Skip to main content

Part of the book series: Developments in Plant and Soil Sciences ((DPSS,volume 9))

Abstract

The identification, measurement and understanding of the different loss pathways of N from the plant-soil system are prerequisites in efforts to increase the efficiency of N added to the system through biological and industrial fixation. Of the many pathways of loss, those from plants have in the main been ignored, or were thought to be extremely low (Allison 1955, 1966). Recently, however, Wetselaar and Farquhar (1980) have reviewed data that suggest that net losses from above-ground parts of plants can be substantial, up to 75 kg N/ha in 10 weeks (corresponding to 18 nmol (m2 leaf surface)−1 sec−1 from a crop with a leaf area index of 5), from a wide variety of species, in many geographical areas and under a variety of environmental conditions. They further pointed out that such losses are highest for plants with high N contents and take place mainly between anthesis and maturity. During this physiological period proteins break down in senescing leaves, liberating NH3 (Thimann 1980). Gaseous losses of NH3 are therefore possible, and have indeed been found. Gaseous losses of other reduced forms and of oxidized forms have also been found. In addition, losses as N2 have been postulated. Stutte and coworkers (Stutte and Silva 1981, Stutte and Weiland 1978, Stutte et al. 1979, Silva and Stutte 1979a, b, 1981a, b, Weiland and Stutte 1978a, b, 1979a, b, 1980) have reported gaseous fluxes from leaves that would account for the above losses. However, Wetselaar and Farquhar (1980) have suggested that the magnitude may have been overestimated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, L.S. and Mansfield, T.A. 1979 The effects of nitric oxide pollution on the growth of tomato. Environ. Pollut. 20, 113–121.

    Google Scholar 

  • Andrussow, L. 1969 Dynamische Konstanten. In: Borchers, H., Hausen, H., Hellwege, K-H. and Schmidt, E. (eds.), Landolt-Bornstein Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik. Vol. 2(5A), pp. 1–729 ( 6th ed. ), Springer-Verlag, Berlin.

    Google Scholar 

  • Allison, F.E. 1955 The enigma of soil nitrogen balance sheets. Adv. Agron. 7, 213–250.

    Google Scholar 

  • Allison, F.E. 1966 The fate of nitrogen applied to soils. Adv. Agron. 18, 219–258.

    Google Scholar 

  • Allison, F.E. and Sterling, de tar L. 1948 Gaseous losses of nitrogen from green plants. II. Studies with excised leaves in nutrient media. Plant Physiol. 23, 601–8.

    Google Scholar 

  • Atwater, W.O. and Rockwood, E.W. 1886 On the loss of nitrogen by plants during germination and growth. Am. Chem. J. 8, 327–343.

    Google Scholar 

  • Berger, M.G. and Fock, H.P. 1982 15N and inhibitor studies on the photorespiratory nitrogen cycle in maize leaves. Photosynthesis Res. (in prrss).

    Google Scholar 

  • Bird, R.B., Stewart, W.E. and Lightfoot, E.N. 1960 Transport Phenomena. Wiley, New York. Boussingault,.].B. 1838 Recherches chimiques sur la végétation enterprises dans le but d’examiner si les plantes prennent l’azote a l’atmosphere. Ann. Chim. Phys. 67, 5–54.

    Google Scholar 

  • Caemmerer, S. von and Farquhar, G.D. 1981 Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta (Berl.) 153, 376–387.

    Article  Google Scholar 

  • Caiazza, R., Hage, K.D. and Gallup, D. 1978 Wet and dry deposition of nutrients in Central Alberta. Water, Air Soil Pollut. 9, 309–314.

    Google Scholar 

  • Chibnall, A.C. 1939 Protein Metabolism in the Plant. Yale University Press, New Haven.

    Google Scholar 

  • Churchill, K. and Klepper, L. 1979 Effects of ametryn on nitrate reductase activity and nitrite content of wheat. Pestic. Biochem. Physiol. 12, 156–162.

    Google Scholar 

  • Cowan, I.R. 1977 Stomata] behavior and environment Adv. Bot. Res. 4, 117–227.

    Google Scholar 

  • Cowling, D.W. and Lockyer, D.R. 1981 Increased growth of ryegrass exposed to ammonia. Nature (Lond.) 292, 337–338.

    Article  CAS  Google Scholar 

  • Craswell, E.T. and Martin, A.E. 1975 Isotopic studies of the nitrogen balance in a cracking clay. 1. Recovery of added nitrogen from soil and wheat in the glasshouse and gas lysimeter. Aust. J. Soil Res. 13, 43–52.

    Google Scholar 

  • Cromwell, B.T. 1949 The micro-estimation and origin of methylamine in Mercurialis perriniand L. Biochem. J. 45, 84–86.

    Google Scholar 

  • Davidson, J. 1923 Is gaseous nitrogen a product of seedling metabolism? Bot. Gaz. 76, 95–101.

    Article  Google Scholar 

  • Davies, D.D. and Teixeira, A.N. 1975 The synthesis of glutamate and the control of glutamate dehydrogenase in pea mitochondria. Phytochemistry 14, 647–656.

    Article  CAS  Google Scholar 

  • Denmead, O.T., Freney, J.R. and Simpson, J.R. 1976 A closed ammonia cycle within a plant canopy. Soil Biol. Biochem. 8, 161–164.

    Google Scholar 

  • Eggleton, W.G.E. 1935 The assimilation of inorganic nitrogenous salts, including sodium nitrate, by the grass plant. Biochem. J. 29, 1389–1397.

    Google Scholar 

  • Evans, H.J. and McAuliffe, C. 1956 Identification of NO, N2O and N2 as products of the nonenzymatic reduction of nitrite by ascorbate or reduced diphosphopyridine nucleotide. In: McElroy, W.D. and Glass, B. (eds.), Inorganic Nitrogen Metabolism, pp. 189–197. Johns-Hopkins Press, Baltimore.

    Google Scholar 

  • Farquhar, G.D. and Raschke, K. 1978 On the resistance to transpiration of the sites of evaporation within the leaf. Plant Physiol. 61, 1000–1005.

    Article  PubMed  CAS  Google Scholar 

  • Farquhar, G.D. and Caemmerer, S. von 1982 Modelling of photosynthetic response to environmental conditions. In: Lange, O.L., Nobel, P.S., Osmond, C.B. and Ziegler, H. (eds.), Physiological Plant Ecology Il, Encyclopedia Plant Physiology. New Series, Vol. 12B. Springer-Verlag, Berlin, pp. 549–587.

    Google Scholar 

  • Farquhar, G.D., Wetselaar, R. and Firth, P.M. 1979 Ammonia volatilization from senescing leaves of maize. Science ( Wash. D.C. ). 203, 1257–1258.

    Google Scholar 

  • Farquhar, G.D., Firth, P.M., Wetselaar, R. and Weir, B. 1980 On the gaseous exchange of ammonia between leaves and the environment: determination of the ammonia compensation point. Plant Physiol. 66, 710–714.

    Article  PubMed  CAS  Google Scholar 

  • Feigin, A., Shearer, G., Kohl, D.A. and Commoner, B. 1974 The amount and nitrogen-15 content of nitrate in soil profiles from two Central Illinois fields in a corn-soybean rotation. Soil Sci. Soc. Am. Proc. 38, 465–471.

    Google Scholar 

  • Franzke, C.J. and Hume, A.N. 1945 Liberation of HCN in sorghum. J. Am. Soc. Agron 37, 848–851.

    Google Scholar 

  • Fuhrer, J. and Erismann, K.H. 1980 Uptake of nitrogen dioxide by plants grown at different salinity levels. Experientia (Basel) 36, 409–410.

    Article  CAS  Google Scholar 

  • Galbally, I.E. and Roy, C.R. 1978 Loss of fixed N from soils by nitric oxide emission. Nature (Lond.) 275, 734–735.

    CAS  Google Scholar 

  • Galbally, I.E., Farquhar, G.D. and Ayers, G.P. 1982 Interactions in the atmosphere of the biogeochemical cycles of carbon, nitrogen and sulphur. In: Galbally, I.E. and Freney,.I.R. (eds.), The Cycling of Carbon, Nitrogen, Sulphur and Phosphorus in Terrestrial and Aquatic Ecosystems, pp. 1–9. Australian Academy of Science, Canberra.

    Chapter  Google Scholar 

  • Heilmann, B., Hartung, W. and Gimmler, H. 1980 The distribution of abscisic acid between chloroplaste and cytoplasm of leaf cells and the permeability of the chloroplast envelope for abscisic acid. Z. Pflanzenphysiol. 96, 67–78.

    Google Scholar 

  • Hellriegel, M. 1855 Beitrag zur Keimungsgeschichte der ölgebenden Samen. J. Prakt. Chem. 64, 94–109.

    Google Scholar 

  • Hirel, B., Perrot-Rechenmann, C., Suzuki, A., Vidal, J. and Gadal, P. 1982 Glutamine synthetase in spinach leaves. Immunological studies and immunocytochemical localization. Plant Physiol. 69, 983–987.

    Google Scholar 

  • Hooker, M.L., Sander, D.H., Paterson, G.A. and Daigger, L.A. 1980 Gaseous N losses from winter wheat. Agron. J. 72, 789–792.

    Google Scholar 

  • Hutchinson, G.L. and Mosier, A.R. 1979 Nitrous oxide emissions from an irrigated cornfield. Science ( Wash. D.C. ) 205, 1125–1127.

    Google Scholar 

  • Irving, H.A. and Hankinson, R. 1908 The presence of a nitrate reducing enzyme in green plants. Biochem. J. 3, 87–96.

    Google Scholar 

  • Junge, C.E. 1956 Recent investigations in air chemistry. Tellus 8, 127–139.

    Article  CAS  Google Scholar 

  • Kays, W.M. 1966 Convective Heat and Mass Transfer. McGraw-Hill, New York.

    Google Scholar 

  • Keys, A.J., Bird, I.F., Cornelius, M.J., Lea, P.J., Wallsgrove, R.M. and Miflin, B.J. 1978 Photorespiratory nitrogen cycle. Nature (Lond.) 275, 741–743.

    Article  Google Scholar 

  • Kirshenbaum, L, Smith,.I.S., Crowell, T., Graff, J. and McKee, R. 1947 Separation of the nitrogen isotopes by the exchange reaction between ammonia and solutions of ammonium nitrate. J. Chem. Phys. 15, 440–446.

    Google Scholar 

  • Klein, G. and Steiner, M. 1928 Stickstoffbasen im Eiweissabbau höherer Pflanzen. I. Ammoniak und flüchtige Amine. Jahrb. Wiss. Bot. 68, 602–712.

    Google Scholar 

  • Klepper, L. 1979a Nitric oxide (NO) and nitrogen dioxide (NO2) emissions from herbicide treated soybean plants. Atmos. Environ. 13, 537–542.

    Google Scholar 

  • Klepper, L. 1979b (Author’s reply to letter to the editor.) Atmos. Environ. 13, 1475.

    Google Scholar 

  • Lawes,.I.B., Gilbert, J.H. and Pugh, E. 1861 On the sources of nitrogen of vegetation. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 15, 431–577.

    Google Scholar 

  • Lea, P.J. and Miflin, B.J. 1979 Photosynthetic ammonia assimilation. In: Gibbs, M. and Latzko, E. (eds.), Photosynthesis II, Encyclopedia Plant Physiology, New Series. Vol 6, pp. 445–456. Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Lemon, E. and van Houtte, R. 1980 Ammonia exchange at the land surface. Agron. J. 72, 876–883.

    Google Scholar 

  • Lorimer, G.H. and Andrews T.J. 1980 The C-2 photo-and chemorespiratory carbon oxidation cycle. In: Hatch, M.D. and Boardman, N.K. (eds.), The Biochemistry of Plants. Vol 8, pp. 239–274. Academic Press, New York.

    Google Scholar 

  • Mariotti, A., Mariotti, F., Amarger, N., Pizelle, G., Ngambi,.1.-M., Champigny, M.-L. and Moyse, A. 1980 Fractionnements isotopique de l’azote lors des processus d’absorption des nitrates et de fixation de l’azote atmospheric par les plantes. Physiol. Vég. 18, 163–181.

    Google Scholar 

  • Martin, A.E. and Ross, P.J. 1968 A nitrogen-balance study using labelled fertilizer in a gas lysimeter. Plant Soil. 28, 182–186.

    Article  Google Scholar 

  • Mazelis, M. 1980 Amino acid catabolism. In: Miflin, B.J. (ed.), Amino Acids and Derivatives, The Biochemistry of Plants. Vol 5, pp. 541–567. Academic Press, New York.

    Google Scholar 

  • McKee. H.S. 1962 Nitrogen Metabolism in Plants. Clarendon Press, Oxford. 728 pp.

    Google Scholar 

  • Meyer, M.W. 1973 Absorption and release of ammonia from and to the atmosphere by plants. Ph.D. thesis, University of Maryland, College Park. 52 pp.

    Google Scholar 

  • O’Neal, D. and Joy, K.W. 1974 Glutamine synthetase of pea leaves. Divalent cation effects, substrate specificity, and other properties. Plant Physiol. 54, 773–779.

    Google Scholar 

  • Osretkar, A. 1971 Gaseous and other nitrogen losses from cultures of Chlorella. Ph.D. thesis, University of Maryland, College Park. 65 pp.

    Google Scholar 

  • Pate, J.S. 1973 Uptake, assimilation and transport of nitrogen compounds by plants. Soil Biol. Biochem. 5, 109–119.

    Google Scholar 

  • Pate, J.S. 1980 Transport and partitioning of nitrogenous solutes. Annu. Rev. Plant Physiol. 31, 313–340.

    Google Scholar 

  • Pearsall, W.D. and Billimoria, M.C. 1937 Losses of nitrogen from green plants. Biochem. J. 31, 1743–1750.

    Google Scholar 

  • Pearsall, W.H. and Billimoria, M.C. 1939 The influence of light upon nitrogen metabolism in detached leaves. Ann. Bot. ( Lond. ) 3, 601–618.

    Google Scholar 

  • Penkett, S.A., Atkins, D.H.F. and Unsworth, M.H. 1979 Chemical composition of the ambient aerosol in the Sudan Gezira. Tellus 31, 295–307.

    Article  CAS  Google Scholar 

  • Peoples, M.B., Beilharz, V.C., Waters, S.P., Simpson, R.J. and Dalling, M.J. 1980 Nitrogen redistribution during grain growth in wheat (Triticum aestivum L.) II. Chloroplast senescence and the degradation of ribulose-1,5-bisphosphate carboxylase. Planta (Berl.) 149, 241–251.

    Article  CAS  Google Scholar 

  • Porter, L.K. 1969 Gaseous products produced by anaerobic reaction of sodium nitrite with oxime compounds and oximes synthesized from organic matter. Soil Sci. Soc. Am. Proc. 33, 696–702.

    Google Scholar 

  • Porter, L.K., Viets, F.L. and Hutchinson, G.L. 1972 Air containing N-15 ammonia: foliar absorption by corn seedlings. Science ( Wash. D.c. ) 175, 759–761.

    Google Scholar 

  • Raven, LA. and Farquhar, G.D. 1981 Methylammonium transport in Phaseolus vulgaris leaf slices. Plant Physiol. 67, 859–863.

    Article  PubMed  CAS  Google Scholar 

  • Richardson, M. 1966 Studies on the biogenesis of some simple amines and quaternary ammonium compounds in higher plants. Phytochemistry 5, 23–30.

    Article  CAS  Google Scholar 

  • Rodgers, G.A. 1978 Dry deposition of atmospheric ammonia at Rothamsted in 1976 and 1977.. 1. Agric. Sci. 90, 537–542.

    Google Scholar 

  • Rogers, H.H. and Aneja, V.P. 1980 Uptake of atmospheric ammonia by selected plant species. Environ. Exp. Both. 20, 251–257.

    Google Scholar 

  • Rogers, H.H., Campbell, J.C. and Volk R.J. 1979a Nitrogen-15 dioxide uptake and incorporation by Phaseolus rulgaris. L. Science ( Wash. D.C. ) 206, 333–335.

    Google Scholar 

  • Rogers, H.H., Jeffries, H.E. and Witherspoon, A.M. 1979b Measuring air pollutant uptake by plants: nitrogen dioxide. J. Environ. Qual. 8, 551–557.

    Google Scholar 

  • Schulz, E. 1862 Chemische Beiträge zur Kentniss des Keimprozesses bei jungen Phanerogamen. J. Prak. Chem. 817, 128–173.

    Google Scholar 

  • Silva, P.R.F. da and Stutte, C.A. 1979a Loss of gaseous N from rice leaves with transpiration. Arkansas Farm Res. 28, 3.

    Google Scholar 

  • Silva, P.R.F. da and Stutte C.A. 1979b Response of rice to foliar application of `cytozyme crop +’. Proc. Plant Regulator Working Group 6, 35–38.

    Google Scholar 

  • Silva, P.R.F. da and Stutte, C.A. 1981a Nitrogen loss in conjunction with transpiration from rice leaves as influenced by growth stage, leaf position and N supply. Agron. J. 73, 38–42.

    Google Scholar 

  • Silva, P.R.F. da and Stutte, C.A. 1981b Nitrogen volatilization from rice leaves. II. Effects of source of applied nitrogen in nutrient culture solution. Crop Sci. 21, 913–916.

    Google Scholar 

  • Simpson, R.J. and Dalling, M.J. 1981 Nitrogen redistribution during grain growth in wheat (Triticum aestivum L.) III. Enzymology and transport of amino acids from senescing flag leaves. Planta (Berl.) 151, 447–456.

    Google Scholar 

  • Smith, F.A. and Raven, J.A. 1979 Intracellular pH and its regulation. Annu. Rev. Plant Physiol. 30, 289–311.

    Google Scholar 

  • Smith, T.A. 1971 The occurrence, metabolism and functions of amines in plants. Biol. Rev. Camb. Philos. Soc. 46, 201–241.

    Google Scholar 

  • Smith, T.A. 1980 Plant amines. In: Bell, E.A. and Charlwood, B.V. (eds.), Secondary Plant Products, Encycl. Pl. Physiol., New Series, Vol. 8, pp 433–460. Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Steiner, M. and Löffler, H. 1931 Stickstoffbasen im Eiweisabbau höherer Pflanzen II. Histochemische Studien über Verbreitung, Verteilung and Wandel des Ammoniaks and der flüchtigen Amine. Jahrb. Wiss. Bot. 71, 463–532.

    Google Scholar 

  • Stewart, G.R. and Rhodes, D. 1977 A comparison of the characteristics of glutamine synthetase and glutamate dehydrogenase from Lemna minor L. New Phytol. 79, 257–268.

    Article  CAS  Google Scholar 

  • Stutte, C.A. and Silva P.R.F. da 1981 Nitrogen volatilization from rice leaves. I. Effects of genotype and air temperature. Crop Sci. 21, 596–600.

    Google Scholar 

  • Stutte, C.A. and Weiland, R.T. 1978 Gaseous N loss and transpiration of several crop and weed species. Crop Sci. 18, 887–889.

    CAS  Google Scholar 

  • Stutte, L.A., Weiland, R.T. and Blem, A.R. 1979 Gaseous N loss from soybean foliage. Agron. J. 71, 95–97.

    Google Scholar 

  • Thimann, K.V. 1980 The senescence of leaves. In: Thimann, K.V. (ed.), Senescence of Plants, pp. 85–115. CRC Press, Boca Raton.

    Google Scholar 

  • Tjepkema, J.D., Cartica, R.J. and Hemond, H.F. 1981 Atmospheric concentration of ammonia in Massachusetts and deposition on vegetation. Nature (Lond.) 294, 445–446.

    Article  CAS  Google Scholar 

  • Vanecko, S. and Varner, J.E. 1955 Studies on nitrite metabolism in higher plants. Plant Physiol. 30, 388–390.

    Article  PubMed  CAS  Google Scholar 

  • van Slyke, D.D. 1914 Gasometric determination of aliphatic amino nitrogen in minute quantities. J. Biol. Chem. 16, 121–124.

    Google Scholar 

  • Weiland, R.T. and Stutte, C.A. 1978a N loss with transpiration in several crop and weed species. Arkansas Farm Res. 27 (2), 16.

    CAS  Google Scholar 

  • Weiland, R.T. and Stutte, C.A. 1978b Chemically-bound N loss from soybean foliage as affected by several synthetic chemicals. Proc. Plant Growth Regulator Working Group 5, 78–85.

    Google Scholar 

  • Weiland, R.T. and Stutte, C.A. 1979a Net CO2 uptake and N loss responses in soybeans to growth regulators and temperature. Proc. Plant Growth Regulator Working Group 6, 17–23.

    Google Scholar 

  • Weiland, R.T. and Stutte, C.A. 1979b Pyro-chemiluminescent differentiation of oxidized and reduced N form evolved from plant foliage. Crop Sci. 19, 545–547.

    CAS  Google Scholar 

  • Weiland, R.T. and Stutte, C.A. 1980 Concomitant determination of foliar nitrogen loss, net carbon dioxide uptake, and transpiration. Plant Physiol. 65, 403–406.

    Article  PubMed  CAS  Google Scholar 

  • Wetselaar, R. and Farquhar, G.D. 1980 Losses of nitrogen from the tops of plants. Adv. Agron. 33, 263–302.

    Google Scholar 

  • Wicke, W. 1862 Beobachtungen an Chenopodium vulvaria über die Ausscheidung von Trimethylamin. Bot. Zeitung. 20, 393.

    Google Scholar 

  • Wilfarth, M., Römer, M. and Wimmer, G. 1905 On the Assimilation of the Elements of Nutrition of Plants During Different Periods of Their Growth. Vinton, London. 72 pp.

    Google Scholar 

  • Woo, K.C. and Osmond, C.B. 1982 Stimulation of ammonia, 2-oxoglutarate-dependent 02 evolution in isolated chloroplasts by dicarboxylates and the role of the chloroplast in photo-respiratory nitrogen recycling. Plant Physiol. 69, 591–596.

    Article  PubMed  CAS  Google Scholar 

  • Woo, K.C., Berry, J.A. and Turner, G.L. 1978 Release and refixation of ammonia during photorespiration. Carnegie Inst. Wash. Year Book 77, 241–245.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Farquhar, G.D., Wetselaar, R., Weir, B. (1983). Gaseous nitrogen losses from plants. In: Freney, J.R., Simpson, J.R. (eds) Gaseous Loss of Nitrogen from Plant-Soil Systems. Developments in Plant and Soil Sciences, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1662-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1662-8_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-8276-3

  • Online ISBN: 978-94-017-1662-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics