Skip to main content

Genetically Engineered Grape for Disease and Stress Tolerance

  • Chapter
Molecular Biology & Biotechnology of the Grapevine

Abstract

In 1936, Negrul (1936) suggested a concept for the distribution of forms of immunity in Vitis, in the chapter “Variation and Inheritance of Immunity” of his book “The Genetic Basis of Grape Breeding”. The idea was based on conclusions made previously by Planchon and Viala and reconfirmed by his own studies. This concept considered a direct dependency of the existing biodiversity and development of forms of immunity in Vitis, with the center of geographical distribution of the major pathogens and pests of grape. The most common diseases — powdery mildew (Uncinula necator) and downy mildew (Plasmopara viticola); the most damaging pests — phylloxera (Dactulosphaira vitifoliae Fitch) emerged after exploration of the continent of America, and Old World grape varieties were introduced into the New World and vice versa.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agrios, G.N. (1988) Plant Pathology. Academic Press, New York.

    Google Scholar 

  • Allen, R.D. (1995) Dissection of oxidative stress tolerance using transgenic plants. Plant Physiol. 107: 10491054.

    Google Scholar 

  • Alleweldt, G., Spiegel-Roy, P., and B. Raisch (1990) Grapes (Vitis). In: Genetic Resources of Temperate Fruit and Nut Crops, J. N. Moore and J.R. Ballington (Eds). Acta Hortic., pp. 291–337.

    Google Scholar 

  • Aronson, A.l., Beckman, W. and P. Dunn (1986) Bacillus thuringiensis and related insect pathogens. Microb. Rev. 50: 1–24.

    Google Scholar 

  • Asada, K. (1994) Production and action of toxic oxygen species in photosynthesis tissue. In: Causes of Phytooxidative Stress and Amelioration of Defense Systems in Plants, C.H. Foyer and P.M. Mullineaux (Eds). CRC Press, Boca Raton, pp. 77–104.

    Google Scholar 

  • Atkinson, H.J., Urrwin, P.E., Hansen, E., and M.J. McPherson (1995) Designs for engineered resistance to root-parasitic nematodes. Trends Biotech. 13: 369–374.

    Article  CAS  Google Scholar 

  • Barbier, P., Demangeat, G., Perin, M., Cobanov, P., Jacquet, C., and B. Walter (1997) Grapevine genetically transformed with the coat protein gene of grapevine fanleaf virus: an analysis of transformants. Proceeding of the 12ei ICGV Meeting, Abstracts, Lisbon.

    Google Scholar 

  • Baribault, T.J., Skene, K.G.M., and N.S. Scott (1990) Transgenic grapevines: regeneration of shoots expressing b-glucoronidase. J. Exp. Bot. 41: 1045–1049.

    Google Scholar 

  • Baulcombe, D. (1994) Novel strategies for engineering virus resistance in plants. Curr. Op n. Biotech. 5: 117124.

    Google Scholar 

  • Beachy, R.N. (1993) Introduction: Transgenic resistance to plant viruses. Virology 4: 327–328.

    Google Scholar 

  • Berres, R., Otten, L., Tinland, B., Malgarini-Clog, E., and B. Walter (1992) Transformation of Vitis tissue by different strains of Agrobacterium tumefaciens containing the T-6B gene. Plant Cell Repts 1I: 192–195.

    Google Scholar 

  • Beyer, Y., lmaly, J., and I. Fridovich (1991) Superoxide dismutases. Proc.Nucl. Acid Res. Mol. Biol. 40: 221–253.

    Google Scholar 

  • Boman, H.G. (1995) Peptide antibiotics and their role in innate immunity. Annu. Rev. Immunol. 13: 61–92. Bouquet, A. (1993) Vignes transgeniques et resistance aux virus. Progr. Agric. Vitic. 110: 327–330.

    Google Scholar 

  • Bowler, C., Van Montagu, M., and D. Inzé (1992) Superoxide dismutase and stress tolerance. Annu. Rev. Plant. Physiol. Plant. Mol. Biol. 43: 83–116.

    Google Scholar 

  • Bowles, D.J. (1990) Defence-related proteins in higher plants. Annu. Rev. Biochem. 59: 873–907.

    Google Scholar 

  • Broekaert, W.F., Terras, F.R.G., Cammue, B.P.A., and R.W. Osborn (1995) Plant defensins: Novel antimicrobial peptides as components of the host defense system. Plant Physiol. 108: 1353–1358.

    Google Scholar 

  • Burr, T. and B. Katz (1984) Grapevine cutting as potential sites of survival and means of dissemination of Agrobacterium tumefaciens. Plant Dis. 68: 976–978.

    Google Scholar 

  • Casteels, P., Ampc, C., Jacobs, F., Vaeck, M., and P. Tempst (1989) Apidaecins: antibacterials peptides from honeybees. EMBO J. 8: 2387–2391.

    PubMed  CAS  Google Scholar 

  • Chen, C.H., Brown, J.H., Morell, J., and C.M. Huang (1988) Synthetic magainin analogous with improved antimicrobial activity. FEBS Lett. 236: 462–466.

    Article  PubMed  CAS  Google Scholar 

  • Citovsky, V., Warnick, D., and P. Zambryski, (1994) Nuclear import of Agrobacterium VirD2 and VirE2 proteins in maize and tobacco. Proc. Natl. Acad. Sci. U.S.A. 91: 3210–3214

    Google Scholar 

  • Collinge, D.B. and A.J. Slusarenko, (1987) Plant gene expression in response to pathogens. Plant. Mol. Biol. 9: 389–410.

    Google Scholar 

  • Colova-Tsolova, V., Farchi, Sh., Tsvetkov, Iv. Atanassov, A., and A. Perl (2000) Monitoring of stage of development in two alternative protocols for embryogenic cell suspension in European grape Vitis vinifera L., as an inductive response subjected to plant growth regulators. Plant Sci. On press).

    Google Scholar 

  • Colova-Tsolova, V., Gollop, R., Farchi, S., Even, S., Sahar, N., and A. Perl (2000) A highly efficient Agrobacterium transformation system in grape embryogenic cell suspension enable co-transformation using simultaneously two Agrobacteria carrying different selectable markers. HortScience 35 (3): 393.

    Google Scholar 

  • Courtois, N., Gaire, F., Mauro, M., Toutain, S., Burrus, M., Pink, L., Walter, B., Audran, J., and B. Duteurtre (1997) Electroporation of grapevine protoplast: Inoculation of GFLV into grapevine for the screening of transgenic plants. Proceeding of the 12’h ICGV Meeting, Abstracts, Lisbon.

    Google Scholar 

  • Coutos-Thevenot, P., Mauro, M.C., Breda, C., Buffard, D., Esnault, R., Hain, R., and M. Boulay (1998) First approaches for improving through molecular way grapevine tolerance to fungus disease. Resumes, The VII Symposium International sur la Genetique et l’amellioration de la Vigne. Montpellier, C4. 2, p. 103.

    Google Scholar 

  • Dangl, J.L. (1995) Piece de resistance: novel classes of plant disease resistance genes. Cell 80: 363–366.

    Article  PubMed  CAS  Google Scholar 

  • Dangl, J.L., Dietrich, R.A., and M.H. Richberg (1996) Death don’t have no mercy: Cell death programs in plant microbe interactions. Plant Cell 8: 1793–1807.

    Google Scholar 

  • Darvill, A.G. and P. Albersheim (1984) Phytoalexins and their elicitors —A defence against microbial infection in plants. Annu. Rev. Plant. Physiol. 35: 243–275.

    Google Scholar 

  • Destefano-Beltran, L., Nagpala, P.G., Cetiner, S.M., Denny, T., and M.J. Jaynes (1993) Using genes encoding novel peptides and proteins to enhance disease resistance in plants. In: Biotechnology in Plant Disease Control, L Chet (Ed.). John Wiley & Sons, Inc. New York, pp. 175–189

    Google Scholar 

  • Dixon, R.A. and C.J. Lamb (1990) Molecular communication in interactions between plants and microbial pathogens. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41: 339–367.

    Google Scholar 

  • Dixon, R.A., Lamb, C.J., Paiva, N.L., and S. Masoud (1996) Improvement of natural defense responses. Annu. N. Y. Acad. Sci. 792: 126–139.

    Google Scholar 

  • During, K., Porsch, P., Fladung, M., and H. Lorz (1993) Thransgenic potato plants resistant to the phytopathogenic bacterium Ervinia corotovora. Plant J. 3: 587–598.

    Article  Google Scholar 

  • Fink, J., Boman, A., Boman, H.G.,and R.B. Merrifield (1989) Design, synthesis and antibacterial activity of cecropinilike model peptides. 1m. J. Peptide Protein Res. 33s: 412–421.

    Article  CAS  Google Scholar 

  • Flor, H.H. (1942) Inheritance of pathogenicity in Melanospora lini. Phytopathology 32: 653–669. Flor, H.H. (1956) The complementary genic system in flax and flax rust. Adv. Genet. 8: 29–54.

    Google Scholar 

  • Gabriel D.W. and B.G. Rolfe (1990) Working models of specific recognition in plant-microbe interactions. Annu. Rev. Phytopathol. 28: 365–391.

    Google Scholar 

  • Galun, E. and A. Breiman, (1997) Transgenic Plants. Imperial College Press, London.

    Book  Google Scholar 

  • Golembovski, D.V., Lomonossov, G.Y., and M. Zaitlin (1990) Plants transformed with tobacco mosaic virus nonstructural gene sequence are resistant to the virus. Proc. Natl. Acad. Sci. USA 87: 6311–6315.

    Google Scholar 

  • Gölless, R., da Camara Machado, A., Tsolova, V., Bouquet, A., Moser, R., Katinger, H., and M. Laimer da Camara Machado (1997) Transformation of somatic embryos of Vitis sp. with different constructs containing nucleotide sequences from nepovirus coat protein genes. Acta Hortic. 447: 265–272.

    Google Scholar 

  • Gölless, R., da Camara Machado, A., Minafra, A., Savino, G., Saldareli, G.P., Martell, H., Puringer, H., Katinger, H., and M. Laimer da Camara Machado (2000) Transgenic grapevines expressing coat protein gene sequences of grapevine fanleaf virus, arabis mosaic virus, grapevine virus A. and grapevine virus B. Proceedings of the VII International Symposium of Grape Genetics and Breeding. Montpellier, Acta Hortic. 528 (1): 305–311.

    Google Scholar 

  • Gray, D.J. and C.P. Meredith (1992) The Grape. In: Biotechnology in Agriculture, N8: Biotechnology of Perennial Crops, F. Hamershlag and R. E. Litz (Eds). CAB International, Wallingford, pp. 229–264.

    Google Scholar 

  • Gressel, J. and E. Galun (1994) Genetic controls of photooxidant tolerance. In: Causes of Phytooxidative Stress and Amelioration of Defense Systems in Plants, C.H. Foyer and P.M. Mullineaux (Eds). CRC Press, Boca Raton, pp. 237–273.

    Google Scholar 

  • Haberman, E. (1972) Bee and wasp venoms. Science 177: 314–322.

    Article  Google Scholar 

  • Hain, R., Reif, H.J., Krause, E., Langebartels, R., Kind!, 1I., Vomam, B., Wiese, W., Schmelzer, E., Schreier, P.H., Stocker, R.H., and K. Stenzel (1993) Disease resistance results from foreign phytoalexin expression in a novel plant. Nature 361: 153–156.

    Article  PubMed  CAS  Google Scholar 

  • Holmström, K.O., Welin, B., Mandat, A., Kritiansdottir, I., Teeri, T.H., Lamark, T., Strom, A.R., and E.T. Pavia (1994) Production of the Escherichia coli betain-aldehyde dehydrogenase, an enzyme required for the synthesis of the osmoprotectant glycine betaine in transgenic plants. Plant J. 6: 749–758.

    Article  PubMed  Google Scholar 

  • Hung, X.S. and M.G. Mullins (1989) Application of biotechnology to transferring alien genes to grapevine. Hereditas 11: 9–11.

    Google Scholar 

  • Jaines, J.M., Burton, C.A., Barr, S.B., Jeffers, G.W., White, K.L., Enright, F.M., Klei, T.R., Laine, R.A.,and G.R. Julian (1988) In vitro cytocidal effect of novel litic peptides on Plasmodium falcyparum and Tryponosoma cruzi. FSAEB J. 2: 2878–2883.

    Google Scholar 

  • Keen, N.T. (1990) Gene-for-gene complementary in plant-pathogen interactions. Annu. Rev. Genet. 24: 447463.

    Google Scholar 

  • Keen, N.T. and W.O. Dawson (1992) Pathogen avirulence genes and elicitors of plant defense. In: Genes Involved in Plant Defensesol. 8, Plant Gene Research, T. Boller and F. Mains (Eds). Springer-Verlag, New York, pp. 76–103.

    Google Scholar 

  • Kikkert, J.R., Ali, G.S., Striem, M.,1., Martens, M.H., Wallace, P.G., Molino, L., and B.I. Reisch (1997) Genetic engineering of grapevine (Vins sp.) for enhancement of disease resistance. Acta Hortic. 447: 273279.

    Google Scholar 

  • Kikkert, J.R., Reustle, G.M., Ali, G.S., Wallace, P.G., and B.1. Reisch (2000) Expression of a fungal chitinase in Vitis vinifiera L. “Merlot” and “Chardonnay” plants produced by biolistic transformation. Proceedings of The VII International Symposium of Grape Genetics and Breeding. Montpellier, Acta Hortic. 528 (1): 297–303.

    CAS  Google Scholar 

  • Krastanova, S., Walter, B., Perrin, M., Cornuet, P., Bardonet, N., Pinck, L., and L. Often (1993) Transfer and expression of the coat protein gene of grapevine fanleaf virus in grapevine. Extended Abstracts of the 11“’ Meeting 1CVG, Montreux, Switzerland, annex 3, p. 79–80.

    Google Scholar 

  • Krastanova, S., Perrin, M., Barbier, P., Demangeat, G., Cornuet, P., Bardonet, N., Olten, L., Pink, L., and B. Walter (1995) Transformation of grapevine rootstock with the coat protein gene of grapevine fanleaf nepovirus. Plant Cell Rep. 14: 550–554.

    Article  CAS  Google Scholar 

  • Krastanova, S., Perrin, M., Barbier, P., Demangeat, G.,and B. Walter (1995) Transformation de la vigne avec le gene de la proteine de coque d’un virus transmis par nematodes, le grapevine fanleaf nepovirus (GFLV), et tests de protection vis a vis du court-noue. Communication aux “Rencontre de virology vegetale” CNRS/1NRA, Aussios, p. 31–33.

    Google Scholar 

  • Krastanova, S., Marc-Martin, S., Gugerli, P., Sigrist-Prince, M-E., and A. Spielmann (1996) Transformation genetique d’embryons somatiques de vigne par Agrobacterium tumefaciens et regeneration de plants exprimant la protein capsidialc et la replicase du virus du GFLV et ou de ArMV. The 2nd Colmar Symposium for Biological Sciences, Plant Biology, CREF-Colmar, p. 56–57.

    Google Scholar 

  • Krastanova, S., Ling, K.S., Zhu, H.Y., Xue, B., Burr, T.J., and D. Gonsalves (2000a) Development of trans-genic grapevine rootstocks with the genes from grapevine fanleaf virus and grapevine leafroll associated closteroviruses 2 and 3. Proceedings of the VII International Symposium of Grape Genetics and Breeding. Montpellier, Acta Hortic. 528 (1): 367–372.

    CAS  Google Scholar 

  • Krastanova, S., Ling, K.S., Zhu, H.Y., Xue, B., Burr, T.J., and D. Gonsalves (20006) Development of trans-genic grapevine rootstocks with the genes from grapevine fanleaf virus and grapevine leafroll associated closteroviruses 2 and 3. Acta Hortic. 528: 367–372.

    Google Scholar 

  • Krastanova, S., Zhu, FI.Y., Burr, T.J., and D. Gonsalves (2000) Efficient grape transformation and expression of multiple transgenes. Plant Sci. (in press).

    Google Scholar 

  • Lamb, CG., Lawton, M.A., Dron, M., and R. Dixon (1989) Signals and transduction mechanisms for activation of plant defences against microbial attack. Cell 56: 215–224.

    Article  PubMed  CAS  Google Scholar 

  • Lamb, C.J., Ryals, J.A., Ward, E.R., and R.A. Dixon (1992) Emerging strategies for enhancing crop resistance to microbial pathogens. Bio/Technology 10: 1436–1445.

    Article  PubMed  CAS  Google Scholar 

  • Le Gall, O., Torregrosa, L., Danglot, Y., Candresse, T., and A. Bouquet (1994) Agrobacterium mediated genetic transformation of grapevine somatic embryos and regeneration of transgenic plants expressing the coat protein of grapevine chrome mosaic nepovirus (GCMV). Plant Sci. 102: 161–170.

    Google Scholar 

  • Lipsky, A.K., Sahar, N.,and D. Holland Development ad growth embryogenic suspension cultures of Vitis vinifera cvs in bioreactor as a system for genetic transformation. Acta Hortic. 447: 193–200.

    Google Scholar 

  • Logemann, J. and J. Shell (1993) The impact of biotechnology on plant breeding, or how to combine increases in agricultural productivity with an improved protection of the environment. In: Biotechnology in Plant Disease Control, I. Chet (Ed.). John Wiley & Sons, Inc., New York, pp. 1–14.

    Google Scholar 

  • Logemann, J., Jack, G., Tommerup, H., Mundy, J., and J. Schell (1992) Expression of a barley ribosome-inactivating protein leads to increased fungal protection in transgenic tobacco plants. Bio/Technology 305–308.

    Google Scholar 

  • Martinelli, L., Buzkan, N., Minafra, A., Saldarelli, P., Costa, D., Poletti, V., Festi, S., Perl, A., and G.P. Martelli (2000) Genetic transformation of grape for resistance to viruses related to the rugose wood disease complex. Proceedings of the VII International Symposium of Grape Genetics and Breeding. Montpellier, Acta Hortic. 528: 321–328.

    Google Scholar 

  • Mauro, M.C., Toutain, S., Walter, B., Pinek, L., Often, L., Coutos-Thevenot, P., Deloire, A., and P. Barbier (1995) High efficiency regeneration grapevine plants transformed with the GFLV coat protein gene. Plant Sci. 112: 97–106.

    Article  CAS  Google Scholar 

  • Mauro, M.C., Walter, B., Pink, L., Valat, L., Barbier, P., Boulay, M., and P. Coutos-Thevenot (2000) Analysis of 41B grapevine rootstocks for grapevine fanleaf virus resistance. Proceedings of the VII International Symposium of Grape Genetics and Breeding. Montpellier, Acta Hortic. 528 (1): 313–319.

    CAS  Google Scholar 

  • Mullins, M.G., Tang, F.C.A., and D. Facciotti (1990) Agrobacterium mediated genetic transformation of grapevines: transgenic plants of Vites rupestres Scheele and buds of Vites vinifera L. Bio/Technology 8: 1041–1045.

    Google Scholar 

  • Murata, N., Ishizaki-Nishizava, O., Higashi, S., Hayashi, H., Tasaka, Y., and I. Nishida (1992) Genetically engineered alteration in chilling sensitivity of plants. Nature 356: 710–713.

    Article  CAS  Google Scholar 

  • Negrul, A. (1936) The Genetic Basis of Grape Breeding. The Lenin Academy of Agricultural Science, Leningrad.

    Google Scholar 

  • Okada, M. and S Natori. (1985) Primary structure of sarcotoxin I, and antibacterial protein induced in hemolymph of Sarcophaga peregrina (flesh fly) larvae. J. Biol. Chem. 260: 7174–7177.

    Google Scholar 

  • Pearson, R. and A. Goheen (1988) Compendium of Grape Diseases. MN:APS Press, St. Paul.

    Google Scholar 

  • Per, A. and Eshdat, Y. (1998) DNA Transfer and gene expression in transgenic grapes. In: Biotechnology and Genetic Engineering Reviews, M.P. Tombs (Ed.). Intercept Ltd, Andover, pp. 365–386.

    Google Scholar 

  • Powel, A.P., Nelson, R.S., De, B., Hoffmann, N., Rogers, S.G., Fraley, R.T., and R.N. Beachy (1986) Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 232: 738–743.

    Article  Google Scholar 

  • Raisch, B. and Pratt C. (1996) Grapes. In: Fruit breeding, Volume II: Vine and Small Fruits, J. Janick and J. Moore (Eds). John Wiley & Sons, Inc. New York, pp. 297–371.

    Google Scholar 

  • Rezaian, M.A., Skene, K.G., and J.G. Ellis (1988) Anti-sense RNAs of cucumber mosaic virus in transgenic plants assessed for control of the virus. Plant Mol. Biol. 11: 463–471.

    Google Scholar 

  • Roustan, J.P., Colrat, S., Dalmayrac, S., Guillen, P., Guis, M., Martinez-Reina, G.,and C. Deswarte (2000) Expression in grapevine of an NADPH-dependent adelhyde reductase which detoxifies eutypine, a toxin from Eurypa lata. Proceedings of the VII International Symposium of Grape Genetics and Breeding. Montpellier, Acta Hortic. 528 (1): 329–336.

    CAS  Google Scholar 

  • Sanchez-Serano, J., Amati, S., Dammann, C., Ebneth, M., Herbers, K., Hildmann, T., Lorberth, R., Prat, S., and L. Willmitzer (1993) Proteinase inhibitors in the potato response to wounding. In: Biotechnology in Plant Disease Control, I. Chet (Ed.). John Wiley & Sons, Inc., New York, pp. 155–173.

    Google Scholar 

  • Sanford, J.C. and S.A. Johnston (1985) The concept of parasite-derived resistance-deriving resistance genes from the parasite’s own genome. Theor. Biol. 113: 395–405.

    Google Scholar 

  • Scorza, R., Cordts, J.M., Ramming, D.W., and R.L. Emershad (1995) Transformation of grape (Vitis vinifera L) zygotic-derived somatic embryos and regeneration of transgenic plants. Plant Cell Repts 14: 589–592.

    CAS  Google Scholar 

  • Scorza, R., Cordts, J.M., Gray, D.J., Gonsalves, D., Emershad, R.L., and D.W. Ramming (1996) Producing transgenic “Thompson Seedless” grape (Vitis vinifera L). plants. J. Am. Soc. Hort. Sci.. 121: 616–619.

    Google Scholar 

  • Selsted, M., Broun, D.M., Delange, K.G., Harwig, S.L., and R.I. Lehrer (1985) Primary structures of six antimicrobial peptides of Rabbit peritoneal neutrophilis. J. Biol. Chem. 260: 4579–4584.

    Google Scholar 

  • Smith, C.J. (1991) Biochemistry and Molecular Biology of Plant-Pathogen Interaction, Clarendon Press, Oxford.

    Google Scholar 

  • Spielmann, A., Krastanova, S., Douet-Ohrant, V., Marc-Martin, S., Prince Sigrist, M-E., and P. Gugerli (1997) Resistance to nepoviruses in grapevine: Expression of several putative resistance genes in transgenic plants. Proceeding of the 12th ICGV Meeting, Abstracts, Lisbon, p. 143.

    Google Scholar 

  • Spielman, A., Krastanova, S., Douet — Orhant, V., Marc-Martin, S., Prince Sigrist, M.H., and P. Gugerli (2000) Resistance to nepoviruses in grapevine: expression of several putative resistance genes in transgenic plants. Proceedings of the VII International Symposium of Grape Genetics and Breeding. Montpellier, Acta Hortic. 528 (1): 373–378.

    Google Scholar 

  • Spielmann, A., Krastanova, S., Douet-Orhand, V., and P. Gugerli (2000) Analysis of transgenic grapevine (Vitis rupestris) and Nicotiana benthamiana plants expressing an Arabis mosaic virus coat protein gene. Plant Sci. 156: 235–244.

    Article  PubMed  CAS  Google Scholar 

  • Steiner, H., Hultmark, D., Engstrom, A., Bennich, H., and H.G. Boman (1981) Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 292: 246–248.

    Article  PubMed  CAS  Google Scholar 

  • Torregrosa,. L., Le Gall, O., Danglot, Y., Candresse, T., and A. Bouquet (1994) Agrobacterium-mediated genetic transformation of grapevine somatic embryos and regeneration of transgenic plants expressing the coat protein of the grape chrome mosaic virus (GCMV). Proceeding of the VIth International Symposium on Grape Breeding, Yalta, Crime, Ukraine, pp. 91–99.

    Google Scholar 

  • Torregrosa, L. (1995) Biotechnologie de la vigne: les techniques de regeneration in vitro. Prog. Agr. Vitic. 112: 479–489.

    Google Scholar 

  • Tsvetkov, I., Tsolova, V., and A. Atanassov (2000) Gene transfer for stress resistance on Grape. Proceedings of the VII International Symposium of Grape Genetics and Breeding. Montpellier, Acta Hortic. 528 (1): 389–394.

    CAS  Google Scholar 

  • Walton, J. (1997) Biochemical Plant Pathology. In: Plant Biochemistry, P. M. Day and J. B. Harborne (Eds). Academic Press, San Diego, pp. 487–502.

    Chapter  Google Scholar 

  • Wolter, F.P., Schmidt, R., and E. Heinz (1992) Chilling sensitivity of Arabidopsis thaliana with genetically engineered membrane lipids. EMBO J. 11: 4685–4692.

    PubMed  CAS  Google Scholar 

  • Xue, B., Ling, K-S., Reid, C., Krastanova, S., Sekiya, M., Momol, E., Sule, S., Mozar, J., and D. Gonsalves (1999) Transformation of five grape rootstocks with plant virus gene and a vir E2 gene from Agrobacterium tumefaciens. In vitro Cell Dev. Biol.- Plant 35: 226–231.

    Google Scholar 

  • Yoneyama, K. and A. Hiroyuki (1993) Transgenic plants resistant to diseases by the detoxification of toxins. In: Biotechnology in Plant Disease Control, I. Chet (Ed.). John Wiley & Sons, Inc., New York, pp. 115137.

    Google Scholar 

  • Zasloff, M. (1987) Magianins, a class of antimicrobial peptides from Xenopus laevis skin: isolation, characterization of two active forms, and partial c DNA sequence of a precursor. Proc. Natl. Acad. Sci.. U.S.A. 84: 5449–5453.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Colova-Tsolova, V., Perl, A., Krastanova, S., Tsvetkov, I., Atanassov, A. (2001). Genetically Engineered Grape for Disease and Stress Tolerance. In: Roubelakis-Angelakis, K.A. (eds) Molecular Biology & Biotechnology of the Grapevine. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2308-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2308-4_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-2310-7

  • Online ISBN: 978-94-017-2308-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics