Skip to main content

Tableau Methods for Modal and Temporal Logics

  • Chapter
Handbook of Tableau Methods

Abstract

Modal and temporal logics are finding new and varied applications in Computer Science in fields as diverse as Artificial Intelligence [Marek et al.,1991], Models for Concurrency [Stirling, 1992] and Hardware Verification [Nakamura et al.,1987]. Often the eventual use of these logics boils down to the task of deducing whether a certain formula of a logic is a logical consequence of a set of other formula of the same logic. The method of semantic tableaux is now well established in the field of Automated Deduction [Oppacher and Suen, 1988; Baumgartner et al., 1995; Beckert and Possega, 1995] as a viable alternative to the more traditional methods based on resolution [Chang and Lee, 1973]. In this chapter we give a systematic and unified introduction to tableau methods for automating deduction in modal and temporal logics. We concentrate on the propositional fragments restricted to a two-valued (classical) basis and assume some prior knowledge of modal and temporal logic, but give a brief overview of the associated Kripke semantics to keep the chapter self-contained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y. Auffray and P. Enjalbert. Modal theorem proving: An equational viewpoint. In 11th International Joint Conference on Artificial Intelligence, pages 441–445, 1989.

    Google Scholar 

  2. A. Artosi and G. Governatori. Labelled model modal logic. In Pro- ceedings of the CADE-12 Workshop on Automated Model Building, pages 11–17, 1994.

    Google Scholar 

  3. M. Amerbauer. Schnittfreie Tableau-und SequenzenkalkĂ¼le fĂ¼r Normale Modale Aussagenlogiken. PhD thesis, Naturwissenschaftliche Fakultät der Universität Salzburg, 1993.

    Google Scholar 

  4. Avron, 1984] A. Avron. On modal systems having arithmetical interpretations. Journal of Symbolic Logic, 49: 935–942, 1984.

    Article  Google Scholar 

  5. A. Avron. The method of hypersequents in proof theory of propositional non-classical logics. Technical Report 294–94, Institute of Computer Science, Tel Aviv University, Israel, 1994.

    Google Scholar 

  6. B. Banieqbal and H. Barringer. Temporal logic with fixed points. In Proc. Workshop on Temporal Logic in Specification, LNCS 398, 1987.

    Google Scholar 

  7. G. Bellin. A system of natural deduction for GL. Theoria, 51: 89–114, 1985.

    Article  Google Scholar 

  8. E. W. Beth. On Padoa’s method in the theory of definition. Indag. Math., 15: 330–339, 1953.

    Google Scholar 

  9. E. W. Beth. Semantic entailment and formal derivability. Mededelingen der Koninklijke Nederlandse Akademie van Wetenschappen, Afd. Letterkunde, 18: 309–342, 1955.

    Google Scholar 

  10. M. Borga and R. Gentilini. On the proof theory of the modal logic Grz. ZML (now called Mathematical Logic Quarterly), 32: 145–148, 1986.

    Article  Google Scholar 

  11. Baumgartner et al.,1995] P. Baumgartner, R. Hähnle, and J. Posegga (Ed.). Proceedings of the fourth workshop on theorem proving with analytic tableaux and related methods. LNAI 918, 1995.

    Google Scholar 

  12. G. Boolos. The Unprovability of Consistency. Cambridge University Press, 1979.

    Google Scholar 

  13. M. Borga. On some proof theoretical properties of the modal logic GL. Studia Logica, 42: 453–459, 1983.

    Article  Google Scholar 

  14. T. Borghuis. Interpreting modal natural deduction in type theory. In Maarten de Ri- jke, editor, Diamonds and Defaults, pages 67–102. Kluwer Academic Publishers, 1993.

    Google Scholar 

  15. B. Beckert and J. Posegga. Iean7AP: Lean tableau-based deduction. Journal of Automated Reasoning, 15 (3): 339–358, 1995.

    Article  Google Scholar 

  16. R. A. Bull and K. Segerberg. Basic modal logic. In D. Gabbay and F. Guenthner, editors, Handbook of Philosophical Logic, Volume II: Extensions of Classical Logic, pages 1–88. D. Reidel, 1984.

    Google Scholar 

  17. R. A. Bull. An algebraic study of Diodorean modal systems. Journal of Symbolic Logic, 30 (1): 58–64, 1965.

    Article  Google Scholar 

  18. R. A. Bull. Review of `Melvin Fitting, Proof Methods for Modal and Intuitionistic Logics, Synthese Library, Vol. 169, Reidel, 1983’. Journal of Symbolic Logic, 50: 855–856, 1985.

    Article  Google Scholar 

  19. J. Burgess. Basic tense logic. In D. Gabbay and F. Guenthner, editors, Extensions of Classical Logic, volume II of Handbook of Philosophical Logic, pages 1–88. Reidel, Dordrecht, 1984.

    Google Scholar 

  20. L Catach. TABLEAUX: A general theorem prover for modal logics. In Proc. International Computer Science Conference: Artificial Intelligence: Theory and Applications, pages 249–256, 1988.

    Google Scholar 

  21. L. Catach. TABLEAUX: A general theorem prover for modal logics. Journal of Automated Reasoning, 7: 489–510, 1991.

    Article  Google Scholar 

  22. C. Cenato. Modal sequents for normal modal logics. Mathematical Logic Quarterly (previously ZML), 39: 231–240, 1993.

    Article  Google Scholar 

  23. B. F. Chellas. Modal Logic: An Introduction. Cambridge University Press, 1980. [Chang and Lee, 1973 ] G. L. Chang and R. G. T. Lee. Symbolic logic and mechanical theorem proving. Academic Press, New York, 1973.

    Google Scholar 

  24. H. B. Curry. The elimination theorem when modality is present. Journal of Symbolic Logic, 17: 249–265, 1952.

    Article  Google Scholar 

  25. M. D’Agostino and M. Mondadori. The taming of the cut: classical refutations with analytic cut. Journal of Logic and Computation, 4: 285–319, 1994.

    Article  Google Scholar 

  26. E. Gudzhinskas. Syntactical proof of the elimination theorem for von Wright’s temporal logic. Mat. Logika Primenen, 2: 113–130, 1982.

    Google Scholar 

  27. E. A. Emerson and J. Y. Halpern. Decision procedures and expressiveness in the temporal logic of branching time. Journal of Computer and System Sciences, 30: 1–24, 1985.

    Article  Google Scholar 

  28. E. A. Emerson. Automata, tableaux, and temporal logics. In Proc. Logics of Programs 1985, LNCS 193, pages 79–87, 1985.

    Chapter  Google Scholar 

  29. E. A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Handbook of Theoretical Computer Science, volume Volume B: Formal Models and Semantics, chapter 16. MIT Press, 1990.

    Google Scholar 

  30. E. A. Emerson and A. P. Sistla. Deciding branching time logic: A triple exponential decision procedure for CTL. Proc. Logics of Programs, LNCS 164, pages 176–192, 1983.

    Google Scholar 

  31. E. A. Emerson and A. R Sistla. Deciding branching time logic. In Proc. 16th ACM Symposium Theory of Computing, pages 14–24, 1984.

    Google Scholar 

  32. E. A. Emerson and J. Srinivasan. Branching time temporal logic. In Proc. School/Workshop on Linear Time, Branching Time and Partial Order In Logics and Models of Concurrency, The Netherlands, 1988, LNCS 354, pages 123–172, 1988.

    Google Scholar 

  33. Fagin et al.,1995] R. Fagin, J. Halpern, Y. Moses and M. Vardi. Reasoning about Knowledge. The MIT Press, Cambridge, MA, 1995.

    Google Scholar 

  34. M. Fisher. A resolution method for temporal logic. In Proc. 12th International Joint Conference on Artificial Intelligence 1991, pages 99–104. Morgan-Kaufmann, 1991.

    Google Scholar 

  35. M. Fitting. Model existence theorems for modal and intuitionistic logics. Journal of Symbolic Logic, 38: 613–627, 1973.

    Article  Google Scholar 

  36. M. Fitting. Proof Methods for Modal and Intuitionistic Logics, volume 169 of Synthese Library. D. Reidel, Dordrecht, Holland, 1983.

    Google Scholar 

  37. M. Fitting. Basic modal logic. In D. Gabbay et al, editor, Handbook of Logic in Artificial Intelligence and Logic Programming: Logical Foundations, volume 1, pages 365–448. Oxford University Press, 1993.

    Google Scholar 

  38. A. M. Frisch and R. B. Scherl. A general framework for modal deduction. In J. Allen, R. Fikes, and E. Sandewall, editors, Proc. 2nd Conference on Principles of Knowledge Representation and Reasoning. Morgan-Kaufmann, 1991.

    Google Scholar 

  39. D. Gabbay. The declarative past and imperative future: Executable temporal logic for interactive systems. In Proc. Workshop on Temporal Logic in Specification, LNCS 398, pages 409–448. Springer-Verlag, 1987.

    Google Scholar 

  40. D. Gabbay. Labelled Deductive Systems. Oxford University Press, 1997.

    Google Scholar 

  41. G. Gentzen. Untersuchungen Ă¼ber das logische Schliessen. Mathematische Zeitschrift, 39:176–210 and 405–431, 1935. English translation: Investigations into logical deduction, in The Collected Papers of Gerhard Gentzen, edited by M. E. Szabo, pp 68–131, North-Holland, 1969.

    Google Scholar 

  42. I. Gent. Analytic Proof Systems for Classical and Modal Logics of Restricted Quantification. PhD thesis, Dept. of Computer Science, University of Warwick, Coventry, England, 1991.

    Google Scholar 

  43. I. Gent. Theory tableaux. Technical Report 91–62, Mathematical Sciences Institute, Cornell University, 1991.

    Google Scholar 

  44. I. Gent. Theory matrices (for modal logics) using alphabetical monotonicity. Studia Logica, 52 (2): 233–257, 1993.

    Article  Google Scholar 

  45. Goré et al.,1995] R. Goré, W. Heinle, and A. Heuerding. Relations between propositional normal modal logics: an overview. Technical Report TR-16–95, Automated Reasoning Project, Australian National University, 1995. Available via http://arp.anu.edu.au/ on WWW.

    Google Scholar 

  46. Gabbay et al.,1994] D M Gabbay, I. M. Hodkinson, and M A Reynolds. Temporal logic - mathematical foundations and computational aspects, Volume 1. Oxford University Press, 1994.

    Google Scholar 

  47. R. I. Goldblatt. Logics of Time and Computation. CSLI Lecture Notes Number 7, Center for the Study of Language and Information, Stanford, 1987.

    Google Scholar 

  48. R. Goré. Semi-analytic tableaux for modal logics with applications to nonmonotonicity. Logique et Analyse, 133–134:73–104, 1991. (printed in 1994 ).

    Google Scholar 

  49. R. Goré. Cut-free sequent and tableau systems for propositional normal modal logics. Technical Report 257, University of Cambridge, England, June, 1992.

    Google Scholar 

  50. R. Goré. Cut-free sequent and tableau systems for propositional Diodorean modal logics. Studia Logica, 53: 433–457, 1994.

    Article  Google Scholar 

  51. G. Gough. Decision procedures for temporal logics. Master’s thesis, Dept. of Computer Science, University of Manchester, England, 1984.

    Google Scholar 

  52. W. Hanson. Termination conditions for modal decision procedures (abstract only). Journal of Symbolic Logic, 31: 687–688, 1966.

    Google Scholar 

  53. G. E. Hughes and M. J. Cresswell. Introduction to Modal Logic. Methuen, London, 1968.

    Google Scholar 

  54. G. E. Hughes and M. J. Cresswell. A Companion to Modal Logic. Methuen, London, 1984.

    Google Scholar 

  55. K. J. J. Hintikka. Form and content in quantification theory. Acta Philosophica Fennica, 8: 3–55, 1955.

    Google Scholar 

  56. J. Y. Halpern and Y. Moses. A guide to the modal logics of knowledge and belief: Preliminary draft. In Proc. International Joint Conference on Artificial Intelligence, pages 480–490, 1985.

    Google Scholar 

  57. Heuerding et al.,1996] Alain Heuerding, Michael Seyfried, and Heinrich Zimmermann. Efficient loop-check for backward proof search in some non-classical logics. Submitted to Tableaux 96.

    Google Scholar 

  58. J. Hudelmaier. On a contraction free sequent calculus for the modal logic S4. In Proceedings of the 3rd Workshop on Theorem Proving with Analytic Tableaux and Related Methods. Technical Report TR-94/5, Department of Computing, Imperial College, London, 1994.

    Google Scholar 

  59. Kamp, 1968] J. A. W. Kamp. Tense Logic and the Theory of Linear Order. PhD thesis, Dept. of Philosophy, University of California, USA, 1968.

    Google Scholar 

  60. S. Kanger. Provability in Logic. Stockholm Studies in Philosophy, University of Stockholm, Almqvist and Wiksell, Sweden, 1957.

    Google Scholar 

  61. Kawai, 1987] H. Kawai. Sequential calculus for a first-order infinitary temporal logic. ZML (now Mathematical Logic Quarterly)33:423–432, 1987.

    Google Scholar 

  62. H. Kawai. Completeness theorems for temporal logics To and Tt. ZML (now Mathematical Logic Quarterly), 34: 393–398, 1988.

    Article  Google Scholar 

  63. M. Koshimura and R. Hasegawa. Modal propositional tableaux in a model generation theorem prover. In Proceedings of the 3rd Workshop on Theorem Proving with Analytic Tableaux and Related Methods. Technical Report TR-94/5, Department of Computing, Imperial College, London, 1994.

    Google Scholar 

  64. M. Kracht. Power and weakness of the modal display calculus. In H. Wansing, editor, Proof Theory of Modal Logics. Kluwer, 1996. to appear.

    Google Scholar 

  65. S. Kripke. A completeness theorem in modal logic. Journal of Symbolic Logic24(1):1–14, March 1959.

    Google Scholar 

  66. S. Kripke. Semantical analysis of modal logic I: Normal modal propositional calculi. Zeitschrift fiir Mathematik Logik and Grundlagen der Mathematik, 9: 67–96, 1963.

    Article  Google Scholar 

  67. R. Ladner. The computational complexity of provability in systems of modal propositional logic. SIAM Journal of Computing, 6 (3): 467–480, 1977.

    Article  Google Scholar 

  68. A. Masini. 2-sequent calculus: Classical modal logic. Technical Report TR-13/91, Universita Degli Studi Di Pisa, 1991.

    Google Scholar 

  69. A. Masini. 2-sequent calculus: A proof theory of modalities. Annals of Pure and Applied Logic, 58: 229–246, 1992.

    Article  Google Scholar 

  70. A. Masini. 2-sequent calculus: Intuitionism and natural deduction. Journal of Logic and Computation, 3 (5): 533–562, 1993.

    Article  Google Scholar 

  71. F. Massacci. Strongly analytic tableaux for normal modal logics. In Alan Bundy, editor, Proc. CADE-12, LNAI 814, pages 723–737. Springer, 1994.

    Google Scholar 

  72. F. Massacci. Personal communication, December 1995.

    Google Scholar 

  73. Massacci, 1995a1 F. Massacci. Simple steps tableaux for modal logics. Submitted for publication, 1995.

    Google Scholar 

  74. S. Merz. Decidability and incompleteness results for first-order temporal logics of linear time. Journal of Applied Non-Classical Logic, 2 (2), 1992.

    Google Scholar 

  75. Miglioli et al.,1995] P. Miglioli, U. Moscato, and M. Ornaghi. Refutation systems for propositional modal logics. In P. Baumgartner, R. Hähnle, and J. Posegga, editors, Proceedings of the 4th Workshop on Theorem Proving with Analytic Tableaux and Related Methods,volume LNAI 918, pages 95–105. Springer-Verlag, 1995.

    Google Scholar 

  76. R. C. Moore. Semantical considerations on nonmonotonic logic. Artificial Intelligence, 25: 272–279, 1985.

    Article  Google Scholar 

  77. C. G. Morgan. Methods for automated theorem proving in nonclassical logics. IEEE Transactions on Computers, C-25(8): 852–862, 1976.

    Google Scholar 

  78. Muller et al.,1988] D. E Muller, A. Saoudi, and P. E Schupp. Weak alternating automata give a simple explanation of why most temporal and dynamic logics are decidable in exponential time. In Proc. Logics in Computer Science,pages 422–427, 1988.

    Google Scholar 

  79. W. Marek, G. Schwarz, and M. Truszczynski. Modal nonmonotonic logics: ranges, characterisation, computation. Technical Report 187–91, Dept. of Computer Science, University of Kentucky, USA, 1991.

    Google Scholar 

  80. Nakamura et al.,1987] H. Nakamura, M. Fujita, S. Kono, and H. Tanaka. Temporal logic based fast verification system using cover expressions. In C H Sequin, editor, VLSI ’87, Proceedings of the IFIP TC 10/WG 10.5 International Conference on VLSI, Vancouver,pages 101–111, 1987.

    Google Scholar 

  81. H. J. Ohlbach. Semantics based translation methods for modal logics. Technical Report SEKI Report SR-90–11, Universität Kaiserslautern, Postfach, 3049, D-6750, Kaiserslautern, Germany, 1990.

    Google Scholar 

  82. H. J. Ohlbach. Translation methods for non-classical logics: An overview. Bulletin of the Interest Group in Pure and Applied Logics, 1 (1): 69–89, 1993.

    Google Scholar 

  83. M. Ohnishi and K. Matsumoto. Corrections to our paper `Gentzen method in modal calculi I’. Osaka Mathematical Journal, 10: 147, 1957.

    Google Scholar 

  84. Ohnishi and Matsumoto, 1957a1 M. Ohnishi and K. Matsumoto. Gentzen method in modal calculi I. Osaka Mathematical Journal, 9: 113–130, 1957.

    Google Scholar 

  85. M. Ohnishi and K. Matsumoto. Gentzen method in modal calculi H. Osaka Mathematical Journal, 11:115–120, 1959.

    Google Scholar 

  86. F. Oppacher and E. Suen. HARP: A tableau-based theorem prover. Journal of Automated Reasoning, 4: 69–100, 1988.

    Article  Google Scholar 

  87. B. Paech. Gentzen-systems for propositional temporal logics. In Proc. 2nd Workshop on Computer Science Logics, LNCS 385, pages 240–253, 1988.

    Google Scholar 

  88. R. Pliuskevicius. Investigations of finitary calculus for a discrete linear time logic by means of finitary calculus. In LNCS vol 502, pages 504–528. Springer-Verlag, 1991.

    Google Scholar 

  89. G. Pottinger. Uniform, cut-free formulations of T, S4 and S5. Abstract in JSL, 48: 900–901, 1983.

    Google Scholar 

  90. W. Rautenberg. Klassische und Nichtklassische Aussagenlogik. Vieweg, Wiesbaden, 1979.

    Book  Google Scholar 

  91. W. Rautenberg. Modal tableau calculi and interpolation. Journal of Philosophical Logic, 12: 403–423, 1983.

    Article  Google Scholar 

  92. W. Rautenberg. Corrections for modal tableau calculi and interpolation by W. Rautenberg, JPL 12 (1983). Journal of Philosophical Logic, 14: 229, 1985.

    Article  Google Scholar 

  93. W. Rautenberg. Personal communication, December 5th, 1990.

    Google Scholar 

  94. A. Russo. Modal labelled deductive systems. Technical Report TR-95/7, Dept. of Computing, Imperial College, London, 1995.

    Google Scholar 

  95. A. P. Sistla and E. M. Clarke. The complexity of propositional linear temporal logics. Journal of the Association for Computing Machinery, 32 (3): 733–749, 1985.

    Article  Google Scholar 

  96. G. Schwarz. Minimal model semantics for nonmonotonic modal logics. In Proc. Logics in Computer Science, 1992.

    Google Scholar 

  97. K. Segerberg. An essay in classical modal logic (3 vols.). Technical Report Filosofiska Studier, nr 13, Uppsala Universitet, Uppsala, 1971.

    Google Scholar 

  98. T. Shimura. Cut-free systems for the modal logic S4.3 and S4.3GRZ. Reports on Mathematical Logic, 25: 57–73, 1991.

    Google Scholar 

  99. G. F. Shvarts. Gentzen style systems for K45 and K45D. In A. R. Meyer and M. A. Taitslin, editors, Logic at Botik ’ 89, Symposium on Logical Foundations of Computer Science, LNCS 363, pages 245–256. Springer-Verlag, 1989.

    Google Scholar 

  100. R. L. Slaght. Modal tree constructions. Notre Dame Journal of Formal Logic, 18 (4): 517–526, 1977.

    Article  Google Scholar 

  101. G. E. Schwarz and M. Truszczynski. Modal logic S4F and the minimal knowledge paradigm. In Proc. of Theoretical Aspects of Reasoning About Knowledge, 1992.

    Google Scholar 

  102. Stirling, 1992] C. Stirling. Modal and temporal logics for processes. Technical report, Dept of Computer Science, Edinburgh University, 1992. ECS-LFCS-92–221.

    Google Scholar 

  103. G. Sambin and S. Valentini. A modal sequent calculus for a fragment of arithmetic. Studia Logica, 34: 245–256, 1980.

    Article  Google Scholar 

  104. G. Sambin and S. Valentini. The modal logic of provability: the sequential approach. Journal of Philosophical Logic, 11: 311–342, 1982.

    Article  Google Scholar 

  105. T. Shimura. Cut-free systems for some modal logics containing S4. Reports on Mathematical Logic, 26: 39–65, 1992.

    Google Scholar 

  106. S. Valentini. The modal logic of provability: Cut-elimination. Journal of Philosophical Logic, 12: 471–476, 1983.

    Article  Google Scholar 

  107. S. Valentini. A syntactic proof of cut elimination for GL`in. Zeitschriftfir Mathematische Logik und Grundlagen der Mathematik, 32: 137–144, 1986.

    Article  Google Scholar 

  108. J. F. A. K. van Benthem and W. Blok. Transitivity follows from Dummett’s axiom. Theoria, 44: 117–118, 1978.

    Article  Google Scholar 

  109. J. F. A. K. van Benthem. The Logic of Time: a model-theoretic investigation into the varieties of temporal ontology and temporal discourse. Synthese library; vol. 156, Dordrecht: Reidel, 1983.

    Google Scholar 

  110. J. F. A. K. van Benthem. Correspondence theory. In D. Gabbay and F. Guenthner, editors, Handbook of Philosophical Logic, volume II, pages 167–247. D. Reidel, 1984.

    Google Scholar 

  111. S. Valentini and U. Solitro. The modal logic of consistency assertions of Peano arithmetic. ZML (now Mathematical Logic Quarterly), 29: 25–32, 1983.

    Article  Google Scholar 

  112. M. Vardi and P. Wolper. Automata-theoretic techniques for modal logics of programs.Journal of Computer and System Sciences32, 1986.

    Google Scholar 

  113. L. A. Wallen. Automated Deduction in Nonclassical Logics: Efficient Matrix Proof Methods for Modal and Intuitionistic Logics. MIT Press, 1989.

    Google Scholar 

  114. Heinrich Wansing. Sequent calculi for normal modal propositional logics. Journal of Logic and Computation4, 1994.

    Google Scholar 

  115. P. Wolper. Temporal logic can be more expressive. Information and Control, 56:7299, 1983.

    Google Scholar 

  116. P. Wolper. The tableau method for temporal logic: an overview. Logique et Analyse, 110–111:119–136, 1985.

    Google Scholar 

  117. J. J. Zeman. Modal Logic: The Lewis-Modal Systems. Oxford University Press, 1973.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Goré, R. (1999). Tableau Methods for Modal and Temporal Logics. In: D’Agostino, M., Gabbay, D.M., Hähnle, R., Posegga, J. (eds) Handbook of Tableau Methods. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1754-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1754-0_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5184-4

  • Online ISBN: 978-94-017-1754-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics