Skip to main content

Soil-Feeding Termites: Biology, Microbial Associations and Digestive Mechanisms

  • Chapter
Termites: Evolution, Sociality, Symbioses, Ecology

Abstract

Soil-feeding species are found in 3 subfamilies of higher termites and constitute 67% of all genera. The habit, which may have evolved several times, is principally associated with lowland humid equatorial rainforests, but there are some savanna forms. Soil-feeders can generally be distinguished from wood-feeders by intestinal morphology, the stable isotope ratios of C and N, and by the higher activity of certain elements of the gut flora, notably methanogens and organisms able to ferment reduced and recalcitrant substrates, including aromatics. Soil-feeders emit more methane as free gas, but do not appear to fix N2 in significant amounts. Organic material passing through the gut is further humified, with enrichment in total C, N and fulvic acid compared with parent soil, while humic acid is depleted. Mound materials and galleries made using faeces show enhanced cation exchange capacity, with a redistribution and stabilization of soil organic matter (SOM) and an increase in available phosphorus. Bacterial activity is stimulated in fresh faeces and may contribute to further processing of organic matter. The full range of substrates degraded by soil-feeders is not known: two possibilities discussed are 1) that a range of compounds including polysaccharides are degraded to a limited extent by a generalist gut flora and 2) that a specialized symbiont population degrades reduced substrates such as tannin-protein complexes and polyaromatics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbadie, L. and Lepage, M. (1989) The role of subterranean fungus comb chambers (Isoptera, Macrotermitinae) in soil nitrogen cycling in a preforest savanna (Côte D’Ivoire). Soil Biology and Biochemistry 21, 1067–1071.

    CAS  Google Scholar 

  2. Abe, T. (1979) Studies on the distribution and ecological role of termites in a lowland rain forest of West Malaysia (2) Food and feeding habits of termites in Pasoh Forest Reserve. Japanese Journal of Ecology. 29, 121–135.

    Google Scholar 

  3. Abe, T. and Matsumoto, T. (1979) Studies on the distribution and ecological role of termites in a lowland rain forest of West Malaysia (3) Distribution and abundance of termites in Pasoh Forest Reserve. Japanese Journal of Ecology 29, 337–351.

    Google Scholar 

  4. Amato, M. and Ladd, J.M. (1988) Assay for microbial biomass based on ninhydrin reactive nitrogen in extracts of fumigated soils. Soil Biology and Biochemistry 20, 107–114.

    CAS  Google Scholar 

  5. Anderson, J.M. and Bignell, D.E. (1980) Bacteria in the food, gut and faeces of the pill millipede Glomeris marginata. Soil Biology and Biochemistry 12, 251–254.

    Google Scholar 

  6. Anderson, J.M. and Wood, T.G. (1984) Mound composition and soil modification by two soil-feeding termites (Termitidae, Termitinae) in a riparian Nigerian forest. Pedobiologia 26, 77–82.

    Google Scholar 

  7. Anklin-MÜhlemann, R., et al. (1995) Morphological, microbiological and biochemical studies of the gut flora in the fungus-growing termite Macrotermes subhyalinus. Journal of Insect Physiology 41 929–940.

    Google Scholar 

  8. Azariz, D. (1996) Selection de souches d’actinomycetes cellulolytic à partir du tube digestive de termites supérieur en vue d’application en biotechnologie. These d’Université, Université Paris X II.

    Google Scholar 

  9. Barois, I. and Lavelle, P. (1986) Changes in respiratory rate and some physicochemical properties of a tropical soil during transit through Pontoscolex corethrurus (Glossoscolecidae; Oligochaeta). Soil Biology and Biochemistry 18, 539–541.

    Google Scholar 

  10. Bignell, D.E. (1984) Direct potentiometric determination of the redox potentials of the gut contents in the termites Zootermopsis nevadensis and Cubitermes severus and in three other arthropods. Journal of Insect Physiology 30, 169–174.

    Google Scholar 

  11. Bignell, D.E. (1994) Soil-feeding and gut morphology in higher termites. In Nourishment and Evolution in Insect Societies ( J.H. Hunt and C.A. Nalepa, Eds.), pp. 131–157, Westview Press, Boulder.

    Google Scholar 

  12. Bignell, D.E. and Anderson, J.M. (1980) Determination of pH and oxygen status in the guts of lower and higher termites. Journal of Insect Physiology 26, 183–188.

    CAS  Google Scholar 

  13. Bignell, D.E., Anderson, J.M. and Crosse, R. (1991) Isolation of facultatively aerobic actinomycetes from the gut, parent soil and mound materials of the termites Procubitermes aburiensis and Cubitermes severus. FEMSMicobiology Ecology 85, 151–160.

    Google Scholar 

  14. Bignell, D.E. and Eggleton, P. (1995) On the elevated intestinal pH of higher termites (Isoptera: Termitidae). Insectes Sociaux 42, 57–69.

    Google Scholar 

  15. Bignell, D.E., et al. (1997) Termites as mediators of carbon fluxes in tropical forest: budgets for carbon dioxide and methane emissions. In Forests and Insects ( A.D. Watt, N.E. Stork and M.D. Hunter, Eds.), pp. 109–133, Chapman and Hall, London.

    Google Scholar 

  16. Bignell, D.E., Oskarsson, H. and Anderson, J.M. (1979) Association of actinomycete-like bacteria with soil-feeding termites. Applied and Environmental Microbiology 37, 339–342.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Bignell, D.E., Oskarsson, H_ Anderson, J.M. (1980) Colonization of the epithelial face of the peritrophic membrane and the ectoperitrophic space by actinomycetes in a soil-feeding termite. Journal of Invertebrate Pathology 36, 426–428.

    Google Scholar 

  18. Bignell, D.E., Oskarsson, H. and Anderson, J.M. (1980) Distribution and abundance of bacteria in the gut of a soil-feeding termite Procubitermes aburiensis (Termitidae, Termitinae). Journal of General Microbiology 117. 393–403.

    CAS  PubMed  Google Scholar 

  19. Bignell, D.E., Oskarsson, H. and Anderson, J.M. (1980) Specialization of the hindgut wall for the attachment of symbiotic microorganisms in a termite Procubitermes aburiensis (Isoptera, Termitidae, Termitinae). Zoomorphologie 96, 103–112.

    Google Scholar 

  20. Bignell, D.E., Oskarsson, H. and Anderson, J.M. (1981) Association of actinomycetes with soil-feeding termites: a novel symbiotic relationship? Zentralblatt fiir Bakteriologie, Mikrobiologie und Hygiene (Suppl.) 11, 210–206.

    Google Scholar 

  21. Bignell, D.E., Oskarsson, H. and Anderson, J.M. (1982) Formation of membrane-bounded secretory granules in the midgut epithelium of a termite Cubitermes severus. and a possible intercellular route of discharge. Cell and Tissue Research 222, 187–200.

    CAS  PubMed  Google Scholar 

  22. Bignell, D.E., et al. (1983) Structure, microbial associations and functions of the so-called “mixed segment” of the gut in two soil feeding termites, Procubitermes aburiensis Sjöstedt and Cubitermes severus Silvestri (Termitidae, Termitinae). Journal of Zoology 201, 445–480.

    Google Scholar 

  23. Bouland, J. (1996) Influence d’un termite humivore supérieur de foret tropicale, Cubitermes fungifaber, sur la microflore de la termitosphère. DEA National de Science du Sol, Université Henri Poincare-Nancy I.

    Google Scholar 

  24. Boutton, T.W., Arshad, M.A. and Tieszen, L.L. (1993) Stable isotope analysis of termite food habits in Eastern African grasslands. Oecologia 59, 1–6.

    Google Scholar 

  25. Braithwaite, R.W., Miller, L. and Wood, J.T. (1988) The structure of termite communities in the Australian tropics. Australian Journal of Ecology 13, 375–391.

    Google Scholar 

  26. Brauman, A. (1989) Etude de métabolisme bactérien de termites supérieurs à régimes alimentaire différenciés. Mise en évidence d’une nouvelle voie de dégradation du benzoate et du 3-hydroxybenzoate. Doctoral Thesis, University of Marseilles.

    Google Scholar 

  27. Braman, A., et al. (2000) Molecular profiling of microbial communities in guts of termites with different feeding habits. Manuscript in preparation.

    Google Scholar 

  28. Brauman, A. and Fall, S. (1998) Influence of soil-feeding termites and their gut microflora on the soil organic matter transformation. In Proceedings of the 16th International Congress of Soil Science. Montpellier.

    Google Scholar 

  29. Brauman, A., et al. (1992) Genesis of acetate and methane by gut bacteria of nutritionally diverse termites. Science 257, 1384–1386.

    CAS  PubMed  Google Scholar 

  30. Brauman, A., Labat, M. and Garcia, J.L. (1990) Preliminary studies on the gut microbiota of the soil feeding termite: Cubitermes speciosus. In Microbiology in Poecilotherms ( R. Lésel, Ed.), pp. 7377, Elsevier Science Publishers, B.V., Amsterdam.

    Google Scholar 

  31. Brauman, A. and Miambi, E. (1994) Could monoaromatic compounds be a source of energy for symbiotic gut microflora of higher termites from different feeding guilds? In Abstract of the 12th International Congress ofIUSSL Paris-Sorbonne.

    Google Scholar 

  32. Brannan, A., et al. (1998) Fermentative degradation of 3-hydroxybenzoate in pure culture by the newly isolated, strictly anaerobic bacterium Sporotomaculum. International Journal of Systematic Bacteriology 215221.

    Google Scholar 

  33. Breznak, J.A. (1982) Intestinal microbiota of termites and other xylophagous insects. Annual Review of Microbiology 36, 323–343.

    CAS  PubMed  Google Scholar 

  34. Breznak, J.A. (1994) Acetogenesis from carbon dioxide in termite guts. In Acetogenesis ( H.L. Drake, Ed.), pp. 303–329, Chapman and Hall, New York.

    Google Scholar 

  35. Breznak, J.A. and Brune, A. (1994) Role of microrganisms in the digestion of lignocellulose by termites. Annual Review of Entomology 39, 453–487.

    CAS  Google Scholar 

  36. Breznak, J.A. and Switzer, J.M. (1986) Acetate synthesis from H2 plus CO2 by termite gut microbes. Applied and Environmental Microbiology 52, 623–630.

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Brune, A. (1998) Termite guts: the world’s smallest bioreactors. Trends in Biotechnology 16, 16–21.

    CAS  Google Scholar 

  38. Brune, A., Emerson, D. and Breznak, J.A. (1995) The termite gut flora as an oxygen sink: microelectrode determination of oxygen and pH gradients in guts of lower and higher termites. Applied and Environmental Microbiology 61, 2681–2687.

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Brune, A. and Kühl, M. (1996) pH profiles of the extremely alkaline hindguts of soil-feeding termites (Isoptera:Termitidae) determined with microelectrodes. Journal of Insect Physiology 42, 1121–1127.

    Google Scholar 

  40. Brune, A., Miambi, E. and Breznak, J.A. (1995) Roles of oxygen and the intestinal microflora in the metabolism of lignin-derived phenylpropanoids and other monoaromatic compounds by termites. Applied and Environmental Microbiology 61, 2688–2695.

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Buxton, R.D. (1981) Changes in the composition and activities of termite communities in relation to changing rainfall. Oecologia 51, 371–378.

    Google Scholar 

  42. Canmmen, L.M. (1980) Ingestion rate: an empirical model for aquatic deposit feeders and detritivores. Oecologia 44, 303–310.

    Google Scholar 

  43. Collins, N.M. (1989) Termites. In Tropical Rain Forest Ecosystems ( H. Lieth and M.J.A. Werger, Eds.), pp. 455–471, Elsevier Science Publishers, B.V., Amsterdam.

    Google Scholar 

  44. Congdon, R.A., Holt, J.A. and Wicks, W.S. (1993) The role of mound-building termites in the nitrogen economy of semi-arid ecosystems. In Proceedings of the 6th Australian Grassland Invertebrates Conference. Hamilton, New Zealand.

    Google Scholar 

  45. Czolij, R., Slaytor, M. and O’Brien, R.W. (1985) Bacterial flora of the mixed segment and the hindgut of the higher termite Nasutitermes exitiosus Hill (Termitidae, Nasutitennitinae). Applied and Environmental Microbiology 49, 1226–1236.

    Google Scholar 

  46. Dejean, A. and Ruelle, J.E. (1995) Importance of Cubitermes termitaries as shelter for alien incipient termite societies. Insectes Sociaux 42, 129–136.

    Google Scholar 

  47. Deligne, J. (1966) Caractères adaptif au régime alimentaire dans la mandibule des termites (Insectes, Isoptères). Comptes Rendus de l’Académie des Sciences, Paris 263, 1323–1325.

    Google Scholar 

  48. DeNiro, M.J. and Epstein, S. (1978) Influence of diet on the distribution of carbon isotopes in animals Geochimica Cosmchimica Acta 42, 495–506.

    CAS  Google Scholar 

  49. DeNiro, M.J. and Epstein, S. (1981) Influence of diet on the distribution of nitrogen isotopes in animals Geochimica Cosmchimica Acta 45, 341–351.

    CAS  Google Scholar 

  50. Ebert, A. and Brune, A. (1997) Hydrogen concentration profiles at the oxic-anoxic interface: a microsensor study of the hindgut of the wood-feeding lower termite Reticulitermes flavipes (Kollar). Applied and Environmental Microbiology 63, 4039–4046.

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Eggleton, P. and Bignell, D.E. (1995) Monitoring the response of tropical insects to changes in the environment: troubles with termites. In Insects in a Changing Environment ( R. Harrington and N.E. Stork, Eds.), pp. 473–497, Academic Press, London.

    Google Scholar 

  52. Eggleton, P. and Bignell, D.E. (1997) Secondary occupation of epigeal termite (Isoptera) mounds by other termites in the Mbalmayo Forest reserve, southern Cameroon, and its biological significance. Journal of African Zoology 111, 489–498.

    Google Scholar 

  53. Eggleton, P., et al. (1996) The diversity, abundance and biomass of termites under differing levels of disturbance in the Mbalmayo Forest reserve, southern Cameroon. Philosophical Transactions of the Royal Society of London, Series B 351, 51–68.

    Google Scholar 

  54. Eggleton, P. et al. (1995) The species richness of termites (Isoptera) under differing levels of forest disturbance in the Mbalmayo Forest Reserve, southern Cameroon. Journal of Tropical Ecology 11,85–98.

    Google Scholar 

  55. Eggleton, P., Davies, R.G. and Bignell, D.E. (1998) Body size and energy use in termites (Isoptera): the responses of soil-feeders and wood feeders differ in a tropical forest assemblage. Oikos 51, 525–530.

    Google Scholar 

  56. Eggleton, P., et al. (1997) The species richness of termite (Isoptera) in primary and regenerating lowland dipterocarp forest in Sabah, East Malaysia. Ecotropica 3, 119–128.

    Google Scholar 

  57. Emerson, E.A. (1955) Geographical origins and dispersions of termite genera. Fieldiana: Zoology 37, 465–521.

    Google Scholar 

  58. Fall, S. (1998) Dynamique de la matière organique dans deux termitères (Cubitermes niololokensis, Macrotermes sybhyalinus) d’espèces à régimes alimetnaires différenciés; cas de la jachère de Kolda (Sénégal, haute casamance). DEA National de Microbiologie, Université Cheik Anta Diop, Sénégal.

    Google Scholar 

  59. Fall, S., et al. (1999) Comparison du compartiment organique et microbien des termitières de deux espèces de termites representifs des deux régimes alimentaires dominants. Cas des jacheres de Haute Casamance. In Proceedings of the Conference: “La jachère en Afrique de l’Ouest”. Dakar, Senegal., ORSTOM.

    Google Scholar 

  60. Fry, B. and Sherr, E.B. (1984) ô13C measurements as indicators of carbon flow in marine and freshwater ecosystems. Contributions to Marine Science 27, 1347.

    Google Scholar 

  61. Garnier-Sillam, E. (1987) Biologie et rôle des termites dans les processus d’humification des sols forestiers tropicaux du Congo. Doctoral Thesis, Université Paris X II

    Google Scholar 

  62. Garnier-Sillam, E. (1991) Comparative physicochemical properties of soil-feeding Thoracotermes macrothorax and fungus-growing Macrotermes mülleri termite mounds. Biogeochemistry 48, 7–13.

    Google Scholar 

  63. Garnier-Sillam, E. and Harry, M. (1995) Distribution of humic compounds in mounds of some soil-feeding termikte species of tropical rainforests: its influence on soil structure stability. Insectes Sociaux 42, 167–185.

    Google Scholar 

  64. Garnier-Sillam, E. and Tessier, D. (1991) Rôle des termites sur le spectre poral des sols forestiers tropicaux: cas de Thoracotermes macrothorax et de Macrotermes mülleri (Sjöstedt). Insectes Sociaux 38, 397–412.

    Google Scholar 

  65. Grassé, P.-P. (1984) Termitologia, Vol. 2. Fondation des Sociétés - Construction. Masson, Paris.

    Google Scholar 

  66. Grassé, P.-P. and Noirot, C. (1959) L’évolution de la symbiose chez les Isoptères. Experientia 15, 365–372.

    PubMed  Google Scholar 

  67. Groombridge, B. (1992) Global Biodiversity. Status of the Earth’s Living Resources. Chapman and Hall, London.

    Google Scholar 

  68. Hamdi, M., Brauman, A. and Garcia, J.L. (1992) Effect of an anaerobic bacterial consortium isolated from termites on the degradation of olive-mill waste water. Applied Microbiology and Biotechnology 37, 408–410.

    CAS  Google Scholar 

  69. Heal, O.W. and Dighton, J. (1985) Resource quality and trophic structure in the soil system. In Ecological Interaction in Soil (A.H. Fitter, et al.,Eds.), pp. 339354., Blackwell Scientific Publications., Oxford.

    Google Scholar 

  70. Holt, J.A. (1987) Carbon mineralization in semi-arid northeastern Australia: the role of termites. Journal of Tropical Ecology 3, 255–263.

    Google Scholar 

  71. Holt, J.A. (1996) Mound-building termites and soil microbial biomass: an interaction influencing termite abundance. Insectes Sociaux 43, 427–434.

    Google Scholar 

  72. Homathevi, R., et al. (1998) Assessment of termite abundance and biomass in the tropical rainforest of Sabah. Manuscript in preparation.

    Google Scholar 

  73. Hopkins, D.W., et al. (1998) Application of 13C-NMR to investigate the transformations and biodegradation of organic materials by wood-and soil-feeding termites, and a coprophagous litter-dwelling dipteran larva. Biodegradation 9, 423–431.

    CAS  PubMed  Google Scholar 

  74. Inoue, T. et al. (1997) Cellulose and xylan utilization in the lower termite Reticulitermes speratus. Journal of Insect Physiology 43, 235–242.

    CAS  Google Scholar 

  75. Inoue, T., et al. (1998) Higher termites and cellulolytic amoebae: a new symbiotic relationship. Manuscript in preparation.

    Google Scholar 

  76. Jeeva, D., et al. (1999) Respiratory gas exchanges of termites from the Sabah (Borneo) assemblage. Physiological Entomology 24, 11–17.

    Google Scholar 

  77. Kane, M.D., Brauman, A. and Breznak, J.A. (1991) Clostridium mayombei sp. nov., an H2/CO2 acetogenic bacterium from the gut of the African soil-feeding termite, Cubitermes speciosus. Archives of Microbiology 156, 99–104.

    CAS  Google Scholar 

  78. Kovoor, J. (1968) L’intestin d’une termite supérieur (Microcerotermes edentatus, Wasman, Amitermitinae). Histophysiologie, et flore bactériennes symbiotique. Bulletin Biologique de France et de Belgique 102, 4584.

    Google Scholar 

  79. Lavelle, P. (1996) Diversity of soil fauna and ecosystem function. Biology International 33, 3–16.

    Google Scholar 

  80. Lavelle, P. (1997) Faunal activities and soil processes: adaptive strategies that determine ecosystem function. Advances in Ecological Research 27, 93–132.

    Google Scholar 

  81. Lavelle, P., Bignell, D.E. and Lepage, M. (1997) Soil function in a changing world: the role of invertebrate ecosystem engineers. European Journal of Soil Biology 33, 159–193.

    CAS  Google Scholar 

  82. Lavelle, P., et al. (1994) Mutualism and biodiversity in soils. Plant and Soil. 170, 23–33.

    Google Scholar 

  83. Leadbetter, J.R. and Breznak, J.A. (1996) Physiological ecology of Methanobrevibacter cuticularis sp. nov., and Methanobrevibacter curvatus sp. nov., isolated from the hindgut of the termite Reticulitermes flavipes. Applied and Environmental Microbiology 62, 3620–3631.

    CAS  Google Scholar 

  84. Lee, K.E. and Foster, R.C. (1991) Soil fauna and soil structure. Australian Journal of Soil Research 29, 745–775.

    Google Scholar 

  85. Lenoir-Labé, F. (1996) Recherche d’une microflore actinomycetale spécifique du segment mixte de plusieurs espèces de termites supérieurs: caractérisation et rôles. Doctoral Thesis, Université Paris X II.

    Google Scholar 

  86. Lepage, M., Abbadie, L. and Mariotti, A. (1993) Food habits of sympatric termites (Isoptera, Macrotermitinae) as determined by stable isotope analysis in a Guinean savana (Lamto, Cote d’Ivoire). Journal of Tropical Ecology 9, 303–311.

    Google Scholar 

  87. Lin, C., Raskin, L. and Stahl, D.A. (1997) Microbial community structure in gastrointestinal tracts of domestic animals: comparative analysis using rRNA targeted oligonucleotide probes. FEMS Microbiology Ecology 22, 281–294.

    CAS  Google Scholar 

  88. Lobry de Bruyn, L. and Conacher. A.J. (1990) The role of termites and ants in soil modification: a review. Australian Journal of Soil Research 28, 55–93.

    Google Scholar 

  89. Martius, C. (1994) Diversity and ecology of termites in Amazonian forests. Pedobio, ogia 38, 407–428.

    Google Scholar 

  90. May, R.M. (1973) Stability and Complexity in Model Ecosystems. Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  91. Mill, A.E. (1991) Termites as structural pests in Amazonia, Brazil. Sociobiology 19, 339–348.

    Google Scholar 

  92. Miller, L.R. (1991) A revision of the TermesCapritermes branch of the Termitidae in Australia (Isoptera: Termitidae). Invertebrate Taxonomy 4, 11471282.

    Google Scholar 

  93. Miller, L.R. (1994) Amitermes arboreus Roisin in Australia, with notes on its biology (lsoptera: Termitidae). Journal of the Australian Entomological Society 33, 305–308.

    Google Scholar 

  94. Miller, T.L. and Wolin, M.J. (1982) Enumeration of Methanobrevihacter smithii in hwnan faeces. Archives ofMicrobiology 131, 14–18.

    CAS  Google Scholar 

  95. Minagawa, M. and Wada, E. (1984) Stepwise enrichment of 15N along food chains: further evidence and the relationship between 0j5N and animal age. Geochimica Cosmochimica Acta 48, 1135–1140.

    CAS  Google Scholar 

  96. Mora, P., Lattaud, C. and Rouland, C. (1998) Recherche d’enzymes intervenant dans la dégradation de la lignine chez pleusieurs espèces de termites à régime alimentaire différents. Actes Colloques UIEIS 11, 77–80.

    Google Scholar 

  97. Noirot, C. (1992) From wood-to humus-feeding: an important trend in termite evolution. In Biology and Evolution of Social Insects (J. Billen, Ed.), pp. 107119, Leuven University Press, Leuven.

    Google Scholar 

  98. Nunes, L., et al. (1997) On the respiratory quotient (RQ) of termites (Insecta: Isoptera). Journal of Insect Physiology 43, 749–758.

    CAS  PubMed  Google Scholar 

  99. Ohkuma, M. and Kudo, T. (1996) Phylogenetic diversity of the intestinal bacterial community in the termite Reticulitermes speratus. Applied and Environmental Microbiology 62, 461–468.

    CAS  Google Scholar 

  100. Ohkuma, M., et al. (1995) Phylogeny of symbiotic methanogens in the gut of the termite Reticulitermes speratus. FEMS Microbiology Letters 134, 45–50.

    CAS  Google Scholar 

  101. Ohkuma, M., et al. (1996) Diversity of nitrogen fixation genes in the symbiotic intestinal microflora of the termite Reticulitermes speratus. Applied and Environmental Microbiology 62, 2747–2752.

    CAS  Google Scholar 

  102. Pasti, M.B. and Belli, M.L. (1985) Cellulolytic activity of actinomycetes isolated from termites (Termitidae) gut. FEMS Microbiology Letters 26, 107112.

    Google Scholar 

  103. Penry, D.L. and Jumars, P.A. (1987) Modelling animal guts as chemical reactors. American Naturalist 129, 69–96.

    CAS  Google Scholar 

  104. Rouland, C., et al. (1993) Nutritional factors affecting methane emission from termites. Chemosphere 26, 617–622.

    CAS  Google Scholar 

  105. Rouland, C., et at (1993) Mechanismes de production de methane par les termites en forêt tropicale. In Echanges forêtatmosphere en milieu tropicale humide,Vol. 5, pp. 97–106, UNESCO, Paris.

    Google Scholar 

  106. Rouland, C., Chararas, C. and Renoux, J. (1986) Etude compareés des osidases de trois espèces de termites Africain à régime alimentaire différent. Comptes Rendues de l’Academie Sciences Paris 9, 341345.

    Google Scholar 

  107. Rouland, C., Chararas, C. and Renoux, J. (1987) Contribution a l’étude des osidases digestives de plusieurs especes de termites africains. Bulletin Scientifique et Technicale de INRA 22, 79–93.

    Google Scholar 

  108. Rouland, C., Chararas, C. and Renoux, J. (1989) Les osidases digestives présentes dans l’intestin moyen, l’intestin postérieur et les glandes salivaires du termite humivore Crenetermes albotarsalis. Comptes Rendues de l’Académie des Sciences, Paris, Ser. III 308, 281285.

    Google Scholar 

  109. Rouland, C., et al. (1988) Purification and properties of cellulases from the termite Macrotermes miilleri (Termitidae, Macrotermitinae) and its symbiotic fungus Termitomyces sp. Comparative Biochemistry and Physiology 91B, 449–458.

    Google Scholar 

  110. Rouland, C., et at (1988) Synergistic activities of the enzymes involved in cellulose degradation, purified from Macrotermes mülleri and from its symbiotic fungus Termitomyces sp. Comparative Biochemistry and Physiology 91B, 459–465.

    Google Scholar 

  111. Rouland, C. and Lenoir-Labé, F. (1998) Microflore intestinale symbiotique des insectes xylophages: mythe ou réalité? Cahiers de l’Agriculture 7, 37–47.

    Google Scholar 

  112. Rouland, C., et at (1986) Étude comparative entre la ß-glucosidase présente dans le tube digestif du termite Macrotermes mailer’ et la ß-glucosidase du champignon symbiotique Termitomyces sp. Actes Colloque UIEIS 3, 109–118.

    Google Scholar 

  113. Sands, W.A. (1965) A revision of the Nasutitermitinae (Isoptera, Termitidae) within the Ethiopean zoogeographical region. Bulletin of the British Museum (Natural History) Entomology Supplement 4, 1–172.

    Google Scholar 

  114. Sands, W.A. (1972) The soldierless termites of Africa (Isoptera: Termitidae). Bulletin of the British Museum (Natural History) (Entomology Supplement) 18, 1–224.

    Google Scholar 

  115. Slaytor, M., Veivers, P.C. and Lo, N. (1997) Aerobic and anaerobic metabolism in the higher termite Nasutitermes walkeri (Hill). Insect Biochemistry and Molecular Biology 27, 291–303.

    CAS  Google Scholar 

  116. Sleaford, F., Bignell, D.E. and Eggleton, P. (1996) A pilot analysis of gut contents in termites from the Mablmavo Forest Reserve, Cameroon. Ecological Entomology 21, 279–288.

    Google Scholar 

  117. Solbrig, O.T. Ed. (1991) From Genes to Ecosystems-a Research Agenda for Biodiversity. IUBS/SCOP:~..’ iNESCO, Paris.

    Google Scholar 

  118. Spain. A.V. and Reddell, P. (1996) 013C values of selected termites (Isoptera) and termite-modified materials. Sou Biology and Biochemistry 28 15851)93.

    Google Scholar 

  119. Stahl. D.A and Amann, R.I. (1991) Development and application of nucleic acid probes. In Nucleic Acid Techniques in Bacterial Systematics ( E. Stackebrandt and M. Goodfellow, Eds.), pp. 205–248, John Wiley and Sons, Chichester.

    Google Scholar 

  120. Sugimoto, A., et al. (1998) Methane and hydrogen production in a termite-symbiont system. Ecological Research 13, 241–257.

    CAS  Google Scholar 

  121. Swift, M.J., Heal, O.W. and Anderson. J.M. (1979) Decomposition in Terrestrial Ecosystems. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  122. Tayasu, I. (1998) The use of carbon and nitrogen isotope ratios in termite research. Ecological Research 13, 377–387.

    Google Scholar 

  123. Tayasu, I., et at (1997) Nitrogen and carbon isotope ratios in termites: an indicator of trophic habit along the gradient from wood-feeding to soil-feeding. Ecological Entomology 22, 343–351.

    Google Scholar 

  124. Tayasu, I., et al. (1998) Confirmation of soil-feeding termites (Isoptera; Termitidae; Termitinae) in Australia using stable isotope ratios. Functional Ecology 12, 536–542.

    Google Scholar 

  125. Tayasu, I., et al. (1994) Xylophagous termites depending on atmospheric nitrogen. Naturwissenschaften 81, 229–231.

    Google Scholar 

  126. Thapa, R.S. (1981) Termites of Sabah. Sabah Forest Record 12, 1–374.

    Google Scholar 

  127. Tho, Y.P. (1992) Termites of Pensinsular Malaysia. Forest Research Institute of Malaysia, Kuala Lumpur.

    Google Scholar 

  128. Tholen, A., Schink, B. and Brune, A. (1997) The gut microflora of Reticulitermes flavipes, its relation to oxygen, and evidence for oxygen-dependent acetogenesis by the most abundant Enterococcus sp. FEMS Microbiology Ecology 24, 137–149.

    CAS  Google Scholar 

  129. Torsvik, V.J., Goksoyr, J. and Daae, F.L. (1990) High biodiversity in DNA of soil bacteria. Applied and Environmental Microbiology 56, 782–787.

    CAS  PubMed Central  PubMed  Google Scholar 

  130. Van Soest, P.J. (1994) Nutritional Ecology of the Ruminant. Cornell University Press., Ithaca, New York.

    Google Scholar 

  131. Wada, E., Mizutani, H. and Minagawa, M. (1991) The use of stable isotopes for food web analysis. Critical Reviews in Food Science and Nutrition 30, 30.

    Google Scholar 

  132. Watson, J.A.L. and Abbey, H.M. (1993) Atlas of Australian Termites. CSIRO, Canberra.

    Google Scholar 

  133. Wood, T.G. (1988) Termites and the soil environment. Biology and Fertility of Soils 6, 228–236.

    Google Scholar 

  134. Wood, T.G. (1996) The agricultural importance of termites in the tropics. Agricultural Zoology Reviews 7, 117–155.

    Google Scholar 

  135. Wood, T.G. and Sands, W.A. (1978) The role of termites in ecosystems. In Production Ecology of Ants and Termites ( M.V. Brian, Ed.), pp. 245–292, Cambridge University Press, Cambridge.

    Google Scholar 

  136. Yang, J.F., Bordeaux, M. and Smith, P.H. (1985) Isolation of methanogeneic bacteria from termites. In 85th Meeting of the American Society for Microbiology, Abstract I-83. Washington, D.C., American Society for Microbiology.

    Google Scholar 

  137. Yapi, A. (1991) Biologie, Ecologie et Metabolisme Digestij de Quelques Especes de Termites Humivores de Savane. Doctoral Thesis. Université d’Abidj an.

    Google Scholar 

  138. Yara, K., Jahana, K. and Hayashi, H (1989) In situ morphology of the gut microbiota of the fungus-growing termite Odontotermes formosanus (Termitidae, Macrotermitinae). Sociobiology 15 247260.

    Google Scholar 

  139. Zeikus, J.G. (1983) Lignin metabolism and the carbon cycle: polymer biosynthesis, biodegradation and environmental recalcitrance. In Advances in Microbial Ecology ( M. Alexander, Ed.), pp. 211–243, Plenum, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Brauman, A., Bignell, D.E., Tayasu, I. (2000). Soil-Feeding Termites: Biology, Microbial Associations and Digestive Mechanisms. In: Abe, T., Bignell, D.E., Higashi, M. (eds) Termites: Evolution, Sociality, Symbioses, Ecology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3223-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-3223-9_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5476-0

  • Online ISBN: 978-94-017-3223-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics