Skip to main content

Cooperativity in the Ca2+-Regulation of Skeletal Muscle Contraction

  • Chapter
Molecular Control Mechanisms in Striated Muscle Contraction

Part of the book series: Advances in Muscle Research ((ADMR,volume 1))

Abstract

An increase in intracellular Ca2+ initiates muscle contraction for all types of muscle. In striated muscles the Ca2+ binds to the muscle thin filaments and relieves the inhibition of myosin binding to actin allowing the ATP driven actomyosin cross bridge cycle which results in contraction. Although we know all of the essential components and the signal transduction pathway which leads from the change in free Ca2+ concentration to the contraction of a muscle fiber, the molecular details of the turning-on process are poorly understood. The change in Ca2+ concentration does not simply turn the contraction on and off but the exact concentration and the rate of change of concentration produces a graded response in the cross bridge cycle. The system is complex and involves at least 6 distinct protein subunits assembled into µm long filaments that are themselves assembled into a precise 3-dimensional array of interdigitating filaments. Each subunit interacts with more than one partner in a series of steric and allosteric interactions which may propagate along the thin filament. The potential for long range cooperative interactions involving hundreds or thousands of molecules is clearly present and part of the object of this chapter is to define the extent to which such long range interactions occur. The level of cooperativity is illustrated in Fig. 1, which shows the Ca2+ dependence of the force developed by an isometrically contracting skinned muscle fiber.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bacchiocchi, C. Graceffa, P. & Lehrer, S.S. (2001) Myosin induced movement and actin binding specificity of smooth muscle αβ tropomyosin. Biophys. J. 80: 357a

    Google Scholar 

  • Bacchiocchi, C. & Lehrer, S.S. (2000) Multi-site fluorescence energy transfer shows Ca2+-induced tropomyosin movement in reconstituted skeletal muscle thin filaments. Biophys. J. 78: 364a

    Google Scholar 

  • Brandt, P.W., Cox, R.N., & Kawai, M. (1980) Can the binding of Ca2+ to two regulatory sites on troponin C determine the steep pCa/tension relationship of skeletal muscle? Proc. Natl. Acad. Sci. USA. 77: 4717–4720

    Article  PubMed  CAS  Google Scholar 

  • Bremel, R.D., Murray, J.M., & Weber, A. (1972) Manifestations of cooperative behavior in the regulated actin filament during actin-activated ATP hydrolysis in the presence of Ca2+. Cold Spring Harb. Symp Qunat. Biol. 37: 267–275.

    Article  Google Scholar 

  • Bremel, R.D. & Weber, A. (1972) Cooperation within actin filament in vertebrate skeletal muscle. Nature: 238: 97–101.

    CAS  Google Scholar 

  • Brenner, B., Kraft, T., Yu, L.C., Chalovich, J.M. (1999) Thin filament activation probed by fluorescence of N-((2-(Iodoacetoxy)ethyl)-N-methyl)amino-7-nitrobenz-2-oxa-1, 3-diazole-labeled troponin I incorporated into skinned fibers of rabbit psoas muscle. Biophys J. 77: 2677–91.

    Article  PubMed  CAS  Google Scholar 

  • Edman, K.A. (1996) Fatigue vs shortening-induced deactivation in striated muscle. Acta Physiol. Scand. 156: 183 – 192.

    Article  PubMed  CAS  Google Scholar 

  • Geeves, M.A. (1991) The dynamics of actin and myosin association and the cross bridge model of muscle contraction. Biochem J. 274: 1 – 14.

    PubMed  CAS  Google Scholar 

  • Geeves, M.A., Goody, R.S. & Gutfreund, H. (1984) The kinetics of acto-S 1 interaction as a guide to a model for the crossbridge cycle. J. Muscle Res. & Cell Motil. 5: 351–361.

    Article  CAS  Google Scholar 

  • Geeves, M.A., & Halsall, D.J. (1987) Two step ligand binding and cooperativity. Biophys. J. 52: 215–220.

    Article  PubMed  CAS  Google Scholar 

  • Geeves, M.A., & Lehrer, S.S. (1994) Dynamics of the muscle thin filament regulatory switch: the size of the cooperative unit. Biophys. J. 67: 273–282.

    Article  PubMed  CAS  Google Scholar 

  • Golitsina, N.L., Hitchcock-DeGregori, S.E. & Lehrer, S.S. (1995) Tropomyosin-actin cooperative effects during myosin S 1 and heavy meromyosin titrations. Biophys. J. 68: A60.

    Google Scholar 

  • Golitsina, N.L. and Lehrer, S.S., (1999) “Smooth muscle α-tm crosslinks to caldesmon, to actin and to myosin S1 on the muscle thin filament”. FEBS Lett. 463: 146–150.

    Article  PubMed  CAS  Google Scholar 

  • Gordon, A.M., Ridgway, E.B., Yates, L.D. & Allen, T. (1988) Muscle cross-bridge attachement: effects of calcium binding and calcium activation. Adv.Exp. Med. Biol. 226:89–99.

    PubMed  CAS  Google Scholar 

  • Grabarek, Z., Grabarek, J., Leavis, P. & Gergely, J. (1983) Cooperative Binding to the Ca2+-Specific Sites of Troponin C in Regulated Actin and Actomyosin. J. Biol. Chem. 258, 14098–14102.

    PubMed  CAS  Google Scholar 

  • Greene, L. (1982) The Effect of Nucleotide on the Binding of Myosin Subfragment 1 to Regulated Actin. J. Biol. Chem. 257: 13993–13999.

    PubMed  CAS  Google Scholar 

  • Greene, L. & Eisenberg, E. (1980) Cooperative Binding of Myosin Subfragment 1 to the Actin-Tropomyosin-Troponin Complex. Proc. Natl. Acad. Sci. USA. 77: 2616–1620

    Article  PubMed  CAS  Google Scholar 

  • Hancock, W.O., Huntsman, L.L., & Gordon, A.M. (1997) Models of calcium activation account for differences between skeletal and cardiac force redevelopment kinetics. J. Muscle Res & Cell Moltil. 18: 671–681.

    Article  CAS  Google Scholar 

  • Head, J.G., Ritchie, M.D. & Geeves, M.A. (1995) Characterization of the equilibrium between blocked and closed states of muscle thin filaments. Eur. J. Biochem. 227: 694–699.

    Article  PubMed  CAS  Google Scholar 

  • Hill, T.L. (1960) Introduction to statistical thermodynamics. Addison-Wesley, Reading, MA. 140–143

    Google Scholar 

  • Hill, T., Eisenberg, E. & Greene, L. (1980) Theoretical Models for the Cooperative Equilibrium Binding of Myosin Subfragment 1 to the Actin-Tropomyosin-Troponin Complex. Proc. Natl. Acad. Sci. USA. 77: 3186–3190.

    Article  PubMed  CAS  Google Scholar 

  • Hoffman, P.A., Greaser, M.L. & Moss, R.L. (1991) C-protein limits shortening velocity of rabbit skeletal muscle fibres at low levels of Ca2+ activation. J. Physiol. 439: 701–715.

    Google Scholar 

  • Hoffman, P.A. & Fuchs, F. (1987a) Effect of length and cross-bridge attachement on Ca2 + bining to cardiac troponin. Am. J. Phys. 253: C90-C96.

    Google Scholar 

  • Hoffman, P.A. & Fuchs, F. (1987b) Evidence for a force-dependent component of calcium binding to cardiac tropinin. Am.J. Phys. 253: C541–0546.

    Google Scholar 

  • Holmes, K.C. (1995) The actomyosin interaction and its control by tropomyosin. Biophys. J. 68: 2s-7s.

    PubMed  CAS  Google Scholar 

  • Ishii, Y., & Lehrer, S.S. (1985) Fluorescence studies of the conformation of pyrene-labeled tropomyosin. Effects of F-actin and myosin subfragment 1. Biochem. 24: 6631–6638.

    Article  CAS  Google Scholar 

  • Ishii, Y. & Lehrer, S.S. (1990) Excimer Fluorescence of Pyrenyliodoacetamide-Labeled Tropomyosin: A Probe of the State of Tropomyosin in Reconstituted Muscle Thin Filaments. Biochem. 29: 1160–1166.

    Article  CAS  Google Scholar 

  • Iwamoto, H. (1998) Thin filament cooperativity as a major determinant of shortening velocity in skeletal muscle fibers. Biophys J. 74: 1452–1464.

    Article  PubMed  CAS  Google Scholar 

  • Koshland, D.E., Nemethy, G. & Filmer, D. (1996) Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochem. 5, 365–385.

    Google Scholar 

  • Lehrer, S. S. (1994). The regulatory switch of the muscle thin filament: Ca2+ or myosin heads? J. Mol. Biol. 15: 232–236.

    CAS  Google Scholar 

  • Lehrer, S. S., & Geeves, M. A. (1998). The muscle thin filament as a classical cooperative/allosteric regulatory system. J. Mol. Biol. 277: 1081–1089.

    Article  PubMed  CAS  Google Scholar 

  • Lehrer, S. S., Golitsina N. L. & Geeves, M. A. (1997) Actin-tropomyosin activation of myosin subfragment 1 ATPase and thin filament cooperativity: The role of tropomyosin flexibility and end to end interactions. Biochem. 36: 13449–13454.

    Article  CAS  Google Scholar 

  • Lehrer, S. S., & Morris, E. P. (1982). Dual Effects of Tropomyosin and Tropomyosin-Troponin on Actomyosin Subfragment 1 ATPase. J. Biol. Chem. 257: 8073–8080.

    PubMed  CAS  Google Scholar 

  • Lehman, W., Rosol, M. Tobacman, L. S. & Craig, R. (2001) Troponin organization on relaxed and activated thin filaments revealed by electron microscopy and three-dimensional reconstruction. J. Mol. Biol. 307, 739–744.

    Article  PubMed  CAS  Google Scholar 

  • Li H.C., Fajer P.G., (1998) Structural coupling of troponin C and actomyosin in muscle fibers. Biochemistry. 37: 6628–35.

    Article  PubMed  CAS  Google Scholar 

  • Luo, Y, Leszyk J, Li B, Gergely J, Tao T. (2000) Proximity relationships between residue 6 of troponin I and residues in troponin C: further evidence for extended conformation of troponin C in the troponin complex. Biochemistry. 2000 39:15306–15.

    Article  Google Scholar 

  • Maytum, R., Konrad, M., Lehrer, S.S. & Geeves, M.A. (2001) Regulatory properties of tropomyosin, effects of length, isoform and N-terminal sequence. Biochem. 40: 7334–7341.

    Article  CAS  Google Scholar 

  • Maytum, R., Lehrer, S.S., & Geeves, M.A. (1999). Cooperativity and switching within the three state model of muscle regulation. Biochem. 38: 1102–1110.

    Article  CAS  Google Scholar 

  • McDonald, K.S., Field, L.J., Parmacek, M.S., Soonpaa, M., Leiden, J.M. & Moss, R.L. (1995) Length dependence of Ca2+sensitivity of tension in mouse cardiac myocytes expressing skeletal troponin C. J. Phys. 483: 131–139.

    CAS  Google Scholar 

  • McKillop, D.F.A., & Geeves, M.A. (1993) Regulation of the interaction between actin and myosin subfragment 1: evidence for three states of the thin filament. Biophys. J. 65: 693–701.

    Article  PubMed  CAS  Google Scholar 

  • Miki, M., Miura, T., Sano, K., Kimura, H., Kondo, H., Ishida, H., Maeda, Y. (1998) Fluorescence resonance energy transfer between points on tropomyosin and actin in skeletal muscle thin filaments: does tropomyosin move? J Biochem (Tokyo). 123:1104–11.

    Article  CAS  Google Scholar 

  • Millar, N.C. & Homsher, E. (1990) The effect of phosphate and Ca on force generation in glycerinated rabbit skeletal muscle fibers. J. Biol. Chem. 265: 20234–20240.

    PubMed  CAS  Google Scholar 

  • Monod, J., Wyman, J., & Changeux, J.-P. (1965) On the nature of allosteric transitions. J. Mol. Biol. 12: 88 – 118.

    Article  PubMed  CAS  Google Scholar 

  • Moss, R.L. (1992) Ca2+ regulation of mechanical properties of striated muscle. Circ. Res. 70: 865–884.

    Article  PubMed  CAS  Google Scholar 

  • Murray, J.M., Weber, A. & Bremel, R.D. (1975) Could cooperativity in the actin filament play a role in muscle contraction? In E. Carafoli (Ed.), Calcium Transport in Contraction and Secretion North-Holland.

    Google Scholar 

  • Narita, A., Yasunaga, T., Ishikawa, T., Mayanagi, K. & Wakabayashi, T. (2001) Ca2+ induced switching of troponin and tropomyosin on actin filaments as revealed by electron cryomicroscopy. J. Mol. Biol. 308: 241–261.

    Article  PubMed  CAS  Google Scholar 

  • Offer, G. & Knight, P., (1988) Water holding properties of meat Part 1: general principles and water uptake during processing. Dev. Meat Sci. 4: 63–171.

    Google Scholar 

  • Pemrick, S., & Weber, A. (1976) Mechanism of inhibition of relaxation by N-ethyl maleimide treatment of myosin Biochem. 15: 5193–5198.

    Article  CAS  Google Scholar 

  • Phillips, G.N., Fillers, J.P. & Cohen, C. (1986) Tropomyosin crystal structure and muscle regulation. J. Mol. Biol. 192: 111–131.

    Article  PubMed  CAS  Google Scholar 

  • Potter, J.D. & Gergely, J. (1975) The calcium and magnesium sites on troponin and theor role in the regulation of myofibrillar adenosine triphosphatase. J Biol. Chem. 250: 4628–4633.

    PubMed  CAS  Google Scholar 

  • Reiffert, S.U., Jaquet, K., Heilmeyer, L.M.G.J., Ritchie, M.D. & Geeves, M.A. (1996) Bisphosphorylation of cardiac troponin I modulates the Ca-dependent binding of myosin subfragment 1 to reconstituted thin filaments. FEBS Lett. 384: 43–47.

    Article  PubMed  CAS  Google Scholar 

  • Ridgway, E.B. & Gordon, A.M. (1984) Muscle calcium transient. Effect of post stimulus length changes in single muscle fibres. J. Gen. Physiol. 83: 75–103.

    Article  PubMed  CAS  Google Scholar 

  • Schaertl, S., Lehrer, S.S. & Geeves, M.A. (1995) Separation and Characterization of the Two Functional Regions of Troponin Involved in Muscel Thin Filament Regulation. Biochem. 34: 15890–15894.

    Article  CAS  Google Scholar 

  • Squire, J.M. & Morris, E.P. (1998) A new look at thin filament regulation in vertebrate skeletal muscle. Faseb. J. 12: 761–771.

    PubMed  CAS  Google Scholar 

  • Swartz, D., Moss, R.L. & Greaser, M.L. (1996) Calcium alone does not fully activate the thin filament for S 1 binding to rigor myofibrils. Biophys. J. 71: 1891–1904.

    Article  PubMed  CAS  Google Scholar 

  • Trybus, K.M. & Taylor, E.W. (1980) Kinetics of the Cooperative Binding of Subfragment 1 to Regulated Actin. Proc. Natl. Acad. Sci. USA. 77: 7209–7213.

    Article  PubMed  CAS  Google Scholar 

  • Vibert, P., Craig, R. & Lehman, W. (1997) Steric-model for activation of muscle thin filaments. J Mol. Biol. 266: 8–14.

    Article  PubMed  CAS  Google Scholar 

  • Zot, H.G. & Potter, J.D. (1987) Calcium binding and fluorescence measurements of dansylaziridinelabelled troponin C in reconstituted thin filaments. J. Muscle Res Cell Motil,. 257: 7678–7683.

    Google Scholar 

  • Zot, H.G. & Potter, J.D. (1989) Reciprocal coupling between TnC and myosin crossbridge attachment. Biochem. 28: 6751–6756.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Geeves, M.A., Lehrer, S.S. (2002). Cooperativity in the Ca2+-Regulation of Skeletal Muscle Contraction. In: Solaro, R.J., Moss, R.L. (eds) Molecular Control Mechanisms in Striated Muscle Contraction. Advances in Muscle Research, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9926-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9926-9_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6069-3

  • Online ISBN: 978-94-015-9926-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics