567.

    Google Scholar 

  164. 163.Walker, E.M. (1919) The terminal abdominal structures of Orthopteroid insects: a phylogenetic study.Annals of the Entomological Society of America 12, 267 - 316.

    Google Scholar 

  165. 164.Walker, E.M. (1922) The terminal structures of orthopteroid insects: a phylogenetic study. II. The terminal abdominal structures of the male.Annals of the Entomological Society of America 15, 1 - 87.

    Google Scholar 

  166. Walker, J.A. and Rose, H.A. (1998) Oöthecal structure and male genitalia of the Geoscapheinae and some AustralianPanesthia Serville (Blattodea: Blaberidae).Australian Journal of Entomology 37, 2326.

    Google Scholar 

  167. Wang, C.H.,. Yang, H.T and Chow, Y.S. (1995) The controlling effects of abamectin and hydramethylnon for the Australian cockroachPeriplaneta australasiae (F.) (Orthoptera: Blattellidae), in Taiwan.Journal of Entomological Science 30, 154 - 163.

    Google Scholar 

  168. Watson, J.A.L. and Gay, F.J. (1991) Isoptera (termites). InThe Insects of Australia. pp. 330–347, CSIRO and Melbourne University Press, Carlton, Victoria.

    Google Scholar 

  169. Watson, J.A.L. and Sewell, J.J. (1981) The origin and evolution of caste systems in termites.Sociobiology 6, 101 - 118.

    Google Scholar 

  170. West-Eberhard, M.J. (1989) Phenotypic plasticity and the origins of diversity.Annual Review of Ecology and Systematics 20, 249 - 278.

    Google Scholar 

  171. West-Eberhard, M.J. (1992) Behavior and evolution. InMolds,Molecules,and Metazoa ( 170.West-Eberhard, M.J, Eds.), pp. 57–75, Princeton University Press.

    Google Scholar 

  172. Wharton, D.R.A., Lola, J.E. and Wharton, M.L. (1968) Growth factors and population density in the American cockroach,Periplaneta americana. Journal of Insect Physiology 14, 637 - 653.

    Google Scholar 

  173. Wharton, D.R.A. and Wharton, M.L. (1965) The cellulase content of various species of cockroaches.Journal of Insect Physiology 11, 1401 - 1405.

    CAS  PubMed  Google Scholar 

  174. Wheeler, W.M. (1904) The phylogeny of termites.Biological Bulletin 8, 29 - 37.

    Google Scholar 

  175. Wheeler, W.M. (1920) The termitodoxa, or biology and society.The Scientific Monthly, February, 113–124.

    Google Scholar 

  176. White, T.C.R. (1985) When is an herbivore not an herbivore?Oecologia 67, 596 - 597.

    Google Scholar 

  177. Wiegmann, B.M., Mitter, C. and Thompson, F.C. (1993) Evolutionary origin of the Cyclorrhapha (Diptera): tests of alternative morphological hypotheses.Cladistics 9, 41 - 81.

    Google Scholar 

  178. Wigglesworth, V.B. (1954)The Physiology of Insect Metamorphosis. Cambridge University Press, Cambridge.

    Google Scholar 

  179. Wilson, E.O. (1971)The Insect Societies. Harvard University Press, Cambridge.

    Google Scholar 

  180. Woodhead, A.P. and Paulson, C.R. (1983) Larval development ofDiploptera punctata reared alone and in groups.Journal of Insect Physiology 29, 665 - 668.

    Google Scholar 

  181. Woodruff, L.C. (1938) The normal growth rate ofBlattella germanica L.Journal of Experimental Zoology 79, 145 - 167.

    CAS  Google Scholar 

  182. Zhuzhikov, D.P. (1993) The origins and evolution of termites. InProceedings of the Colloquia on Social Insects ( V.E. Kipyatkov, Ed.), pp. 129–148, Socium, St. Petersburg.

    Google Scholar 

  183. Zurek, L. and Keddie, B.A. (1996) Contribution of the colon and colonic bacterial flora to metabolism and development of the American cockroachPeriplaneta americana L.Journal of Insect Physiology 42, 743 - 748.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Nalepa, C.A., Bandi, C. (2000). Characterizing the Ancestors: Paedomorphosis and Termite Evolution. In: Abe, T., Bignell, D.E., Higashi, M. (eds) Termites: Evolution, Sociality, Symbioses, Ecology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3223-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-3223-9_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5476-0

  • Online ISBN: 978-94-017-3223-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics