Skip to main content

Abstract

The human large intestine is a complex anaerobic ecosystem, composed of numerous different species, which degrade and ferment substrates that have either escaped the digestion in the upper digestive tract or are produced by the host. It is recognised that a significant daily quantity of undigested dietary carbohydrate enters the colon (Edwards and Rowland, 1992; see Chapter 2). In contrast, the amount of carbohydrate fermented from endogenous sources like mucus remains undefined (Cummings and Macfarlane, 1991; Flourié et al.,1991). The microbial degradation of this organic matter in the colon constitutes a fundamental process which requires the contribution of different groups of microorganisms linked in a trophic chain (Wolin and Miller, 1983). These food-chain reactions break macromolecules such as complex polysaccharides down to short-chain fatty acids (mainly acetate, propionate and butyrate) and gases (H2, CO2 and in some case CH4). Polysaccharide degrading bacteria hydrolyse polymers into smaller fragments that can be used by saccharolytic bacteria. This cross-feeding allows maintainence of bacterial diversity in the ecosystem. The fermentation products of hydrolytic and saccharolytic bacteria include intermediates, such as lactate or succinate, that are metabolised by other species and do not accumulate to any significant extent in the colon. Hydrogen, which derives enterely from these fermentative processes, can be re-utilized in situ by hydrogenotrophic microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bernalier, A., Lelait, M., Rochet, V. et al. (1996a) Acetogenesis from H2 and CO2 by methane-and non methane-producing human colonic bacterial communities. FEMS Microbiology Ecology 19, 193–202.

    Article  CAS  Google Scholar 

  • Bernalier, A., Rochet, V., Leclerc, M. et al. (1996b) Diversity of H2/COs-utilizing acetogenic bacteria from feces of non methane-producing humans. Current Microbiology 33, 94–99.

    Article  CAS  Google Scholar 

  • Bernalier, A., Willems, A., Leclerc, M. et al. (1996c) Ruminococcus hydrogenotrophicus sp. nov., a new 112/CO2-utilizing acetogenic bacterium. Archives of Microbiology 166, 176–83.

    CAS  Google Scholar 

  • Caspari, D. and Macy, J.M. (1983) The role of carbon dioxide in glucose metabolism of Bacteroides fragilis. Archives of Microbiology 135, 16–24.

    Article  CAS  Google Scholar 

  • Corfield, A.P., Wagner, S.A., Clamp et al. (1992) Mucin degradation in the human colon–production of sialidase, sialate 0-acetylesterase, N-acetylneuraminate lyase, arylesterase and glycosulfatase activities by strains of fecal bacteria. Infection and Immunity 60 (10), 3971–78.

    CAS  Google Scholar 

  • Cummings, J.H. and Macfarlane, G.T. (1991) The control and consequences of bacterial fermentation in the human colon. Journal of Applied Bacteriology 70, 443–49.

    Article  CAS  Google Scholar 

  • Cummings, J.H., Macfarlane, G.T. and Drasar, B.S. (1989) The gut microflora and its significance, in Gastrointestinal and Oesophageal Pathology, (ed. R. Whitehead), Churchill Livingstone Edinburg, London, Melbourne, and New-York, pp. 201–29.

    Google Scholar 

  • Czerkawski, J.W. (1986) An Introduction to Rumen Studies, Oxford, New-York Pergamon Press.

    Google Scholar 

  • Diekert, G. (1990) COz reduction to acetate in anaerobic bacteria. FEMS Microbiology Reviews 87, 391–96. Doré, J., Pochart, P., Bernalier, A. et al. (1995) Enumeration of Hz-utilizing methanogenic archae, acetogenic and sulfate-reducing bacteria from human feces. FEMS Microbiology Ecology 17, 279–84.

    Google Scholar 

  • Ducros, V., Durand, M., Beaumatin, P. et al. (1993) Adaptation of two doses of lactulose by human colonic flora in continuous culture. Proceedings of the Nutrition Society 52 (2), 156A.

    Google Scholar 

  • Duncan, A.J. and Henderson, C. (1990) A study of the fermentation of dietary fibre by human colonic bacteria grown in vitro in semi-continuous culture. Microbial Ecology in Health and Disease 3, 87–98.

    Article  Google Scholar 

  • Durand, M. and Bernalier, A. (1994) Reductive acetogenesis in human and animal gut, in Physiological and Clinical Aspects of Short Chain Fatty Acids Metabolism (eds. J.H. Cummings, J.L. Rombeau and T.L. Sakata ), Cambridge University Press, pp. 107–17.

    Google Scholar 

  • Durand, M., Beaumatin, P., Hannequart, G. et al. (1994) Effects of methanogenesis inhibition on human flora fermentation pattern in continuous culture, in Nouvelles Tendances en Microbiologie Anaérobie (ed. Société Française de Microbiologie ), Paris, pp. 410–13.

    Google Scholar 

  • Edwards, C.A. and Rowland, I.R. (1992) Bacterial fermentation in the colon and its measurement, in Dietary Fibre–A Component of Food Nutritional Function in Health and Disease (eds. T.F. Schweizer and C.A. Edwards ), Springer-Verlag, pp. 119–50.

    Google Scholar 

  • Florent, Ch., Flourié, B., Leblond, A. et al. (1985) Influence of chronic lactulose ingestion on the colonic metabolism of lactulose in man (an in vivo study). Journal of Clinical Investigation 75, 608–13.

    Google Scholar 

  • Flourié, B., Pellier, P., Florent, C. et al. (1991) Site and substrates for methane production in human colon. American Journal of Physiology 260, G752–57.

    Google Scholar 

  • Fonty, G. and Gouet, Ph. (1989) Fibre degrading microorganisms in the monogastric digestive tract. Animal Feed Science and Technology 23, 91–107.

    Article  Google Scholar 

  • Gibson, G.R., Cummings, J.H. and Macfarlane, G.T. (1988) Use of a three-stage continuous culture system to study the effect of mucin on dissimilatory sulfate reduction and methanogenesis by mixed populations of human gut bacteria. Applied and Environmental Microbiology 54, 2750–55.

    CAS  Google Scholar 

  • Gibson, G.R., Cummings, J.H., Macfarlane, G.T. et al. (1990) Alternative pathways for hydrogen disposal during fermentation in the human colon. Gut 31, 679–83.

    Article  CAS  Google Scholar 

  • Gottschalk, G. (1988) Bacterial Metabolism ( Second Edition ), Springer-Verlag, New-York.

    Google Scholar 

  • Jensen, N.S. and Canale-Parola, E. (1986) Bacteroides pectinophilus sp. nov. and Bacteroides galacturonicus sp. nov.: two pectinolytic bacteria from the human intestinal tract. Applied and Environmental Microbiology 52 (4), 880–87.

    CAS  Google Scholar 

  • Kamlage, B., Gruhl, B. and Blaut, M. (1997) Isolation and characterization of two new homoacetogenic hydrogen-utilizing bacteria from the human intestinal tract that are closely related to Clostridium coccoides. Applied and Environmental Microbiology 63, 5, 1732–38.

    Google Scholar 

  • Kotarski, S.F. and Salyers, A.A. (1981) Effect of long generation times on growth of Bacteroides thetaiotaomicron in carbohydrate-limited continuous culture. Journal of Bacteriology 146 (3), 553–60.

    Google Scholar 

  • Lajoie, S.F., Bank, S., Miller, T.L. et al. (1988) Acetate production from hydrogen and [13C] carbon dioxide by the microflora of human feces. Applied and Environmental Microbiology 54, 2723–7.

    CAS  Google Scholar 

  • Leclerc, M., Bernalier, A., Dondille, G. et al. (1997) H2/CO2 metabolism in acetogenic bacteria isolated from the human colon. Anaerobe in press.

    Google Scholar 

  • Macfarlane, G.T. and Cummings, J.H. (1991) The colonic flora, fermentation and large bowel digestive function, in The Large Intestine: Physiology, Pathophysiology and Disease (eds. S.F. Phillips, J.H. Pemberton and R.G. Shorter ), Raven Press, New-York, pp. 51–92.

    Google Scholar 

  • Macfarlane, G.T., Hay, S., Macfarlane, S. et al. (1990) Effect of different carbohydrates on growth, polysaccharidase and glycosidase production by Bacteroides ovatus, in batch and continuous culture. Journal of Applied Bacteriology 68 (2), 179–87.

    Article  CAS  Google Scholar 

  • Macfarlane, G.T. and Gibson, G.R. (1994) Metabolic activities of the normal colonic flora, in Human health: the contribution of microorganisms (ed. S.A.W. Gibson), Springer-Verlag, London, pp. 17–52. Macfarlane, G.T. and Macfarlane, S. (1993) Factors affecting fermentations reactions in the large bowel. Proceedings of the Nutrition Society 52 (2), 367–73.

    Google Scholar 

  • McCarthy, R.E., Kotarski, S.F. and Salyers, A.A. (1985) Location and characteristics of enzymes involved in the breakdown of polygalacturonic acid and by Bacteroides thetaiotaomicron. Journal of Bacteriology 161, 493–99.

    CAS  Google Scholar 

  • Miller, T.L. and Wolin, M.J. (1979) Fermentation by saccharolytic intestinal bacteria. American Journal of Clinical Nutrition 32, 164–72.

    CAS  Google Scholar 

  • Miller, T.L. and Wolin, M.J. (1983) Stability of Methanobrevibacter smithii populations in the microbial flora excreted from the human large bowel. Applied and Environmental Microbiology 51, 429–31.

    Google Scholar 

  • Miller, T.L. and Wolin, M.J. (1985) Methanosphaera stadtmaniae gen. nov., sp. nov.: a species that forms methane by reducing methanol with hydrogen. Archives of Microbiology 141, 116–22.

    CAS  Google Scholar 

  • Miller, T.L. and Wolin, M.J. (1986) Methanogens in human and animal intestinal tracts. Systematic and Applied Microbiology 7, 223–29.

    Article  CAS  Google Scholar 

  • Nottingham, P.M. and Hungate, R.E. (1968) Isolation of methanogenic bacteria from feces of man. Journal of Bacteriology 86, 2178–79.

    Google Scholar 

  • Pochart, P., Doré, J., Lémann, F. et al. (1992) Interrelations between populations of methanogenic arche and sulphate-reducing bacteria in the human colon. FEMS Microbiology Letters 98 (1–3), 225–28.

    CAS  Google Scholar 

  • Prins, R.A. (1977) Biochemical activities of gut microorganisms, in Microbial Ecology of the Gut (eds. R.T.J. Clarke and T. Bauchop ), Academic Press, pp. 73–183.

    Google Scholar 

  • Ragsdale, S.W. (1991) Enzymology of the acetyl-CoA pathway of CO2 fixation. Critical Reviews in Biochemistry and Molecular Biology 26, 261–300.

    Article  CAS  Google Scholar 

  • Rouvière, P.E. and Wolfe, R.S. (1988) Novel biochemistry of methanogenesis. Journal of Biological Chemistry 263 (17), 7913–16.

    Google Scholar 

  • Russell, J.B. and Wallace, R.J. (1988) Energy yielding and consuming reactions, in The Rumen Microbial Ecosystem (ed. P.N. Hobson ), Elsevier Applied Science, London and New-York, pp. 185–215.

    Google Scholar 

  • Salyers, A.A. (1985) Breakdown of polysaccharides by human bacteria. Journal of Environmental Toxicology and Oncology 5 (6), 211–31.

    CAS  Google Scholar 

  • Southgate, D.A.T. (1990) The role of the gut microflora in the digestion of starches and sugars: with special reference to their role in the metabolism of the host, including energy and vitamin metabolism, in Dietary Starches and Sugars in Man: a Comparison. (ed. J. Dodding), Springer-Verlag, London, Berlin, Heidelberg, New-York, Paris, Tokyo, pp. 67–87.

    Google Scholar 

  • Strocchi, A., Furne, J., Ellis, C. et al. (1994). Methanogens outcompete sulphate-reducing bacteria for H2 in the human colon. Gut 35, 1098–101.

    Article  CAS  Google Scholar 

  • Szylit, O. and Andrieux, C. (1993) Physiological and pathophysiological effects of carbohydrate fermentation. World Review of Nutrition and Dietetics 74, 88–102.

    CAS  Google Scholar 

  • Van de Wijngaard, W.M.H., Creemers, J., Vogels, G.D. et al. (1991) Methanogenic pathways in Methanosphaera stadtmanifl. FEMS Microbiology Letters 80, 207–12.

    Article  Google Scholar 

  • Wedeking, K.J., Mansfield, H.R. and Montgomery, L. (1988) Enumeration and isolation of cellulolytic and hemicellulolytic bacteria from human feces. Applied and Environmental Microbiology 54 (6), 1530–35.

    Google Scholar 

  • Wolfe, R.S. (1993) Biochemistry of methanogenesis. Biochemical Society Symposia 58, 41–49.

    Google Scholar 

  • Wolin, M.J. and Miller, T.L. (1983) Carbohydrate fermentation, in Human Intestinal Microflora in Health and Disease (ed. D.J. Hentges ), Academic Press, New-York, pp. 147–65.

    Chapter  Google Scholar 

  • Wolin, M.J. and Miller, T.L. (1993) Bacterial strains from human feces that reduce CO2 to acetic acid. Applied and Environmental Microbiology 59 (11), 3551–56.

    CAS  Google Scholar 

  • Wolin, M.J. and Miller, T.L. (1994) CO2 acetogenesis in the human colonic ecosystem, in Acetogenesis (ed. H.L. Drake), Chapman et Hall, New-York, London, pp. 365–86.

    Google Scholar 

  • Wood, H.G. and Ljundahl, G. (1990) Autotrophic character of the acetogenic bacteria, in Variations in Autotrophic Life (eds. J.M. Shively and L.L. Barton ), Acadmic Press, London, pp. 201–50.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bernalier, A., Dore, J., Durand, M. (1999). Biochemistry of Fermentation. In: Gibson, G.R., Roberfroid, M.B. (eds) Colonic Microbiota, Nutrition and Health. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1079-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1079-4_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4022-0

  • Online ISBN: 978-94-017-1079-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics