Skip to main content

Insecticidal proteins produced by bacteria pathogenic to agricultural pests

  • Chapter
Entomopathogenic Bacteria: from Laboratory to Field Application

Abstract

Numerous bacteria pathogenic to insects have been characterised. Some of those are known for the production of insecticidal proteins. The insecticidal protein produced by Bacillus thuringiensis has been studied extensively partly due to its commercial value. A large number of B. thuringiensis strains have been isolated. Each B. thuringiensis isolate has a narrow insect specificity, but the specificity is diversified amongst different isolates. Insects susceptible to B. thuringiensis include those in Lepidoptera, Diptera, Hymenoptera and Coleoptera as well as some nematode species. From these isolates, over 100 insecticidal protein genes have been cloned and sequenced. There are several other Bacillus species known to synthesise insecticidal proteins. Bacillus popilliae produces a proteinaceous inclusion in sporulated cells. The inclusion protein is involved in the pathogenicity of B. popilliae. A gene encoding for this inclusion has been cloned. In this chapter, we shall make a brief introduction to insecticidal proteins found in B. thuringiensis and B. popilliae followed by analysis on the structure and function of B. thuringiensis insecticidal proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alcantara EP (1997) Electrophysiology, receptor binding kinetics and mutational analysis of Bacillus thuringiensis delta-endotoxin. PhD Dissertation, The Ohio State University

    Google Scholar 

  2. Alzate O (1998) Structural and functional studies on the Bacillus thuringiensis CrylAb S-endotoxin and its membrane bound state to Manduca sexta brush border membrane vesicles. PhD Dissertation, The Ohio State University

    Google Scholar 

  3. Aronson AI, Wu D and Zhang C (1995) Mutagenesis of specificity and toxicity regions of a Bacillus thuringiensis protoxin gene. J. Bacteriol. 177, 4059–4065

    PubMed  CAS  Google Scholar 

  4. Asano SI, Nukumizu Y, Bando H, Iizuka T and Yamamoto T (1997) Cloning of novel enterotoxin genes from Bacillus cereus and Bacillus thuringiensis. Appl. Environ. Microbiol. 63, 1054–1057

    Google Scholar 

  5. Beegle CC and Yamamoto T (1992) Invitation paper (C.P. Alexander Fund): History of Bacillus thuringiensis Berliner research and development. Can. Ent. 124, 587–616

    Article  Google Scholar 

  6. Berliner E (1911) Die “Schlaffsucht” der Mehlmottenraupe. Z. Gesamte Getreidewes. 3, 63–70

    Google Scholar 

  7. Bietlot HP, Carey PR, Pozsgay M and Kaplan H (1989) Isolation of carboxyl-terminal peptides from proteins by diagonal electrophoresis: application to the entomocidal toxin from Bacillus thuringiensis. Anal. Biochem. 181, 212–215

    Google Scholar 

  8. Bosch D, Schipper B, van der Kleij H, de Maagd RA and Stiekema WJ (1994) Recombinant Bacillus thuringiensis crystal proteins with new properties: possibilities for resistance management. Biotechnology 12, 915–918

    Article  PubMed  CAS  Google Scholar 

  9. Carlson CR, Johansen T and Kolsto AB (1996) The chromosome map of Bacillus thuringiensis subsp. canadensis HD224 is highly similar to that of the Bacillus cereus type strain ATCC 14579. FEMS Microbiol. Lett. 141, 163–167

    Google Scholar 

  10. Carlson CR and Kolsto AB (1993) A complete physical map of a Bacillus thuringiensis chromosome. J. Bacteriol. 175, 1053–1060

    PubMed  CAS  Google Scholar 

  11. Chestukhina GG, Kostina LI, Zalunin IA . (1994) Production of multiple deltaendotoxins by Bacillus thuringiensis: delta-endotoxins produced by strains of the subspecies galleriae and wuhanensis. Can. J. Microbiol. 40, 1026–1034

    Google Scholar 

  12. Choma CT and Kaplan H (1990) Folding and unfolding of the protoxin from Bacillus thuringiensis: evidence that the toxic moiety is present in an active conformation. Biochem. 29, 10971–10977

    Article  CAS  Google Scholar 

  13. Crickmore N, Zeigler DR, Feitelson J. (1998) Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62, 807–813

    Google Scholar 

  14. de Maagd RA, Kwa MS, van der Klei H . (1996) Domain III substitution in Bacillus thuringiensis delta-endotoxin Cry IA(b) results in superior toxicity for Spodoptera exigua and altered membrane protein recognition. Appl. Environ. Microbiol. 62, 1537–1543

    Google Scholar 

  15. de Maagd RA, van der Klei H, Bakker PL, Stiekema WJ and Bosch D (1996) Different domains of Bacillus thuringiensis delta-endotoxins can bind to insect midgut membrane proteins on ligand blots. Appl. Environ. Microbiol. 62, 2753–2757

    Google Scholar 

  16. Dean DH, Rajamohan F, Lee MK (1996) Probing the mechanism of action of Bacillus thuringiensis insecticidal proteins by site-directed mutagenesis-a minireview. Gene 179, 111–117

    Article  PubMed  CAS  Google Scholar 

  17. Estruch JJ, Carozzi NB, Desai N (1994) The expression of a synthetic crylAb gene in transgenic maize confers resistance to European corn borer. International symposium on insect resistant maize: recent advances and utilization, p.172–174, Mexico

    Google Scholar 

  18. Estruch JJ, Warren GW, Mullins MA . (1996) Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects. Proc. Natl. Acad. Sci. USA 93, 5389–5394

    Google Scholar 

  19. Gazit E and Shai Y (1993) Structural and functional characterization of the alpha 5 segment of Bacillus thuringiensis delta-endotoxin. Biochem. 32, 3429–3436

    Article  CAS  Google Scholar 

  20. Gazit E and Shai Y (1993) Structural characterization, membrane interaction, and specific assembly within phospholipid membranes of hydrophobic segments from Bacillus thuringiensis var. israelensis cytolytic toxin. Biochem. 32, 12363–12371

    Article  CAS  Google Scholar 

  21. Ge AZ, Rivers D, Milne R and Dean DH (1991) Functional domains of Bacillus thuringiensis insecticidal crystal proteins. Refinement of Heliothis virescens and Trichoplusia ni specificity domains on Cry IA(c). J. Biol. Chem. 266, 17954–17958

    Google Scholar 

  22. Ge AZ, Shivarova NI and Dean DH (1989) Location of the Bombyx mori specificity domain on a Bacillus thuringiensis delta-endotoxin protein. Proc. Natl. Acad. Sci. USA 86, 4037–4041

    Google Scholar 

  23. Gonzalez JM, Jr, Brown BJ and Carlton BC (1982) Transfer of Bacillus thuringiensis plasmids coding for delta-endotoxin among strains of B. thuringiensis and B. cereus. Proc. Natl. Acad. Sci. USA 79, 6951–6955

    Google Scholar 

  24. Gonzalez JM, Jr, Dulmage HT and Carlton BC (1981) Correlation between specific plasmids and delta-endotoxin production in Bacillus thuringiensis. Plasmid 5, 352365

    Google Scholar 

  25. Grochulski P, Masson L, Borisova S . (1995) Bacillus thuringiensis Cry IA(a) insecticidal toxin: crystal structure and channel formation. J. Mol. Biol. 254, 447–464

    Google Scholar 

  26. Hickle LA and Fitch WL (1990) Analytical Chemistry of Bacillus thuringiensis. American Chemical Society

    Google Scholar 

  27. Hodgman TC and Ellar DJ (1990) Models for the structure and function of the Bacillus thuringiensis delta-endotoxins determined by compilational analysis. DNA Seq. 1, 97–106

    PubMed  CAS  Google Scholar 

  28. Höfte II, de Greve H, Seurinck J. (1986) Structural and functional analysis of a cloned delta endotoxin of Bacillus thuringiensis berliner 1715. Eur. J. Biochem. 161, 273–280

    Google Scholar 

  29. Höfte H and Whiteley HR (1989) Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol. Rev. 53, 242–255

    PubMed  Google Scholar 

  30. Ishiwata S (1901) On a severe flacherie (sotto disease). Dainihon Sanshi Kaiho 114, 1–5

    Google Scholar 

  31. Dellis C, Bassand D, Beerman N . (1989) Molecular biology of Bacillus thuringiensis and potential benefits to agriculture. Israel. J. Entomol. 23, 189–199

    Google Scholar 

  32. Knight PJ, Crickmore N and Ellar DJ (1994) The receptor for Bacillus thuringiensis Cry IA(c) delta-endotoxin in the brush border membrane of the lepidopteran Manduca sexta is aminopeptidase N. Mol. Microbiol. 11, 429–436

    Google Scholar 

  33. Lee MK, Young BA and Dean DH (1995) Domain III exchanges of Bacillus thuringiensis Cry IA toxins affect binding to different gypsy moth midgut receptors. Biochem. Biophys. Res. Commun. 216, 306–312

    Google Scholar 

  34. Li JD, Carroll J and Ellar DJ (1991) Crystal structure of insecticidal delta-endotoxin from Bacillus thuringiensis at 2.5 A resolution. Nature 353, 815–821

    Article  PubMed  CAS  Google Scholar 

  35. Liang Y and Dean DH (1994) Location of a lepidopteran specificity region in insecticidal crystal protein CryIIA from Bacillus thuringiensis. Mol. Microbiol. 13, 569–575

    Article  PubMed  CAS  Google Scholar 

  36. Masson L, Erlandson M, Puzstai-Carey M . (1998) A holistic approach for determining the entomopathogenic potential of Bacillus thuringiensis strains. Appl. Environ. Microbiol. 64, 4782–4788

    Google Scholar 

  37. Masson L, Prefontaine G, Peloquin L, Lau PC and Brousseau R (1990) Comparative analysis of the individual protoxin components in PI crystals of Bacillus thuringiensis subsp. kurstaki isolates NRD-12 and HD-1. Biochem. J. 269, 507–512

    Google Scholar 

  38. Morse RJ, Powell G, Ramalingam V, Yamamoto T and Stroud RM (1998) Crystal structure of Cry2Aa from Bacillus thuringiensis at 2.2 Angstromes: structural bases of dual specificity. IVth International Conference on Bacillus thuringiensis, p.1, Sapporo

    Google Scholar 

  39. Nagamatsu Y, Itai Y, Hatanaka C, Funatsu G and Hayashi K (1984) A toxic fragment from the entomocidal crystal protein of Bacillus thuringiensis. Agric. Biol. Chem. 48, 611–619

    Google Scholar 

  40. Perlak FJ, Deaton RW, Armstrong TA (1990) Insect resistant cotton plants. Biotechnology 8, 939–943

    Article  PubMed  CAS  Google Scholar 

  41. Perlak FJ, Stone TB, Muskopf YM . (1993) Genetically improved potatoes: protection from damage by Colorado potato beetles. Plant. Mol. Biol. 22, 313–321

    Google Scholar 

  42. Powell G, Asano S, Libs J et al. (1996) Effect of domain II mutations on binding of a Bacillus thuringiensis crystal protein to Spodoptera exiguea BBMV. IIIrd International Conference on Bacillus thuringiensis, p. 65, Cordoba

    Google Scholar 

  43. Pusztai-Carey M (1994) A novel method for quantitation and isolation of individual toxins from multi-gene B. thuringiensis strains. IInd International Conference on Bacillus thuringiensis, p. 51, Montpellier

    Google Scholar 

  44. Rajamohan F, Cotrill JA, Gould F and Dean DH (1996) Role of domain II, loop 2 residues of Bacillus thuringiensis Cry IAb delta-endotoxin in reversible and irreversible binding to Manduca sexta and Heliothis virescens. J. Biol. Chem. 271, 2390–2396

    Google Scholar 

  45. Sankaranarayanan R, Sekar K, Banerjee R . (1996) A novel mode of carbohydrate recognition in jacalin, a Moraceae plant lectin with a beta-prism fold. Nat. Struct. Biol. 3, 596–603

    Google Scholar 

  46. Schnepf HE and Whiteley HR (1981) Cloning and expression of the Bacillus thuringiensis crystal protein gene in Escherichia coli. Proc. Natl. Acad. Sci. USA 78, 2893–2897

    Article  PubMed  CAS  Google Scholar 

  47. Schnepf HE and Whiteley HR (1985) Delineation of a toxin-encoding segment of a Bacillus thuringiensis crystal protein gene. J. Biol. Chem. 260, 6273–6280

    PubMed  CAS  Google Scholar 

  48. Schwartz JL, Juteau M, Grochulski P (1997) Restriction of intramolecular movements within the Cry 1Aa toxin molecule of Bacillus thuringiensis through disulfide bond engineering. FEBS Lett. 410, 397–402

    Article  PubMed  CAS  Google Scholar 

  49. Smith GP and Ellar DJ (1994) Mutagenesis of two surface-exposed loops of the Bacillus thuringiensis Cry IC delta-endotoxin affects insecticidal specificity. Biochem. J. 302, 611–616

    PubMed  CAS  Google Scholar 

  50. Tabashnik BE, Cushing NL, Finson N and Johnson MW (1990) Field development of resistance to Bacillus thuringiensis in diamondback moth ( Lepidoptera: Plutellidae). J. Econ. Entomol. 83, 1671–1676

    Google Scholar 

  51. Tabashnik BE, Malvar T, Liu YB . (1996) Cross-resistance of the diamondback moth indicates altered interactions with domain II of Bacillus thuringiensis toxins. Appl. Environ. Microbiol. 62, 2839–2844

    Google Scholar 

  52. Van Rie J, Jansens S, Hofte H, Degheele D and Van Mellaert H (1989) Specificity of Bacillus thuringiensis delta-endotoxins. Importance of specific receptors on the brush border membrane of the mid-gut of target insects. Eur. J. Biochem. 186, 239–247

    Google Scholar 

  53. Von Tersch MA, Slatin SL, Kulesza CA and English LH (1994) Membranepermeabilizing activities of Bacillus thuringiensis coleopteran-active toxin Cry IIIB2 and Cry IIIB2 domain I peptide. Appl. Environ. Microbiol. 60, 3711–3717

    Google Scholar 

  54. Wabiko H, Held GA and Bulla LA, Jr (1985) Only part of the protoxin gene of Bacillus thuringiensis subsp. berliner 1715 is necessary for insecticidal activity. Appl. Environ. Microbiol. 49, 706–708

    Google Scholar 

  55. Warren GW, Koziel MG, Mullins MA (1998): Auxiliary proteins for enhancing the insecticidal activity of pesticidal proteins. Novartis, US Patent 5770696

    Google Scholar 

  56. Widner WR and Whiteley HR (1990) Location of the dipteran specificity region in a lepidopteran-dipteran crystal protein from Bacillus thuringiensis. J. Bacteriol. 172, 2826–2832

    PubMed  CAS  Google Scholar 

  57. Widner WR and Whiteley HR (1989) Two highly related insecticidal crystal proteins of Bacillus thuringiensis subsp. kurstaki possess different host range specificities. J. Bacteriol. 171, 965–974

    PubMed  CAS  Google Scholar 

  58. Wolfersberger MG, Luthy P, Maurer A . (1987) Interaction of Bacillus thuringiensis delta-endotoxin with membrane vesicles isolated from lepidopteran larval midgut. Comp. Biochem. Physiol. 86A, 301–308

    Google Scholar 

  59. Wu D and Aronson AI (1992) Localized mutagenesis defines regions of the Bacillus thuringiensis delta-endotoxin involved in toxicity and specificity. J. Biol. Chem. 267, 2311–2317

    PubMed  CAS  Google Scholar 

  60. Wu S-J (1996) Domain-function studies of Bacillus thuringiensis Cry3A S-endotoxin; a molecular genetic apporach. PhD dissertation, The Ohio State University

    Google Scholar 

  61. Yamamoto T, Kalman S, Powell G, Cooper N and Cerf D (1998) Environmental release of genetically engineered Bacillus thuringiensis. Rev. Toxicol. 2, 157–166

    Google Scholar 

  62. Yamamoto T and McLaughlin RE (1981) Isolation of a protein from the parasporal crystal of Bacillus thuringiensis var. kurstaki toxic to the mosquito larva, Aedes taeniorhynchus. Biochem. Biophys. Res. Commun. 103, 414–421

    Article  PubMed  CAS  Google Scholar 

  63. Zhang J, Hodgman TC, Krieger L, Schnetter W and Schairer HU (1997) Cloning and analysis of the first cry gene from Bacillus popilliae. J. Bacteriol. 179, 4336–4341

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Yamamoto, T., Dean, D.H. (2000). Insecticidal proteins produced by bacteria pathogenic to agricultural pests. In: Charles, JF., Delécluse, A., Roux, C.NL. (eds) Entomopathogenic Bacteria: from Laboratory to Field Application. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1429-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1429-7_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5542-2

  • Online ISBN: 978-94-017-1429-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics