Skip to main content

The Unified Theory and Selection Processes

  • Chapter
Evolutionary Systems

Abstract

The patterns of evolutionary diversification and the distribution of biodiversity result from complex interactions between ecological components of evolution, explaining maintenance of biological systems, and genealogical components, explaining their origins. Evolutionary theory is under-developed with respect to questions of origin, and of integration among processes derived from “intrinsic” and “extrinsic” factors operating on different temporal and spatial scales. Biology has also resisted efforts to reconcile its general principles with basic natural laws of physics and chemistry, despite persistent indications that thermodynamics and statistical mechanics might provide the key (e.g. Boltzmann, 1877; Lotka, 1913, 1925; Lindeman, 1942; Prigogine & Wiame, 1946; Newman, 1970; Brooks & Wiley, 1986, 1988; Wicken, 1987; Demetrius, 1992; Salthe, 1993). The unified theory of evolution (Wiley & Brooks, 1982; Brooks & Wiley, 1986, 1988; Brooks et al., 1989; Brooks & McLennan, 1990; Maurer & Brooks, 1991; Brooks, 1992) asserts that 1. orderliness and organization in biological systems result from the interaction of historical uniqueness, cohesive tendencies among subunits of biological systems, and functional integration of those subunits, in addition to natural (environmental) and sexual selection; 2. current evolutionary theory lacks general explanations for the existence and expected effects of these three elements; and 3. finding such explanations requires extending some principles from general physico-chemical laws to complex biological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bernstein, H.; Hopf, F.A.; Michod, R.O., 1988, Is meiotic recombination an adaptation for repairing DNA, producing genetic variation, or both?, in The Evolution of Sex, R.E. Michod and B.R. Levin (eds.), Sunderland Mass, Sinauer Assoc, pp. 139–160.

    Google Scholar 

  • Boltzmann, L., 1877, Über die Beziehung eines allgemeine mechanischen Satzes zum zweiten Haupsatzes der Warmtheorie, in Sitzungsber. Akad. Wiss., Math.-Naturwiss. KI., vol. 75, pp. 67–73.

    Google Scholar 

  • Brandon, R., 1990 (2nd ed.), Adaptation and Environment, Princeton, Princeton Univ. Press.

    Google Scholar 

  • Brillouin, L., 1962, Science and Information Theory, New York, Academic Press.

    Google Scholar 

  • Brooks, 1988, Scaling effects in historical biogeography: A new view of Space, Time and Form, Syst. Zool., vol. 37, pp. 237–244.

    Article  Google Scholar 

  • Brooks, D.R., 1992, Incorporating origins into evolutionary theory, in Understanding Origin: Contemporary Ideas on the Genesis of Life, Mind and Society, F. Varela and J.P. Dupuy (eds.), Amsterdan, Reidel/Kluwer Associates, pp. 191–212.

    Chapter  Google Scholar 

  • Brooks, D.R.; Collier, J.; Maurer, B.A.; Smith, J.D.H.; Wiley, E.O., 1989, Entropy and information in evolving biological systems, Biol. Philos., vol. 4, pp. 407–432.

    Google Scholar 

  • Brooks, D.R.; Cumming, D.D.; LeBlond, P.H., 1988, Dollo’s law and the second law of thermodynamics: analogy or extension?, in Entropy, Information and Evolution: New Perspectives on Physical and Biological Evolution, B.H. Weber, D.J. Depew and J.D. Smith (eds.), MIT Press, Cambridge, pp. 189–224.

    Google Scholar 

  • Brooks, D.R.; LeBlond, P.H.; Cumming, D.D., 1984, Information and entropy in a simple evolution model, J. Theor. Biol., vol. 109, pp. 77–93.

    Article  Google Scholar 

  • Brooks, D.R.; McLennan, D.A., 1990, Searching for a general theory of biological evolution, J. Ideas, vol. 1, pp. 35–46.

    Google Scholar 

  • Brooks, D.R.; McLennan, D.A., 1991, Phylogeny, Ecology and Behavior: A Research Program in Comparative Biology, Univ. Chicago Press, Chicago.

    Google Scholar 

  • Brooks, D.R.; Wiley, E.O., 1986 (1st ed.), Evolution as Entropy: Toward a Unified Theory of Biology, Univ. Chicago Press, Chicago.

    Google Scholar 

  • Brooks, D.R.; Wiley, E.O., 1988 (2nd ed.), Evolution as Entropy: Toward a Unified Theory of Biology, Univ. Chicago Press, Chicago.

    Google Scholar 

  • Collier, J., 1986, Entropy in evolution, Biol. Philos, vol. 1, pp. 5–24.

    Google Scholar 

  • Collier, J., 1988, Supervenience and reduction in biological hierarchies, in Philosophy and Biology: Canadian Journal of Philosophy, M. Matthen and B. Linsky (eds.), suppl. vol. 14.

    Google Scholar 

  • Collier, J., 1990, Intrinsic information, in Information, Language and Cognition: Vancouver Studies in Cognitive Science, University British Columbia Press, vol. 1.

    Google Scholar 

  • Collier, J., (in press), Incorporating Adaptation in Evolution as Entropy, in Between Instruction and Selection: Studies in a Unified Theory of Non-Equilibrium Biology, J.D. Collier and D. Siegel-Causey (eds.), Baltimore, John Hopkins University Press.

    Google Scholar 

  • Csânyi, V., 1989, Evolutionary Systems and Society: A General Theory, Durham, N.C., Duke Univ. Press.

    Google Scholar 

  • Darwin, C., 1872 (6th edition), The Origin of Species, London, John Murray (ed.).

    Google Scholar 

  • Demetrius, L., 1992, The thermodynamics of evolution, in Physica A, vol. 189, pp. 417–436.

    Google Scholar 

  • Depew, D.J.; Weber, B.H., 1995, Darwinism Evolving: Systems Dynamics and the Genealogy of Natural Selection, Cambridge, Massachusetts, MIT Press.

    Google Scholar 

  • Eigen, M.; Winkler, R., 1981, Laws of the Game: How the Principles of Nature Govern Chance, New York, A.A. Knop.

    Google Scholar 

  • Eldredge, N., 1985, Unfinished Synthesis, New York, Columbia Univ. Press.

    Google Scholar 

  • Eldredge, N., 1986, Information, economics and evolution, Ann. Rev. Ecol. Syst., vol. 17, pp. 351–369.

    Article  Google Scholar 

  • Eldredge, N.; Salthe, S. N., 1984, Hierarchy and evolution, in Oxford Surveys in Evolutionary Biology, R. Dawkins and M. Ridley (eds.), vol. 1, pp. 182–206.

    Google Scholar 

  • Frautschi, S., 1982, Entropy in an expanding universe, Science, vol. 217, pp. 593–599.

    Article  Google Scholar 

  • Frautschi, S., 1982, Entropy in an expanding universe, in Entropy, Information and Evolution: New Perspectives on Physical and Biological Evolution, B. Weber, D.J. Depew and J.D. Smith (eds.), Cambridge, Massachusetts, MIT Press, pp. 11–22.

    Google Scholar 

  • Gatlin, L.L., 1972, Information Theory and the Living System, New York, Columbia Univ. Press.

    Google Scholar 

  • Harvey, P.; Pagel, M., 1991, The Comparative Method in Evolutionary Biology, Oxford, Oxford Univ. Press.

    Google Scholar 

  • Landsberg, P.T., 1984a, Can entropy and ‘order“ increase together?, Physics Len., vol. 102A, pp. 171–173.

    Article  Google Scholar 

  • Layzer, D., 1975, The arrow of time, Sci. Amer., vol. 233, pp. 56–69.

    Google Scholar 

  • Layzer, D., 1978, A macroscopic approach to population genetics, J. Theor. Biol., vol. 73, pp. 769–788.

    Article  Google Scholar 

  • Layzer, D., 1980, Genetic variation and progressive evolution, Amer. Nat., vol. 115, pp. 809–826.

    Article  Google Scholar 

  • Lindeman, R.L., 1942, The trophic dynamic aspect of ecology, Ecology, vol. 23, pp. 399–418.

    Article  Google Scholar 

  • Lotka, A.J., 1913, Evolution from the standpoint of physics, the principle of the persistence of stable forms, Sci. Amer. suppl., vol. 75, pp. 345–346, p. 354, p. 379.

    Google Scholar 

  • Lotka, A.J., 1925, Elements of Physical Biology, Williams and Wilkins, Baltimore.

    Google Scholar 

  • Maurer, B.A.; Brooks, D.R., 1991, Energy flow and entropy production in biological systems, J. Ideas, vol. 2, pp. 48–53.

    Google Scholar 

  • Maynard Smith, J., 1976, What determines the rate of evolution?, Amer. Nat., vol. 110, pp. 331–338.

    Article  Google Scholar 

  • Newman, S.A., 1970, Note on complex systems, J. Theor. Biol., vol. 28, pp. 411–413.

    Article  Google Scholar 

  • Prigogine, I., 1980, From Being to Becoming, W.H. Freeman, San Francisco.

    Google Scholar 

  • Prigogine, I.; Wiame, J.M., 1946, Biologie et thermodynamique des phénomènes irréversibles, Experientia, vol. 2, pp. 451–453.

    Article  Google Scholar 

  • Salthe, S.N., 1985, Evolving Hierarchical Systems: Their Structure and Representation, Columbia Univ. Press, New York.

    Google Scholar 

  • Salthe, S.N., 1993, Development and Evolution: Complexity and Change in Biology, MIT Press, Boston.

    Google Scholar 

  • Schank, J.C.; Wimsatt, W.C., 1988, Generative retrenchment and evolution, in PSA 86, vol. 2, A. Fine and P.K. Machamer (eds.), Philosophy of Science Association, East Lansing, Michigan, pp. 33–60.

    Google Scholar 

  • Smith, J.D.H., 1988, A class of mathematical models for evolution and hierarchical information theory, Inst. Math. Appl. Preprint Series, vol. 396, pp. 1–13.

    Article  Google Scholar 

  • Smith, J.D.H., in press, Mathematical approaches to the unified theory of biology, in Between Instruction and Selection: Studies in a Unified Theory of Non-Equilibrium Biology, J.D. Collier and D. Siegel-Causey (eds.), Baltimore, John Hopkins University Press.

    Google Scholar 

  • Ulanowicz, R.E., 1986, Growth and Development: Ecosystems Phenomenology, New York, Springer-Verlag.

    Book  Google Scholar 

  • Wade, M.J.; Kalisz, S., 1990, The causes of natural selection, Evolution, vol. 44, pp. 1947–1955.

    Article  Google Scholar 

  • Wake, D.B.; Roth, G. (eds.), 1989, Complex Organism! Functions: Integration and Evolution in Vertebrates, Dahlem Workshop, New York, Wiley.

    Google Scholar 

  • Wicken, J.S., 1987, Evolution, Thermodynamics and Information: Extending the Darwinian Paradigm, Oxford Univ. Press, Oxford.

    Google Scholar 

  • Wiley, E.O., 1981, Phylogenetics: The Theory and Practice of Phylogenetic Systematics, Wiley-Intersci., New York.

    Google Scholar 

  • Wiley, E.O.; Brooks, D. R., 1982, A non-equilibrium approach to evolution, Syst. Zool, vol. 31, pp. 1–24.

    Google Scholar 

  • Wiley, E.O.; Mayden, R. L., 1985, Species and speciation in phylogenetic systematics, with examples from the North American fish fauna, Ann. Mo. Bot. Garden, vol. 72, pp. 596–635.

    Article  Google Scholar 

  • Zotin, A.I.; Zotina, R.S., 1978, Experimental basis for qualitative phenomenological theory of development, in Thermodynamics of Biological Processes, I. Lamprecht & A. I. Zotin (eds.), Berlin, deGruyter, pp. 61–84.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Brooks, D.R. (1998). The Unified Theory and Selection Processes. In: van de Vijver, G., Salthe, S.N., Delpos, M. (eds) Evolutionary Systems. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1510-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1510-2_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5103-5

  • Online ISBN: 978-94-017-1510-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics