Skip to main content

Visual adaptations in crustaceans: Spectral sensitivity in diverse habitats

  • Chapter
Adaptive Mechanisms in the Ecology of Vision

Abstract

In all aspects of their biology, crustaceans exhibit a remarkable degree of variation. A cursory examination of a barnacle, a giant spider crab and a copepod, for instance, might fail to place these organisms together in the same subphylum. This diversity of form reflects the ecological demands of different lifestyles and habitats and extends to include a great variety of eye designs (Land 1981a, and see Chapter 2). As stated neatly by Land in his review of (1984) ‘Although one usually thinks of the Crustacea as linked to the insects by the presence of an exoskeleton and compound eyes, there is actually a much greater diversity of eye types in the Crustacea than in the insects or any other invertebrate group’ (Figure 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arikawa, K., Kawamata K., Suzuki, T. and Eguchi, E. (1987) Daily changes of structure, function, and rhodopsin content in the compound eye of the crab Hemigrapsus sanguineus. J. Comp. Physiol. A., 161, 161–174.

    Article  CAS  Google Scholar 

  • Barnes, H. and Klepal, W. (1972) Phototaxis in stage I nauplius larvae of two cirripedes. J. Exp. Mar. Ecol., 10, 267–273.

    Google Scholar 

  • Boden, B. P., Kampa, E. M. and Abott, B. C. (1961) Photoreception of a planktonic crustacean in relation to light penetration in the sea. In Progress in Photobiology. (eds. Christensen, B. and Buchamann, B.), Elsevier North-Holland, Inc., New York. 189–196.

    Google Scholar 

  • Bowmaker, J. K. (1990) Visual pigments of fishes, in The visual system of fishes. (eds Douglas, R. H. and Djamgoz, M. B. A. ), Chapman and Hall, London, pp. 81–107.

    Chapter  Google Scholar 

  • Bridges, C. D. B. (1972) The rhodopsin-porphyropsin visual system, in Handbook of sensory physiology. vol. VII/1 Photochemistry of vision (ed Dartnall, H. J. A. ), Springer-Verlag, Berlin, Heidelberg, New York.

    Google Scholar 

  • Bridges, C. D. B. and Yoshikama, S. (1970) The rhodopsin-porphyropsin system in fresh-water fishes. Vision Res. 10, 1333–1345.

    Google Scholar 

  • Briggs, M. H. (1961) Visual pigment of grapsoid crabs. Nature, 190, 784–786.

    Google Scholar 

  • Bruno, M. S., Barnes, S. N. and Goldsmith, T. H. (1977) The visual pigment and visual cycle of the lobster, Homarus. J. Comp. Physiol., 120, 123–142.

    Google Scholar 

  • Bruno, M. S. and Goldsmith, T. H. (1974) Rhodopsin of the blue crab Callinectes: evidence for absorption differences in vitro and in vivo. Vision Res., 14, 653–658.

    Article  CAS  Google Scholar 

  • Bruno, M. S., Mote, M. I. and Goldsmith, T. H. (1973) Spectral absorption and sensitivity measurements in single omatidia of the green crab, Carcinus. J. Comp. Physiol., 82, 151–163.

    Article  Google Scholar 

  • Caldwell, R. L. and Dingle, H. (1976) Stomatopods. Scient. Am. 234, 80–89.

    Google Scholar 

  • Chittka, L. (1996) Does bee colour-vision predate the evolution of flower colour. Naturwissenschaften 83, 136–138.

    Google Scholar 

  • Clarke, G. L. (1936) On the depth at which fishes can see. Ecology 17, 452–456.

    Google Scholar 

  • Crandell, K. A. (1995) Opsin evolution in crayfishes: effects of functional constraints, in Current topics on molecular evolution (eds Nei, M. and Takahata, N.). Institute of molecular evolutionary genetics, The Pennsylvania State University. pp. 19–27.

    Google Scholar 

  • Cronin, T. W. (1985) The visual pigment of a stomatopod crustacean, Squilla empusa. J. Comp. Physiol. A., 156, 679–687.

    Google Scholar 

  • Cronin, T. W. (1986) Photoreception in Marine Invertebrates. Amer. Zool., 26, 403–415.

    Google Scholar 

  • Cronin, T. W. (1989) Application of intracellular optical techniques to the study of stomatopod crustacean vision. J. Comp. Physiol. A., 164, 737–749.

    Article  Google Scholar 

  • Cronin, T. W. (1990) Pigments in crustacean compound eyes, in Frontiers in crustacean neurobiology. (eds Wiese, K., Kreuse, W.-D., Tautz, J., Reichert, H. and Mulloney, B.), Birkhäuser, Basel. pp 58–65

    Google Scholar 

  • Cronin, T. W. and Forward, R. B. Jr. (1988) The visual pigments of crabs–I. Spectral characteristics. J. Comp. Physiol. A., 162, 463–478.

    Google Scholar 

  • Cronin, T. W. and Goldsmith, T. H. (1982) Quantum efficiency and photosensitivity of the rhodopsin metarhodopsin conversion in crayfish photoreceptors. Photochem. Photobiol. 36, 447–454.

    Google Scholar 

  • Cronin, T. W. and Marshall, N. J. (1989a) Multiple spectral classes of photoreceptors in the retinaes of gonodactyloid stomatopod crustaceans. J. Comp. Physiol A, 166, 267–275.

    Google Scholar 

  • Cronin, T. W. and Marshall, N. J. (1989b) A retina with at least ten spectral types of photoreceptors in a stomatopod crustacean. Nature, 339, 137–140.

    Article  Google Scholar 

  • Cronin, T. W., Marshall, N. J., Caldwell, R. L. and Shashar, N. (1994a) Specialization of retinal function in the compound eyes of mantis shrimps. Vision Res., 34, 2639–2656.

    Google Scholar 

  • Cronin, T. W., Marshall, N. J., Quinn, C. A. and King, C. A. (1994b) Ultraviolet photoreception in mantis shrimp. Vis. Res., 34, 1443–1452.

    Google Scholar 

  • Cronin, T. W., Marshall, N. J. and Caldwell, R. L. (1994c) The retinas of mantis shrimps from low-light environments (Crustacea, Stomatopoda, Gonodactylidae). J. Comp. Physiol. A, 174, 607–619.

    Google Scholar 

  • Cronin, T. W., Marshall, N. J. and Caldwell, R. L. (1994d) The intrarhabdomal filters in the retinas of mantis shrimps. Vision Res., 34, 279–291.

    Google Scholar 

  • Cronin. T. W., Marshall, N. J., Caldwell, R. L. and Pales, D. (1995a) Compound eyes and ocular pigments of crustacean larvae (Stomatopoda and Decapod Brachyura). Mar. Fresh. Behay. Physiol. 26, 219–231.

    Google Scholar 

  • Cronin T. W., Shashar, N. and Wolff, L. (1995b) Imaging technology reveals the polarized light fields that exist in nature. Biophotonics Int. 2, 38–41.

    Google Scholar 

  • Cronin, T. W. and Frank, T. (1996) A short-wavelength photoreceptor class in a deep-sea shrimp. Proc. R. Soc. Lond. B 263, 861–865.

    Google Scholar 

  • Cronin, T. W., Kent, J., Frank, T., Widder, E., Partridge, J. C., Herring, P., Robinson, P. (1996a) Visual pigments and photoreceptor classes of deep-sea shrimps. Society for Neuroscience Abstracts.

    Google Scholar 

  • Cronin, T. W., Marshall, N. J., Caldwell, R. L. (1996b) Visual pigment diversity in two genera of mantis shrimps implies rapid evolution (Crustacea; Stomatopoda). J. Comp. Physiol. A 179, 371–384.

    Google Scholar 

  • Cronin, T. W. and Marshall, N. J. (1997) Lateral filtering in photoreceptors of two species of stomatopod crustaceans. In prep.

    Google Scholar 

  • Cummins, D. and Goldsmith, T. H. (1981) Cellular identification of the violet receptor in the crayfish eye. J. Comp. Physiol., 142, 199–202.

    Google Scholar 

  • Dartnall, H. J. A. and Lythgoe, J. N. (1965) The spectral clustering of visual pigments. Vision Res. 5, 81–100.

    Article  PubMed  CAS  Google Scholar 

  • Denton, E. J. (1990) Light and vision at depths greater than 200 metres, in Light and life in the sea (eds Herring, P. J., Campbell, A. K., Whitfield, M. and Maddock, L. ), Cambridge University Press, Cambridge, New York, pp. 127–148.

    Google Scholar 

  • Denys, C. J. (1982) Ommochrome pigments in the eyes of Euphausia superba (Crustacea, Euphausiacea). Polar Biol.

    Google Scholar 

  • Denys, C. J. and Brown P. K. (1982) The rhodopsins of Euphausia superba and Meganyctiphanes novegica (Crustacea, Euphausiacea). J. Gen. Physiol., 80, 451–472.

    Google Scholar 

  • Douglas, R. H. and Partridge, J. C. (1997) On the visual pigments of deep-sea fish. J. fish biol. 50, 68–85.

    Google Scholar 

  • Dover, C. L., Szuts, E. Z., Chamberlain, S. C. and Cann, J. R. (1989) A novel eye in the `eyeless’ shrimp from hydrothermal vents of the Mid-Atlantic Ridge. Nature, 337, 458–461.

    Google Scholar 

  • Frisch, K. and Kupeiwieser, H. (1913) Über den einfluss der lichtfarbe auf die phototaktischen reaktionen niederer krebse. Biol. Centrabl. 33, 517–552.

    Google Scholar 

  • Eakin, R. M. (1972) Structure of invertebrate photoreceptors, in Handbook of sensory physiology. VII/1. (ed. Dartnall, H. J. A.), Springer, Berlin, Heidelberg, New York. pp. 625–684.

    Google Scholar 

  • Eaton, B. P. and Brown, C. M. (1970) Photoreception in the nauplius eye of Pandalus borealis Kröger: Decapoda, Crustacea. Canad. J. Zool. 48, 119–121.

    Google Scholar 

  • Exner, S. (1891) Die physiologie der facettirten augen von krebsen und insecten. Liepsig, Wein, Deuticke.

    Google Scholar 

  • Fernandez, H. R. (1965) A survey of the visual pigments of decapod crustacea of South Florida. Ph.D. Thesis, University of Miami, Coral Gables, Florida.

    Google Scholar 

  • Fernandez, H. R. (1973) Spectral sensitivity and visual pigment of the compound eye of the galatheid crab Pleuroncodes planipes. Mar. Biol., 20, 148–153.

    Google Scholar 

  • Fisher, L. R. and Goldie, E. H. (1959) The eye pigments of a euphausiid crustacean, Meganyctiphanes norvegica (M. Sars). Proc. XV Intern. Congr. Zool., London. 533–535.

    Google Scholar 

  • Fisher, L. R. and Goldie, E. H. (1961) Pigments of compound eyes, in Progress in Photobiology. (eds. Christensen, B. and Buchamann, B.), Elsevier North-Holland, Inc., New York. 153–154.

    Google Scholar 

  • Forward, R. B. Jr., Cronin, T. W. (1979) Spectral sensitivity of larvae from intertidal crustaceans. J. Comp. Physiol. 133, 311–315.

    Google Scholar 

  • Forward, R. B. Jr., Cronin, T. W. and Douglass, J. K. (1988) The visual pigments of crabs–II. Environmental adaptations. J. Comp. Physiol. A., 162, 479–490.

    Google Scholar 

  • Forward, R. B. and Douglas, J. K. (1989) Crustacean larval visual sensitivity during diel vertical migration. Proc. 21st EMBS 59–66.

    Google Scholar 

  • Frank, T. M. and Case, J. F. (1988a) Visual spectral sensitivities of bioluminescent deep-sea crustaceans. Biol. Bull., 175, 261–273.

    Google Scholar 

  • Frank, T. M. and Case, J. F. (1988b) Visual spectral sensitivities of the bioluminescent deep-sea mysid, Gnathophausia ingens. Biol. Bull., 175, 274–283.

    Google Scholar 

  • Frank, T. M. and Widder, E. A. (1994a) Evidence for behavioural sensitivity to near-UV light in the deep-sea crustacean Systellaspis debilis. Mar. Biol., 118, 279–284.

    Google Scholar 

  • Frank, T. M. and Widder, E. A. (1994b) Comparative study of behavioural-sensitivity thresholds to near UV and blue-green light in the deep-sea crustaceans. Marine Biology 121, 229–235.

    Google Scholar 

  • Frank, T. M. and Widder, E. A. (1996) UV light in the deep-sea: In situ measurements of downwelling irradiance in relation to the visual threshold sensitivity of UV-sensitive crustaceans. Mar. Fresh. Behan Physiol. 27, 189–197.

    Google Scholar 

  • Gaten, E, Shelton, P. M. J. and Herring, P. J. (1992) Regional morphological variations in the compound eyes of certain mesopelagic shrimps in relation to their habitat. J. mar. biol. Ass. U.K. 72, 61–75.

    Article  Google Scholar 

  • Glantz, R. M. (1996) Polarization sensitivity in Crayfish lamina monopolar neurons. J. Comp. Physiol. A 178, 413–425.

    Google Scholar 

  • Goddard, S. M. and Forward, R. B. (1991) The role of underwater polarised light patterns in sun compass navigation of the grass shrimp Palaemonetes vulgaris J. Comp. Physiol. A 169, 479–491.

    Google Scholar 

  • Goldsmith, T. H. (1972) The natural history of invertebrate photoreceptors, in Handbook of Sensory Physiology Vol. VII, Part 1 (ed. Dartnall, H. J. A.). Springer-Verlag, New York, pp. 685–719.

    Google Scholar 

  • Goldsmith, T. H. (1978a) The effects of screening pigments on the spectral sensitivity of some crustacean with scotopic (superposition) eyes. Vision Res., 18, 475–482.

    Google Scholar 

  • Goldsmith, T. H. (1978b) The spectral absorption of crayfish rhabdoms: Pigment, photoproduct, and pH sensitivity. Vision Res. 18, 463–473.

    Google Scholar 

  • Goldsmith, T. H. (1991) The evolution of visual pigments and colour vision. in The perception of colour. (ed Gouras, P.) Vision and visual dysfunction. vol 6 (ed gen J. Cronly-Dillon), Macmillan, pp. 62–89

    Google Scholar 

  • Goldsmith, T. H. and Bruno, M. S. (1973) Behavior of rhodopsin and metarhodopsin in isolated rhabdoms of crabs and lobster, in Biochemistry and Physiology of Visual Pigments (ed. Langer, H. ). Springer-Verlag, Berlin, Heidelberg, New York, pp. 147–153.

    Chapter  Google Scholar 

  • Harnacher, K. J. and Kohl, K. D. (1981) Spectroscopical studies of the Astacus visual pigment. Biophys. Struct. Mech., 7, 338.

    Article  Google Scholar 

  • Harnacher, H. and Stieve, H. (1984) Spectral properties of the rhodopsin-system of the crayfish Astacus leptodactylus. Photochem. Photobiol. 39, 379–390.

    Google Scholar 

  • Hariyama, T, Tsukahara, Y. and Meyer-Rochow, V. B. (1993) Spectral responses including a UV-sensitive cell type in the eye of the isopod Ligia exotica. Naturwissenschaften 80, 233–235.

    Google Scholar 

  • Hays, D. and Goldsmith, T. H. (1969) Microspectrophotometry of the visual pigment of the spider crab Libinia emarginata. Z. vergl. Physiol. 65, 218–232.

    Google Scholar 

  • Herring, P. J. (1977) Luminescence in cephalopods and fish. Symp. zool. Soc. Lond. 38, 127–159.

    Google Scholar 

  • Hertel, H. (1972) Aspekte zur photorezeption von Anemia saliva. Verh. dtsch. Ges. Zool. Erlangen.

    Google Scholar 

  • Hiller-Adams, P., Widder, E. A. and Case, J. F. (1988) The visual pigments of four deep-sea crustacean species. J. Comp. Physiol. A., 163, 63–72.

    Google Scholar 

  • Hillman, P., Dodge, F. A., Hochstein, S., Knight, B. W. and Minke, B. (1973) Rapid dark recovery of the invertebrate early receptor potential. J. Gen. Physiol. 62, 77–86.

    Google Scholar 

  • Horidge, G. A. (1967) Perception of polarization plane, colour, and movement in two dimensions by the crab, Carcinus. Z. Vergel. Physiol. 55, 207–224.

    Article  Google Scholar 

  • Hyatt, G. W. (1975) Physiological and behavioural evidence for colour discrimination by fiddler crabs (Brachyura, Ocypodidae, Genus, Uca), in Physiological ecology of estuarine organisms (ed. Vernberg, J. ). University of South Carolina Press, Columbia.

    Google Scholar 

  • Ivanoff, A. and Waterman, T. H. (1958) Factors, mainly depth and wavelength, affecting the degree of underwater light polarization. J. Mar. Res. 16, 283–307.

    Google Scholar 

  • Jerlov, N. G. (1976). Marine Optics. Elsevier, Amsterdam.

    Google Scholar 

  • Kampa, E. M. (1955) Euphausiopsin, a new photosensitive pigment from the eyes of euphausiid crustaceans. Nature (Lond.), 175, 996–998.

    Google Scholar 

  • Kampa, E. M. (1965) The euphausid eye–a re-evaluation. Vision Res. 5, 475–481.

    Google Scholar 

  • Kong, K. L., Fung, Y. M. and Wasserman, G. S. (1980) Filter-mediated color vision with one visual pigment. Science, 207, 783–786.

    Google Scholar 

  • Krebs, W. and Lietz, R. (1982) Apical region of the crayfish retinula. Cell. Tiss. Res. 222, 409–415.

    Google Scholar 

  • Lall, A. B. and Cronin, T. W. (1987) Spectral sensitivity of the compound eyes in the purple land crab, Gecarcinus lateralis. Biol. Bull., 173, 398–406.

    Google Scholar 

  • Land, M. E (198la) Optics and vision in invertebrates, in Handbook of sensory physiology. VII/6B. (ed. Autrum, H.) Springer-Verlag. Berlin, Heidelberg, New York. pp. 471–594.

    Google Scholar 

  • Land, M. F. (1981b) Optical mechanisms in the higher Crustacea with a comment on their evolutionary origins, in Sense organs (eds. Laverack, M. S. and Cosens, D. J.), Blackie, London, Glasgow, pp. 31–48.

    Google Scholar 

  • Land, M. E (1984) Crustacea, in Photoreception and vision in invertebrates (ed. Ali, M. A.), Plenum, pp. 401–438.

    Google Scholar 

  • Land, M. E (1989a) The eyes of hyperiid amphipods: relation so optical structure to depth. J. Comp. Physiol. A 164, 751–762.

    Article  Google Scholar 

  • Land, M. F. (1989b) The sight of deep wet heat. Nature 337, 404.

    Article  Google Scholar 

  • Land, M. F. (1990) Optics of the eyes of marine animals, in Light and life in the sea (eds Herring, P. J., Campbell, A. K., Whitfield, M. and Maddock, L.), Cambridge University Press, Cambridge, New York, pp. 149–166.

    Google Scholar 

  • Land, M. F., Burton, F. A. and Meyer-Rochow, V. B. (1979) The optical geometry of euphausid eyes. J. Comp. Physiol. A 130, 49–62.

    Google Scholar 

  • Land, M. E, Marshall, N. J. and Diebel, C. (1995) Tracking of blue lights by hyperiid amphipods. J. mar. biol. Ass. U.K. 75, 71–81.

    Google Scholar 

  • Latz, M I., Frank, T. M. and Case, J. F. (1988) Spectral composition of bioluminescence of epipelagic organisms from the Sargasso Sea. Marine Biology 98, 441–446.

    Google Scholar 

  • Leggett, L. M. W. (1979) A retinal substrate for colour discrimination in crabs. J. Comp. Physiol., 133, 159–166.

    Article  Google Scholar 

  • Levine and MacNichol (1982) SCI AM.

    Google Scholar 

  • Loew, E. R. and McFarland, W. N. (1990) The underwater visual environment, in The visual system offish. (eds Douglas, R. H. and Djamgoz, M. B. A.), Chapman and Hall, London. pp. 1–49.

    Google Scholar 

  • Lythgoe, J. N. (1966). Visual pigments and underwater vision, in Light as an Ecological Factor (ed. Bainbridge, R., Evans, G. C. and Ruckham, O.), pp. 375–391. Blackwell, Oxford.

    Google Scholar 

  • Lythgoe, J. N. (1972). The adaptation of visual pigments to the photic environment, in The Handbook of Sensory Physiology (ed. Dartnall, H. J. A.), Vol. VI1/1, pp. 566–603. Springer-Verlag, Berlin, Heidelberg, New York.

    Google Scholar 

  • Lythgoe, J. N. (1979) The ecology of vision. Clarendon, Oxford.

    Google Scholar 

  • Manning, R. B. and Camp, D. K. (1983) Erythrosquilloidea, a new superfamily, and tetrasquillidae, a new family of stomatopod crustaceans. Proc. Biol. Soc. Wash. 106, 85–91.

    Google Scholar 

  • Manning, R. B., Schiff, H. and Abbott, B. C. (1984) Eye structure and the classification of stomatopod crustacea. Zoologica Scripta 13, 41–44.

    Google Scholar 

  • Marshall, N. B. (1979) Developments in deep-sea biology. Blandford, Dorset.

    Google Scholar 

  • Marshall, N. J. (1988) A unique colour and polarization vision system in mantis shrimps. Nature, 333, 557–560.

    Google Scholar 

  • Marshall N. J., Land M. F., King C. A. and Cronin T. W. (1991a) The compound eyes of mantis shrimps (Crustacea, Hoplocarida, Stomatopoda). I. Compound eye.structure: the detection of polarised light. Phil.Trans. R. Soc. Lond. B 334, 33–56.

    Google Scholar 

  • Marshall N. J., Land M. F., King C. A., and Cronin T. W. (1991b) The compound eyes of mantis shrimps (Crustacea, Hoplocarida, Stomatopoda). II Colour. pigments in the eyes of stomatopod crustaceans: polychromatic vision by serial and lateral filtering. Phil.Trans. R. Soc. Lond. B 334, 57–84.

    Google Scholar 

  • Marshall, N. J. and Oberwinkler (1993) Electrophysiology of Mantis Shrimp retina. Abstracts of the British Photobiology Society.

    Google Scholar 

  • Marshall, N. J. and Land, M. F. (1993) Some optical features of the eyes of stomatopods. I. Eye shape, optical axes and resolution. J. Comp. Physiol. A 173, 565–582.

    Google Scholar 

  • Marshall, N. J., Jones, J. P. and Cronin, T. W. (1996) Behavioural evidence for colour vision in stomatopod crustaceans. J. Comp. Physiol. A 197, 473–481.

    Google Scholar 

  • Martin, F. G. and Mote, M. I. (1982) Colour receptors in Marine Crustaceans: A second class of retinular cell in the compound eyes of Callinectes and Carcinus. J. Comp. Physiol., 145, 549–554.

    Article  Google Scholar 

  • Farland, W. N. and Munz, F. W. (1975a) Part II: The photic environment of clear tropical seas during the day. Vision Res., 15, 1063 —1070.

    Google Scholar 

  • Farland, W. N. and Munz, F. W. (1975b) Part Ill: The evolution of photopic visual pigments in fishes. Vision Res., 15, 1071–1080.

    Article  Google Scholar 

  • Minke, B. and Kirschfield, K. (1978) Microspectrophotometric evidence for two photo-interconvertible states of visual pigment in the barnacle lateral eye. J. Gen. Physiol., 71, 37–45.

    Google Scholar 

  • Munz, E W. and McFarland, W. N. (1977) Evolutionary adaptations of fishes to the photic environment, in The visual system in vertebrates. (ed. Crescitelli, F.), Springer, Berlin, Heidelberg, New York. pp. 193–274.

    Google Scholar 

  • Muntz, W. R. A. and Mouat, G. S. V. (1984) Annual variations in the visual pigment of brown trout inhabiting lochs providing different light environments. Vision Res. 24, 1575–1580.

    Google Scholar 

  • Nässel, D. R. (1976) The retina and the retinal projection on the lamina ganglionaris of the crayfish Pacifasticus leniusculus (Dana). J. comp. physiol. 167, 341–360.

    Google Scholar 

  • Neville, A. C. and Luke, B. M. (1971) Form optical activity in crustacean cuticle. J. Insect Physiol. 17, 519–526.

    Google Scholar 

  • Nilsson, D.-E. (1989) Optics and evolution of the compound eye, in Facets of vision (eds Stavenga, D. G. and Hardie, R. C.) Springer-Verlag, Berlin, Heidelberg, New York. pp. 30–73.

    Google Scholar 

  • Nilsson, D.-E. and Modlin, R. E (1994) A mysid shrimp carrying a pair of binoculars. J. exp. Biol.,. 189, 213–236.

    Google Scholar 

  • Nilsson, D.-E. and Pelger, S. (1994) A pessimistic estimateof the time required for an eye to evolve. Proc. R. Soc. Lond. B 256, 53–58.

    Google Scholar 

  • Osorio, D., Marshall, N. J. and Cronin, T. W. (1997) Stomatopod photoreceptor spectral tuning as an adaptation for colour constancy in water. Vision. Res. In press.

    Google Scholar 

  • Partridge, J. C. (1990) The colour sensitivity and vision of fishes, in Light and Life in the Sea (ed. Herring, P. J., Campbell, A. K., Whitfield, M. and Maddock, L. ), pp. 167–184.

    Google Scholar 

  • Cambridge University Press. Partridge, J. C., Shand, J., Archer, S. N., Lythgoe, J. N. and van Groningen-Luyben, W. A. H. M. (1989) Interspecific variation in the visual pigments of deep-sea fishes. J. Comp. Physiol. A 164, 513–529

    Google Scholar 

  • Partridge, J. C., Archer, S. N. and Van Oostrum, J. (1992). Single and multiple visual pigments in deepsea fishes. J. mar. biol. Ass. U.K., 72, 113–130.

    Google Scholar 

  • Schehr, R. S. (1984) Spectral sensitivities of anatomically identified photoreceptors in the compound eye of Daphnia magna. PhD thesis, Columbia University.

    Google Scholar 

  • Schiff, H. (1963) Dim light vision of Squilla mantis L. Amer. J. Physiol., 205, 927–940.

    Google Scholar 

  • Scott, S. and Mote, M. I. (1974) Spectral sensitivity in some marine crustacea. Vision Res, 14, 659–663.

    Google Scholar 

  • Shand, J. (1993) Changes in the spectral absorption of cone visual pigments during the settlement of the goatfish Upeneus tragula: the loss of red sensitivity as a benthic existence begins. J. Comp. Physiol. A., 173, 115–121.

    Google Scholar 

  • Shashar, N., Rutledge, P. S. and Cronin, T. W. (1996) Polarization vision in cuttlefish - a concealed communication channel? J. Exp. Biol. 199, 2077–2084.

    Google Scholar 

  • Shelton, P. M. J., Gaten, E. and Herring, P. J. (1992) Adaptations of tapeta in the eyes of mesopelagic decapod shrimps to match the oceanic irradiance distribution. J. mar. biol. Ass. U.K. 72, 77–88.

    Google Scholar 

  • Smith, F. E. and Baylor, E. R. (1953) Colour responses in the cladocera and their ecological significance. Am. Nat. 87, 49–55.

    Google Scholar 

  • Smith, K. C. and Macagno, E. R. (1990) UV photoreceptors in the compound eye of Daphnia magna (Crustacea, Branchiopoda). A fourth spectral class in a single omatidium. J. Comp. Physiol. A 166, 597–606.

    Google Scholar 

  • Snyder, A. W., Menzel, R. and Laughlin, S. B. (1973) Structure and function of the fused rhabdom. J. Comp. Physiol. A 87, 99–135.

    Google Scholar 

  • Stavenga, D. G. and Schwemer, J. (1984) Visual pigments of invertebrates, in Photoreception and Vision in Invertebrates (ed. Ali, M. A. ), Plenum Press, New York and London.

    Google Scholar 

  • Stavenga, D. G., Smits, R. P. and Hoenders, B. J. (1993) Simple exponential functions describing the absorbance bands of visual pigment spectra. Vision Res, 33, 1011–1017.

    Article  PubMed  CAS  Google Scholar 

  • Steams, S. C. (1975) Light responses of Daphnia pulex. Limnol. Oceanogr. 20, 564–570.

    Google Scholar 

  • Stearns, D. E. and Forward, R. B. Jr. (1984) Photosensitivity of the calanoid copepod, Acartia tonsa. Mar. Biol., 82, 85–90.

    Google Scholar 

  • Stowe, S. (1980) Spectral sensitivity and retinal pigment movement in the crab Leptograspsus variegatus (Fabricius). J. Exp. Biol.,87, 73–98.

    Google Scholar 

  • Suzuki, T., Makino-Tasaka, M. and Eguchi, E. (1984) 3-dehydroretinal (vitamin A2 aldehyde) in crayfish eye. Vision Res,24, 783–787.

    Google Scholar 

  • Suzuki, T. and Eguchi, E. (1987) A survey of 3-hydroretinal as a visual pigment chromophore in various species of crayfish and other crustaceans. Experientia 43, 1111–1113.

    Article  CAS  Google Scholar 

  • Wald, G. and Hubbard, R. (1957) Visual pigment of a decapod crustacean: the lobster. Nature (Gond.), 180, 278–280.

    Google Scholar 

  • Wald, G. and Seldin, E. B. (1968) Spectral sensitivity of the common prawn, Palaemonetes vulgaris. J. Gen. Physiol., 51, 694–700.

    Google Scholar 

  • Wald, G. and Rayport, S. (1977) Vision in annelid worms. Science 196, 1434–1439.

    Google Scholar 

  • Waterman, T. H. (1981) Polarization sensitivity, in Handbook of sensory physiology. VIV6C (ed. Autrum, H.), Springer Verlag, Berlin, Heidelberg, New York. pp. 281–469.

    Google Scholar 

  • Wehner, R. (1983) The perception of polarized light. in The biology of photoreception (eds Cosens, D. J. and Vince-Prue, D.), Symposia of the Society for Experimental Biology. Symposium XXXVI. Cambridge University Press, Cambridge, London, New York. pp. 331–369.

    Google Scholar 

  • Widder, E. A., Hiller-Adams, P. and Case, J. F. (1987) A multichannel microspectrophotometer for visual pigment investigations. Vision Res, 27, 1047–1055.

    Article  PubMed  CAS  Google Scholar 

  • Widder, E. A., Latz, M. I. and Case, J. F. (1983) Marine bioluminescence spectra measured with an optical multichannel detection system. Biol. Bull. 165, 791–810.

    Google Scholar 

  • Wood, P., Partridge, J. C. and De Grip, W. J. (1992) Rod visual pigment changes in the elver of the eel Anguilla anguilla L. measured by microspectrophotometry. J. Fish Biol. 41, 601–611.

    Article  Google Scholar 

  • Zeiger, J. and Goldsmith, T. H. (1989) Spectral properties of porphyropsin from an invertebrate. Vision Res. 29, 519 — 527.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Marshall, J., Kent, J., Cronin, T. (1999). Visual adaptations in crustaceans: Spectral sensitivity in diverse habitats. In: Archer, S.N., Djamgoz, M.B.A., Loew, E.R., Partridge, J.C., Vallerga, S. (eds) Adaptive Mechanisms in the Ecology of Vision. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0619-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0619-3_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5124-0

  • Online ISBN: 978-94-017-0619-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics