Skip to main content

Physical Mechanisms Contributing to Seismic Attenuation in the Crust

  • Chapter
Strong Ground Motion Seismology

Part of the book series: NATO ASI Series ((ASIC,volume 204))

Abstract

The mechanisms contributing to the attenuation of earthquake ground motion in the distance range of 10 to 200 km are studied with the aid of laboratory data, coda waves and strong motion attenuation measurements in northeast United States and Canada and theoretical models. The relative contributions to attenuation of anelasticity of crustal rocks (constant Q), fluid flow and scattering are evaluated. Scattering is found to be strong with albedo of B0=0.9 and scattering extinction length of about 17 km. The intrinsic attenuation in the crust can be explained by a high constant Q(500 ≤ Q0 ≤ 2000) and a frequency dependent mechanism most likely due to fluid effects in rocks and cracks. A fluid-flow attenuation model gives a frequency dependence (Q ≃ Q0 f0.5) similar to those determined from the analysis of coda waves of regional seismograms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aki, K., and Chouet, B.,(1975),Origin of coda waves: source, attenuation and scattering effects, J.Geophys. Res., 80, 3322–3342.

    Article  Google Scholar 

  2. Aki, K.,(1980),Attenuation of shear waves in the lithosphere for frequencies from 0.05 to 25 Hz, Phys. Earth Planet. Inter., 21, 50–60.

    Article  Google Scholar 

  3. Aki, K., and Richards, P.G.,(1980),Quantitative seismology. Theory and methods. W.H. Freeman and Co., San Francisco.

    Google Scholar 

  4. Auriault, J.L., Borne, L., and Chambon, R.,(1985),Dynamics of porous saturated media,; checking of the generalized law of Darcy, J.Acoust.Soc. Am., 77, 1641–1650.

    Article  Google Scholar 

  5. Birch, F., and Bancroft, D.,(1938),Elasticity and internal friction in a long column of granite, Bull. Seism. Soc. Am., 28, 243–254.

    Google Scholar 

  6. Bradley, J.J., and Fort, A.N.Jr.,(1966),Internal friction in rocks in Handbook of Physical constants, S.P.Clark, Jr., Ed., GSA Publ., p.175–193.

    Google Scholar 

  7. Brown, R.J.S., and Korringa, J.,(1975),On the dependence of the elastic properties of a porous rock on the compressibility of the pore fluid, Geophysics, 40, 608–616.

    Article  Google Scholar 

  8. Biot, M.A.,(1956a),Theory of propagation of elastic waves in a fluid saturated porous solid. I.Low frequency range, J.Acoust. Soc.Am., 28, 168–178.

    Article  Google Scholar 

  9. Biot, M.A.,(1956b),Theory of propagation of elastic waves in a fluid saturated porous solid. II.Higher frequency range, J.Acoust. Soc. Am., 28, 179–191.

    Article  Google Scholar 

  10. Biot, M.A.,(1962), Mechanics of deformation and acoustic propagation in porous media, J.Appl. Phys., 33, 1482–1488.

    Article  Google Scholar 

  11. Clark, V.A., Spencer, T.W., Tittmann, B.R., Ahlberg, L.A., and Coombe, L.T.,(1980),Effect of volatiles on attenuation Q-1 and velocity in sedimentary rocks, J.Geophys. Res., 85, 5190–5198.

    Article  Google Scholar 

  12. Dainty, A.M., Goins, N.R., and Toksöz,M.N.,(1976),Seismic investigation of the lunar interior, in Lunar science VII:Houston Lunar Science Institute, p.181–183.

    Google Scholar 

  13. Dainty, A.M., and Toksöz,M.N.,(1977),Elastic wave propagation in a highly scattering medium. A diffusion approach, J.Geophys., 43, 375–388.

    Google Scholar 

  14. Dainty, A.M., and Tóksöz,M.N.,(1981),Seismic codas on the Earth and the Moon: a comparison, Phys. Earth and Plan. Int., 26, 250–260.

    Article  Google Scholar 

  15. Dunn, K.J.,(1985),Acoustic attenuation in fluid saturated porous cylinders at low frequencies, J.Acoust.Soc.Am, 79, 1709–1721.

    Article  Google Scholar 

  16. Gao, L.S., Lee, L.C., Biswas, N.H., and c, K.,(1983a),Comparison of the effects between single and multiple scattering on coda waves for local earthquakes, Bull.Seism. Soc. Am., 73, 373–389.

    Google Scholar 

  17. Gao, L.S., Lee, L.C., Biswas, N.H., and Aki, K.,(1983b),Effects of multiple scattering on coda waves in three-dimensional medium, Pure and Applied Geoph., 121, 3–15.

    Article  Google Scholar 

  18. Gardner, G.H.F., Wyllie, M.R.J., and Droschack, D.M. (1964), Effects of pressure and fluidpaturation on the attenuation of elastic waves in sands, J.Petr.Tech., 189–198.

    Google Scholar 

  19. Gupta, I.N., Burnetti, A., McElfresh, T.W., von Seggern, D.H., and Wagner, R.A. (1983), Lateral variations in attenuation of ground motion in the eastern United States based on propagation of Lg.NUREG/CR-3555, U.S. Nuclear Regulatory Commission, Washington, D.C.

    Google Scholar 

  20. Hermann, R.B. (1980), Q estimates using the coda of local earthquakes, Bull. Seism. Soc. Am., 70, 447–468.

    Google Scholar 

  21. Johnston, D.H., and Toksöz, M.N. (1980), Ultrasonic P and S wave attenuation in dry and saturated rocks under pressure, J.Geophys. Res., 85, 925–936.

    Google Scholar 

  22. Klima, K., Vanek, J., and Pros, Z. (1964), The attenuation of longitudinal waves in diabase and greywacke under pressure up to 4 kilobars, Studia Geoph. et Geod., 8, 247–254.

    Article  Google Scholar 

  23. Knopoff, L. (1964), Q, Rev. Geophys., 2, 625–660.

    Article  Google Scholar 

  24. Kopnichev, Y.F. (1977), The role of multiple scattering in the formation of a seismogram tail, Izv. Acad. Sci., USSR, Phys. Solid Earth, 13, 394–398.

    Google Scholar 

  25. Mason, W.P., Beshers, D.N., and kuo, J.T.,(1970),Internal friction in Westerly granite: Relation to dislocation theory, J.Appl. Phys., 41, 5206–5209.

    Google Scholar 

  26. Nur, A., and Winkler, K. (1980), The role of friction and fluid flow in wave attenuation in rocks (abst.), Geophysics, 45, 591–592.

    Google Scholar 

  27. O’Doherty, R.F., and Anstey, N.A.,(1971),Reflections on amplitudes, Geophys. Prospect., 19, 430–458.

    Google Scholar 

  28. Pandit, B.I., and Savage, J.C. (1973), An experimental test of Lomnitz’s theory of internal friction in rocks, J.Geophys. Res., 78, 6097–6099.

    Google Scholar 

  29. Peselnick, L., and Outerbridge, W.F. (1961), Internal friction in shear and shear modulus of Solenhofen limestone over a frequency range of 107 cycles per second, J.Geophys. Res., 66, 581–588.

    Google Scholar 

  30. Plona, T.J., Observation of a second bulk compressional wave in a porous medium at ultrasonic frequencies, Appl. Phys. Lett., 36, 256–261.

    Google Scholar 

  31. Plona, T.J., and Johnson, D.L. (1980), Experimental study of the two bulk compressional modes in water saturated porous structures,Ultrasonic Symposium, 864–872.

    Google Scholar 

  32. Pulli, J. (1984), Attenuation of coda waves in New England, Bull. Seism. Soc. Am., 74, 1149–1166.

    Google Scholar 

  33. Rautian, T.G., and Khalturin, V.I. (1978), The use of the coda for the determination of the earthquake source spectrum, Bull. Seism. Soc. Am., 1809–1827.

    Google Scholar 

  34. Richards, P.G., and Menke, W. (1983), The apparent attenuation of a scattering medium, Bull. Seism. Soc. Am. 73, 1005–1021.

    Google Scholar 

  35. Roecker, S.W., Tucker, B., King, J., and Hatzfled, D. (1982), Estimates of Q in central Asia as a function of frequency and depth using the coda of locally recorded earthquakes, Bull. Seism. Soc. Am., 72, 129–149.

    Google Scholar 

  36. Schmitt, D.P. (1985), Simulation numérique de diagraphies acoustiques. Propagation d’ondes dans des formations cylindriques axisymétriques radialement stratifiées incluant des milieux élastiques et/ou poreux saturés. Ph.D. thesis. Grenoble Univ.

    Google Scholar 

  37. Singh, S. (1985), Lg and coda wave studies of Eastern Canada, Ph.D. thesis Saint Louis University, Missouri.

    Google Scholar 

  38. Singh, S., and Hermann,R.B. (1983), Regionalization of crustal coda Q in the continental United States, J.Geophys. Res., 88, 527–538.

    Google Scholar 

  39. Spencer, J.W., Jr. (1981), Stress relaxations at low frequencies in fluid saturated rocks: attenuation and modulus dispersion. J.Geophys. Res., 86, 1803–1812.

    Google Scholar 

  40. Tittmann, B.R., Housley, R.M., Alers, G.A., and Cirlin, E.H. (1974), Internal friction in rocks and its relationship to volatiles on the moon, in Lunar Science Conf., 5th Proc., Geochim. et Cosmochim. Acta, suppl.

    Google Scholar 

  41. v.3, 2913–2918.

    Google Scholar 

  42. Tittmann, B.R., Nadler, H., Clark, V.A., Ahlberg,L.A., and Spencer,T.W. (1981), Frequency dependence of seismic dissipation in saturated rocks, Geophys. Res. Lett., 8, 36–38.

    Google Scholar 

  43. Toksöz, M.N., Johnston, D.H., and Timur,A. (1979), Attenuation of seismic waves in dry and saturated rocks. I.Laboratory measurements, Geophysics, 44, 681–690.

    Article  Google Scholar 

  44. Toksöz, M.N., and Johnston, D.H. (1981), Seismic wave attenuation. Editors. Geophysics reprint series No.2. Society of Exploration Geophysicist.

    Google Scholar 

  45. Walfish, J.B. (1966), Seismic wave attenuation in rock due to fracture, J.Geophys. Res., 17, 2591–2599.

    Google Scholar 

  46. Winkler, K., and Nur, A. (1979), Pore fluids and seismic attenuation in rocks, Geophys. Res. Lett., 6, 1–4.

    Article  Google Scholar 

  47. Wu, R.S. (1984), Multiple scattering and energy transfer of seismic waves and the application:òf the theory to Hindu Kush region, in “Seismic wave scattering and the small scall inhomogeneities in the lithosphere”, Chapter 4, Ph.D.thesis, Mass. Inst.Tech., Cambridge, M.A.

    Google Scholar 

  48. Wu, R.S., Multiple scattering and energy transfer of seismic waves. Separation of scattering effect from intrinsic attenuation. I.Theoretical modelling., Geophys. J. R.Astr. Soc., 82, 57–80.

    Google Scholar 

  49. Wu, R.S., and Aki.K. (1985), Multiple scattering and energy transfer of seismic waves. Separation of scattering effect from intrinsic attenuation. I I. Application of the theory to Hindu Kush region, submitted to J.Geophys. Res..

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Toksöz, M.N., Wu, R.S., Schmitt, D.P. (1987). Physical Mechanisms Contributing to Seismic Attenuation in the Crust. In: Erdik, M.Ö., Toksöz, M.N. (eds) Strong Ground Motion Seismology. NATO ASI Series, vol 204. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3095-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-3095-2_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-8440-8

  • Online ISBN: 978-94-017-3095-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics