Skip to main content

Fossil Biofilms and the Search for Life on Mars

  • Chapter
Fossil and Recent Biofilms

Abstract

Microbial biofilms and mats are documented as fossils in rocks throughout the 3.5 b.y.-old morphological fossil record of life on Earth (Westall et al., 2000). The polymer-rich biofilms are, per se, highly robust structures capable of great resistance and durability. Moreover, the abundance of active groups in the polymers which can chelate mineral ions in solution, assures their ready preservation in the rock record. These active groups include the carboxylate, hydroxyl, amine and phosphate groups (Geesey and Jang, 1989). Precipitation of minerals within a microbial biofilm can be influenced by microbial metabolic control of the microenvironment. Furthermore, the presence of an organic template with active nucleation sites also contributes towards bio-catalysed precipitation of minerals. Some of the best-known examples of mineralised biofilms in the geological record are calcified and silicified stromatolites (Krumbein, 1983). Mineralisation of organic templates can occur very rapidly (within a day, Toporski et al., 2001a). Experiments to silicify microorganisms also document the potential faithfulness of reproduction of the original organism, and the fineness of detail obtainable, by silica impregnation (Westall et al., 1995; Westall, 1999; Toporski et al., 2001a).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Awramik, S.M., Schopf, J.W., and Walter, M.R. (1983) Filamentous fossil bacteria from the Archaean of Western Australia. Precambrian Res., 20, 357–374.

    Article  Google Scholar 

  • Byerly, G., Lowe, D.R., and Walsh, M.M. (1986) Stromatolites from the 3300–3500 Myr Swaziland Supergroup, Barberton Mountain Land, South Africa. Nature, 319, 489491

    Google Scholar 

  • Byerly, G.R. and Palmer, M.R. (1991) Tourmaline mineralisation in the Barberton greenstone belt, South Africa: Early Archaean metasomatism by evaporite-derived boron. Contrib. Minerol. Petrol., 107, 387–402.

    Article  Google Scholar 

  • Cabrol, N.A. and Grin, E.A. (1999) Distribution, classification, and ages of martian impact crater lakes. Icarus, 142, 160–172.

    Article  Google Scholar 

  • Canfield, D., Habicht, K.S., and Thamdrup, B. (2000) The Archaean sulfur cycle and the early history of atmospheric oxygen. Science, 288, 658–661.

    Article  Google Scholar 

  • Carr, M.H. (1996) Water on Mars. Oxford, N.Y.

    Google Scholar 

  • Carr, M.H. (1999) Retention of an atmosphere on early Mars. J. Geophys. Res., 104, 21,89721, 909.

    Google Scholar 

  • Chyba, C.F., Thomas, P.J., Brookshaw, L., and Sagan, C. (1990) Cometary delivery of organic molecules to early Earth. Science, 249, 366–373.

    Article  Google Scholar 

  • Clifford, S.M. (1993) A model for the hydrologic and climatic behaviour of water on Mars. J. Geophys. Res., 98, 10,973–11, 016.

    Google Scholar 

  • Cockell, C.S., 2000. The ultraviolet history of the terrestrial planets–implications for biological evolution. Planetary Space Sci., 48: 203–214.

    Article  Google Scholar 

  • Decho, A. (1994) Molecular-scale events influencing the macro-scale cohesiveness of exoplymers. In Biostabilisation of Sediments (ed. W.E. Krumbein, Patterson, D., and Stal, L.-J. ), BIS, Oldenburg, pp. 135–149.

    Google Scholar 

  • De Ronde, C.E.J., de Wit, M.J., and Spooner, E.T.C. (1994) Early Archaean (>3.2 Ga) ironoxide-rich, hydrothermal discharge vents in the Barberton greenstone belt, South Africa. Geol. Soc. Amer. Bull., 106, 86–104.

    Article  Google Scholar 

  • De Ronde, C.E.J., DeR. Channer, D.M., Faure, K., Bray, C.J., and Spooner, E.T.C. (1997) Fluid chemistry of Archaean seafloor hydrothermal vents: Implications for the composition of circa 3.2 Ga seawater. Geochim. Cosmochim. Acta, 61, 4025–4042.

    Google Scholar 

  • De Wit, M.J., Hart, R.A., Martin, A., and Abbott, P. (1982) Archaean abiogenic and probable biogenic structures associated with mineralised hydrothermal vent systems and regional metasomatism with implications for greenstone belt studies. Econ. Geol., 77, 1783–1802.

    Article  Google Scholar 

  • Folk, R.L. (1993) SEM imaging of bacteria and nannobacteria in carbonate sediments and rocks. J Sedimentary Petrol., 63, 990–999.

    Google Scholar 

  • Gibson, E.K., McKay, D.S., Thomas-Keprta, K., Wentworth, S.J., Westall., F., Steele, A., Romanek, C.S., Bell, M.S., and Toporski, J.(2001) Life on Mars: evaluation of the

    Google Scholar 

  • evidence within Martian meteorites ALH84001, Nakhla, and Shergotty. Precambrian Res. 106, 13–32.

    Google Scholar 

  • Geesey, G.G. and Jang, L. (1989) Interactions between metal ions and capsular polymers. In Metal Ions and Bacteria (ed. T.J. Beveridge and D.J. Doyle) John Wiley, N.Y., 325358.

    Google Scholar 

  • Golubic, S. and Schneider, J. (2001) Microbial endoliths as internal biofilms. In Fossil and Recent Biofilms (ed. W.E. Krumbein, T. Dornieden, and M. Volkmann ), Kluwer, Amsterdam, this volume.

    Google Scholar 

  • Gorbuschina, A.A. and Krumbein, W.E. (2000) Subaerial microbial mats and their effects on soil and rock. In Microbial Sediments (ed. R.E. Riding and S.M. Awramik ), Springer, Berlin, pp. 161–170.

    Chapter  Google Scholar 

  • Grotzinger, J.P. and Kasting, J.F. (1993) New constraints on Precambrian ocean composition. J. Geology, 101, 235–243.

    Article  Google Scholar 

  • Hofmann, H.J., Grey, K., Hickman, A.H., Thorpe, R.I. (1999) Origin of 3.45 Ga coniform stromatolites in the Warrawoona Group, Western Australia. Geol. Soc. Amer. Bull., 111: 1256–1262.

    Article  Google Scholar 

  • Holland, H. D. (1984) The chemical evolution of the atmosphere and the oceans. Princeton, Princeton.

    Google Scholar 

  • Jakosky, B.M. and Shock, E.L. (1998) The biological potential of Mars, the early Earth, and Europa. J. Geophys. Res., 103, 19, 359–19, 364.

    Google Scholar 

  • Jakosky, B.M. and Phillips, R.J. (2001) Mars volatile and climate history: Water the observational constraints? Nature,in press.

    Google Scholar 

  • Kasting, J.F. (1993). Earth’s early atmosphere. Science, 259: 920–926.

    Article  Google Scholar 

  • Kempe. S., and Degens, E.T. (1985) An early soda ocean ?. Chem. Geol., 53, 95–108.

    Article  Google Scholar 

  • Knauth, L.P. and Lowe, D.R. (2003) High Archaean climatic temperature inferred from

    Google Scholar 

  • oxygen isotope geochemistry of cherts in the 3.5 Ga Swaziland Supergroup, South

    Google Scholar 

  • Africa. GSA Bulletin,115, 566–580.

    Google Scholar 

  • Krumbein, W.E. (1983) Stromatolites — the challenge of a term in space and time. Precambrian Res., 20, 493–531.

    Article  Google Scholar 

  • Krumbein, W.E. and Stahl, L.-J. (1991) The geophysiology of marine cyanobacterial mats and biofilms. Kieler Meeresforsch., 8, 158–163.

    Google Scholar 

  • Maher, K.A. and Stevenson, D.J. (1988) Impact frustration of the origin of life. Nature, 331, 612–614.

    Article  Google Scholar 

  • Malin, M.C. and Edgett, K.S. (2000) Evidence for recent ground water seepage and surface runoff on Mars. Science, 288, 2330–2335.

    Article  Google Scholar 

  • Mojzsis, S.J., Arrhenius, G., Keegan, K.D., Harrison, T.H., Nutman, A.P. and Friend, C.L.R., 1996. Evidence for life on earth 3,800 million years ago. Nature, 384, 55–58.

    Article  Google Scholar 

  • Nijman, W., K.H. de Bruijne, M. Valkering, (1998) Growth fault control of Early Archaean cherts, barite mounds and chert-barite veins, North Pole Dome, Eastern Pilbara, Western Australia, Precambrian Res., 88, 25–52.

    Article  Google Scholar 

  • Nijman, W., Willigers, B.J.A., and Krikke, A. (1998) Tensile compressive growth structures: relationships between sedimentation, deformation, and granite intrusion in the

    Google Scholar 

  • Archaean Coppin Gap greenstone belt, Eastern Pilbara, Western Australia. Precambrian Res., 88, 83–108.

    Google Scholar 

  • Ohmoto, H., Kakegawa, T. and Lowe, D.R. (1993) 3.4-billion-year-old biogenic pyrites from Barberton, South Africa Science, 262, 555–558.

    Google Scholar 

  • Pavlov, A.A., Kasting, J.F., Brown, L.L., Rages, K.A., and Freedman, R. (2000) Greenhouse warming by CH4 in the atmosphere of the early Earth. J. Geophys. Res., 105, 11,98111, 990.

    Google Scholar 

  • Phillips, R.J., Zuber, M.T., Solomon, S.C., Golombek, M.P., Jakosky, B.M., Banerdt, W.B., Smith, D.E., Williams, R.M.E., Hynek, B.M., Aharonson, O., and Hauck, S.A. (2001) Ancient geodynamics and global-scale hydrology on Mars. Science,in press.

    Google Scholar 

  • Rosing, M.T (1999) 13C depleted carbon microparticles in >3700-Ma seafloor sedimentary rocks from Westa Greenland. Science, 283, 674–676.

    Google Scholar 

  • Ryder, G., Koeberl, C., and Mojzsis, S.J. (2000) Heavy bombradment of the Earth at —3.85 Ga: The search for petrographic and geochemical evidence. In Origins of the Earth and Moon

    Google Scholar 

  • Schidlowski, M. (1988) A 3,800-million-year isotopic record of life from carbon in sedimentary rocks. Nature, 333, 313–335.

    Article  Google Scholar 

  • Sleep, N.H. and Zahnle, K.I (1998) Refugia from asteroid impacts on early Mars and early Earth. J. Geophys. Res., 103, 28,529–28, 544.

    Google Scholar 

  • Sleep, N.H. and Zahnle, K. (2001) Carbon dioxide cycling and implications for climate on ancient Earth. J. Geophys. Res., 106, 1373–1399.

    Article  Google Scholar 

  • Toporski J.,Westall F., Steele A., Thomas-Keprta, K., and McKay D.S. (2001a). The simulated silicification of bacteria — new clues to the modes and timing of bacterial preservation and implications for the search for extraterrestrial microfossils. Astrobiology,in press.

    Google Scholar 

  • Toporski J., Steele A., Westall F., Avci R., Martill M., and McKay D.S., (200 lb). Morphological and spectral investigation of exceptionally well preserved bacterial biofilms from the Oligocene Enspel formation, Germany. Geochim. Cosmochim. Acta,in press.

    Google Scholar 

  • Toporski J., Steele A., McKay D.S., and Westall F. (2001c) Bacterial biofilms in Astrobiology: the importance of life detection. In Fossil and Recent Biofilms (ed. W.E. Krumbein, T. Dornieden, and M. Volkmann ), Kluwer, Amsterdam, this volume.

    Google Scholar 

  • Walsh, M.M., 1992. Microfossils and possible microfossils from the Early Archean Onverwacht Group, Barberton Mountain Land, South Africa. Precambrian Res., 54, 271–293.

    Article  Google Scholar 

  • Walsh, M.M. and Lowe, D.R. (1985) Filamentous microfossils from the 3,500 Myr-old Onverwacht Group, Barberton Mountain Land, South Africa. Nature, 314: 530–532.

    Article  Google Scholar 

  • Walsh, M.M. and Lowe, D.R. (1998) Modes of accumulation of carbonaceous matter in the early Archaean: A petrographic and geochemical study of the carbonaceous cherts of the Swaziland Supergroup, in Geologic evolution of the Barberton Greenstone Belt, South Africa, edited by D.R. Lowe and G.R. Byerly, Geol. Soc. Am. Sp. Paper 329, pp. 115–132.

    Google Scholar 

  • Walsh, M.M. and Westall, F. (2001) Archean biofilms preserved in the 3.2–3.6 Ga Swaziland Supergroup, South Africa. In Fossil and Recent Biofilms (ed. W.E. Krumbein, T. Dornieden, and M. Volkmann ), Kluwer, Amsterdam, this volume.

    Google Scholar 

  • Westall, F. (1999). The nature of fossil bacteria. J. Geophys. Res., 104: 16,437–16, 451.

    Google Scholar 

  • Westall, F. (2000). A high resolution SEM investigation for fossil life in cherts and BIFs from the >3.7 b.y.-old Isua supracrustals. Amer. Geophys. Union, San Francisco, Dec. 2000, (Abst.).

    Google Scholar 

  • Westall, F. and Rincé, Y. (1994). Biofilms, microbial mats and microbe-particle interactions: electron microscope observations from diatomaceous sediments. Sedimentology, 41, 147–162.

    Article  Google Scholar 

  • Westall, F., Boni. L., and Guerzoni, M.E. (1995) The experimental silicification of microorganisms. Palaeontol., 38, 495–528.

    Google Scholar 

  • Westall, F. and Gerneke, D. (1998) Electron microscope methods in the search for the earliest forms of life on earth (in 3.5–3.3 Ga cherts from the Barberton greenstone belt, South Africa): applications for extraterrestrial life studies. Proc. SPIE, Intl. Soc. Opt. Eng., 3114, 158–169.

    Google Scholar 

  • Westall, F., Steele, A., Toporski, J., Walsh, M., Allen, C., Guidry, S., McKay, D., Gibson, E., and Chafetz, H. (2000). Polymeric substances and biofilms as biomarkers in terrestrial materials: Implications for extraterrestrial materials. J. Geophys. Res., 105, 24,51124, 527.

    Google Scholar 

  • Westall, F., de Wit, M.J., Dann, J., de Ronde, C.E.J., Gaast, S.J. and Gerneke, D. (2001) Early Archaean fossil bacteria and biofilms in in hydrothermally-influenced, shallow water sediments, Barberton greenstone belt, South Africa. Precambrian Res., 106, 93–116.

    Article  Google Scholar 

  • Westall, F. and Folk, R.L. (2003) Exogenous carbonaceous microstructures in Early Archaean cherts and BIFs from the Isua greenstone belt: Implications for the search for life in ancient rocks. Precambrian Res.,in press.

    Google Scholar 

  • Wilde, S.A., Valley, J.W., Peck, W.H., and Graham, C.M. (2001) Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4. Gyr ago. Nature, 409, 175–178.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Westall, F., Walsh, M.M., Toporski, J., Steele, A. (2003). Fossil Biofilms and the Search for Life on Mars. In: Krumbein, W.E., Paterson, D.M., Zavarzin, G.A. (eds) Fossil and Recent Biofilms. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0193-8_32

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0193-8_32

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6412-7

  • Online ISBN: 978-94-017-0193-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics